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Ductal carcinoma in  situ (DCIS) is an often-diagnosed breast disease and a known, 
non-obligate, precursor to invasive breast carcinoma. In this review, we explore the 
clinical and pathological features of DCIS, fundamental elements of DCIS biology includ-
ing gene expression and genetic events, the relationship of DCIS with recurrence and 
invasive breast cancer, and the interaction of DCIS with the microenvironment. We also 
survey how these various elements are being used to solve the clinical conundrum of 
how to optimally treat a disease that has potential to progress, and yet is also likely 
over-treated in a significant proportion of cases.
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iNTRODUCTiON

Implementation of widespread mammographic screening has led to an increase in diagnosis 
of breast tumors such as ductal carcinoma in  situ (DCIS, Figure  1). Previously uncommon, 
DCIS now comprises ~20% of all breast carcinoma diagnoses (1). DCIS shares many of the 
epidemiological risk factors as invasive breast cancer (IBC) including age, family history, parity, 
and some other hormonal factors and high mammographic density (2). Weaker risk factors 
such as alcohol consumption and high body mass index have been inconsistently associated 
with DCIS risk. The genetic risk factors are also similar: BRCA1 and BRCA2 mutation carriers 
develop DCIS more frequently and at an earlier age than the general population (3, 4) and are 
significantly more likely to have occult DCIS in prophylactic mastectomies than age-matched 
non-carriers from autopsy studies (5).

Because of its nature as a potential precursor for invasive breast carcinoma, excision of DCIS 
is recommended, but the lack of a concomitant decrease in the IBC diagnosis rate (Figure 1) 
suggests that much DCIS is being over-treated and would never progress to invasive disease nor 
give rise to any morbidity. Indeed, autopsy studies indicate that occult DCIS exists in ~9% of 
women (range 0–15%) (7). In the few studies with small numbers of DCIS where misdiagnosis 
led to omission of surgery, 14–53% of women developed IBC over 30  years (8–10). A recent 
meta-analysis placed the 15-year invasive recurrence rate after surgery alone for DCIS at 28% 
and breast cancer–specific mortality at 18% (11). Thus, while most DCIS must be treated to 
prevent invasive disease, there is a substantial proportion that may never become invasive. The 
difficulty clinicians grapple with is how to discriminate between high- and low-risk entities, 
and how to best advise their patients. Given unclear guidelines, some patients elect for more 
aggressive treatment than is necessary, such as mastectomy with axillary node dissection or 
even bilateral mastectomy (12, 13). Here, we review the current state of understanding of DCIS 
biology, pathology, treatment, and its relationship to invasive disease.
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FigURe 1 | US National Cancer Institute Surveillance, Epidemiology, and 
End Results (SEER) age-adjusted incidence of ductal carcinoma in situ  
(DCIS) compared to invasive breast cancer (IBC), relative to the rate of each 
observed in 1975, showing the dramatic increase in DCIS cases, without 
noticeable decrease in IBC cases (6).
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DiAgNOSiS AND PATHOLOgY OF DCiS

Ductal carcinoma in situ is a proliferation of atypical epithelial 
cells that is contained within the lumen of the breast ductal 
system. Nowadays, it is usually detected in the context of a 
mammographic screening program, but can occasionally 
(more commonly in pre-screening times) present as a palpable 
lump or with other physical symptoms like nipple discharge 
(14). Approximately 8% of core needle biopsies are initially 
diagnosed as DCIS (15), and this diagnosis is confirmed in 
~74% of cases after excision. A recent meta-analysis found that 
under-diagnosis on core biopsy (a diagnosis of DCIS on biopsy 
changed to invasive disease after excision) was associated with 
large tumor size, palpable mass, a mammographic mass lesion, 
use of image guidance other than stereotactic, and high mam-
mographic density (15).

The degree of cellular atypia is determined histologically 
whereby three grade levels are assigned (low, intermediate, 
and high) on the basis of the degree of nuclear atypia (16). 
High-grade tumors show marked nuclear pleomorphism, large 
nucleic size, conspicuous mitoses, and irregular chromatin.  
In contrast, low nuclear grade refers to monotonous nuclei of 
small size more akin to normal luminal epithelial cell size and 
only occasional nucleoli and mitoses. Intermediate grade is 
defined as neither low nor high grade, which may account for its 
poor inter-observer reproducibility (17). The highest grade pre-
sent is reported, although grade heterogeneity has been observed 
in 12–50% of cases (18, 19). High-grade tumors, which represent 
42–53% of DCIS cases (20–23), are considered a high risk factor 
for recurrence (22, 24–26) and breast cancer-specific mortality 
(27), although some studies do not show such an effect (21, 28). 
The presence of high grade in a biopsy correlates with a higher 
probability of the presence of invasive disease (15).

In addition to nuclear atypia, a range of different architec-
tural patterns are observed, including cribriform, solid, comedo 
(central necrosis), micropapillary, and papillary (Figure  2). 
Multiple patterns are often observed within the same tumor 

(46–62% of cases) (19, 29), which may explain the low level 
of concordance of studies using these categories as prognostic 
markers. The prognostic value of these architectural features 
has been found to be limited; comedo necrosis is associated 
with high grade and worse breast cancer-specific survival (27) 
but only inconsistently with recurrence (26, 28). The increase 
in incidence of DCIS after the introduction of mammographic 
screening has been more strongly associated with an increase  
in the non-comedo subtypes (30).

OveRview OF SCReeNiNg AND eFFeCT 
ON DCiS DiAgNOSiS RATe AND 
MORTALiTY

Although the rate of DCIS diagnosis has risen in the mam-
mographic era, mortality rates from DCIS have fallen.  
A Swedish study found that the standard mortality ratio after 
DCIS fell from 5.29 in cases diagnosed 1980–1990 to 3.30 for 
cases 2000–2011 (31). Screen-detected DCIS have been shown 
to have a lower rate of invasive recurrence, and lower overall 
mortality (24, 32). This improved mortality is likely due in part 
to earlier detection, with more recently diagnosed DCIS being 
smaller (30) but also due to the shift in type, with a reduction 
in the proportion that have poor prognostic features such as  
high grade or comedo necrosis. These features support the 
concept of over-diagnosis, and yet a comparison of screening 
units in the UK found that when screening units with different 
sensitivity of detection are compared, those with a higher DCIS 
detection rate had a lower interval IBC rate (33). This result 
suggests that screening can in fact prevent invasive disease.

TReATMeNT OF DCiS

Ductal carcinoma in  situ treatment currently is variable, and 
depends on the preferences of surgeon and patient (see below). 
Almost all women will elect to have surgery, and this is usually 
a wide-local excision (WLE), though a percentage will have a 
mastectomy if the DCIS is high grade and extensive or if the 
patient prefers. Radiotherapy (RT) is offered after WLE and 
clinical trial data show a 4–5-fold reduction in ipsilateral recur-
rences (19–31%) compared with contralateral tumors (4–7%) at 
10 years when treated with surgery alone (34–36). After treat-
ment with RT, the gap narrows to ~2-fold (7–20% ipsi- vs. 3–8% 
contralateral). Endocrine therapy in estrogen receptor (ER) 
positive tumors reduces the contralateral and ipsilateral recur-
rences to a similar degree (34). The effect of endocrine therapy 
on ipsilateral recurrence is minimal if RT is also applied, sug-
gesting that RT alone can be effective in killing residual disease 
cells. Long-term outcome data for DCIS show that regardless of 
treatment, breast cancer-specific mortality is very low (1.5–2% 
at 10 years up to 6.3% at 30 years) (23, 31).

The variation in treatment selected among physicians, by 
country and by treatment center can be dramatic (23). For exam-
ple, a recent series from Australia (1994–2005) reported that 85% 
of women with DCIS had WLE only, 9% had mastectomy, just 
6% were given RT after WLE, and 26% were also treated with 
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FigURe 2 | Different subtypes of ductal carcinoma in situ, including by mode of detection (top). Haematoxylin and eosin images.
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tamoxifen (37). At the other extreme, 81% of patients received 
a mastectomy in a cohort in China, with less than 20% receiving 
RT but a surprising 43% receiving chemotherapy (38). Many 
patients also received hormonal therapy in this cohort (62%). 
In contrast, a large study from the Netherlands (1989–2004) 
treated 48% of women with mastectomy, 26% with WLE only, 
and 26% with WLE  +  RT (20). None were given tamoxifen.  
In the US, analysis of Surveillance, Epidemiology, and End 
Results (SEER) data indicated that the most recent treatment 
choices (2010) were WLE  +  RT (47%), mastectomy (28%), 

and WLE only (22%) (23), similar to a large Australian/
New Zealand cohort from 2004 to 2009 (39). Treatment trends 
have changed over time, with generally fewer mastectomies 
[although a rise in bilateral mastectomies in young women has 
been recently noted in the US (23)], and increasing rates of 
RT. Although national guidelines can influence the choice of 
therapy, this variation is in great part due to the uncertainty 
around what constitutes a “high-risk” DCIS, i.e., a DCIS at high 
risk of recurrence and/or progression to invasive carcinoma 
requiring RT or mastectomy.
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TABLe 1 | The Van Nuys Prognostic Index and recommendations for treatment.

Feature Score 1 Score 2 Score 3

Size (mm) ≤15 16–40 >40
Margins (mm) ≥10 1–9 <1
Grade and  
necrosis

Low or 
intermediate 

without necrosis

Low or  
intermediate  
with necrosis

High grade 
with/without 

necrosis
Age (years) >60 40–60 <40

Low score (4–6) intermediate (7–9) High (10–12)

% patients 32.6% 56.7% 10.8%
Treatment 
recommendation

Wide-local 
excision (WLE)

WLE + radiotherapy 
(RT)

Mastectomy

10 year recurrence- 
free survivala

97% 73% 34%

10 year breast 
cancer-specific 
survival

100% 98% 98%

aAfter WLE ± RT, mastectomy excluded (40).
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One tool that has been developed to assist with treatment 
decision is the Van Nuys Prognostic Index (VNPI) (40). 
Features associated with high risk of recurrence such as tumor 
size, margin status, grade, and patient age are combined in an 
index ranging from 4 to 12 that directs the practitioner to a 
suggested therapy (Table 1). Patients with a low score show no 
significant benefit from RT, in contrast to those with an inter-
mediate or high score. The VNPI has been tested in a number 
of retrospective studies, but has yet to be used in a clinical trial 
context. Gilleard et  al. observed the score to be significantly 
associated with recurrence-free survival after WLE only, with 
the low risk group having no recurrences (41). They also found 
that including age did not improve the prediction. However, 
MacAusland et  al. did not find the index to be of prognostic 
value within 5 years after WLE ± tamoxifen (42). Other studies 
found the index to have prognostic power, but to lack utility in 
advising treatment, as most patients (59–79%) were placed into 
the “intermediate” grouping (43, 44).

A similar score (45) incorporating grade, size, and age was 
tested on USA SEER data (for which margin status was not 
collected) and found a significant association with recurrence 
and also breast cancer-specific mortality (46). The latter study 
also showed that cases with a low score did not benefit from RT, 
and those with an intermediate score had only a limited benefit 
from RT.

More recently, a 10-feature nomogram was developed to 
assist with risk prediction after DCIS diagnosis (47), which 
incorporated age, family history, presentation, treatment, 
grade, margins, and, interestingly, the number of excisions. 
This latter feature was included despite not being predictive 
in a univariate analysis, yet three or more excisions led to an 
increased risk of recurrence in a multivariate model (HR 1.68). 
The number of excisions is rarely investigated in studies of DCIS 
and recurrence, possibly because of the difficulty in collecting 
such data. A later update from the same group at Memorial 
Sloan-Kettering Cancer Center showed that the number of 
excisions, along with margin width, was only predictive in a 
WLE-only group (48). This result is consistent with the idea 

that ipsilateral recurrences arise due to residual disease in the 
breast after surgery, which RT (and also endocrine therapy for 
ER+ disease) can alleviate.

Despite the many years these scoring tools have existed, and 
are apparently used by clinicians as a basis for discussion with 
patients, there does not appear to be any prospective valida-
tion of their utility. Attempts at validation using retrospective 
cohorts have had mixed results (49–52), and may be strongly 
influenced by the disparate cohorts available, in terms of treat-
ment selection and completeness/accuracy of the data inputs. 
In a recent review (53), a DCIS decision tree was proposed 
to stratify patients for treatment, in which as yet hypothetical 
molecular markers were included. This strategy was employed 
to principally help discriminate the intermediate risk group 
in the VPNI, for whom treatment could vary from WLE only  
(for those with score 7, clear margins and good prognostic 
molecular markers) to mastectomy (for those with score 8/9, 
close or involved margins and poor prognostic molecular fea-
tures). However, powerful biomarkers of recurrence for DCIS 
have yet to be determined.

MOLeCULAR FeATUReS OF DCiS

Invasive breast cancer can be categorized into a number of dif-
ferent subtypes based on molecular features, including immu-
nohistochemical (IHC) markers, genetic features, and gene 
expression profiles. The most fundamental of these categories 
is related to the hormonal status of the tumor. Historically, 
DCIS has not been routinely evaluated for ER status, but research 
studies have found that the proportion of ER positivity at 62–76% 
(22, 23, 25, 54) is similar to that observed in IBC (55, 56). ER 
status is not currently used prognostically for DCIS, but current 
guidelines in the US indicate endocrine therapy for ER positive 
cases after WLE (57), and rates of ER testing have increased in 
recent years (58). Cancer registry data in the US suggests that at 
least 39% of women receive endocrine therapy (1). However, in 
the UK, NICE guidelines do not recommend endocrine therapy 
for DCIS (59), thus it is rarely prescribed.

genetic events in DCiS
Genomic analysis of DCIS has been limited by the availability 
of fresh-frozen tissue resources, since the small average size 
means there is little left over after tissue requirements for clinical 
pathology have been met. In recent years, however, advance-
ments in technology have meant that genome-wide approaches 
using formalin-fixed paraffin-embedded tissues from diagnostic 
material have been increasingly applied to DCIS. There are two 
main avenues of research: first, analyzing DCIS when observed 
in the same breast as IBC (“synchronous” or “mixed” DCIS) 
whereby the two components are compared for differences that 
may relate to invasive progression, and second, examining DCIS 
in the absence of invasive disease (“pure” DCIS).

The analysis of synchronous DCIS has found that despite 
their restriction to the ductal system, the genetic and expression 
profiles of these cells are remarkably similar to invasive disease. 
Early loss of heterozygosity (LOH) studies found high levels of 
allelic concordance in mixed DCIS/IBC components (60–62). 
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An exome analysis of five mixed DCIS found that copy number 
and mutations had very high concordance levels between DCIS 
and IBC components in all cases (63). Similarly, genome-wide 
copy number analysis found that 18/21 mixed DCIS were clon-
ally related to the invasive component, although some genetic 
heterogeneity was observed, which included regions recur-
rently present in the invasive but not matched DCIS (64). These 
differences included gains at known drivers such as CCND1 
and MYC. In some cases, an existing copy number gain in the 
DCIS was present at higher amplitude in the IBC region. This 
result was supported by a FISH analysis of amplified regions 
in synchronous DCIS/IBC showing increased amplicon level in 
the IBC (65).

A recent single-cell sequencing study of two mixed DCIS 
found some intriguing relationships (66). One HER2 positive 
case showed substantial intra-tumor heterogeneity, yet the DCIS 
and invasive cells were represented in all the different subclones, 
possibly suggesting an early acquisition of invasive potential 
and subsequent parallel evolution. Such a progression pathway 
could be occurring in DCIS with multiple foci of microinva-
sion, which can be observed particularly in large DCIS (67).  
In contrast, single-cell sequencing of an ER positive case showed 
evidence of a genetic bottleneck, whereby only one of the four 
DCIS subclones was closely related to the invasive cells (which 
showed low heterogeneity). Thus, there may be more than one 
possible mechanism of evolving an invasive phenotype.

Pure DCIS shows many of the same genetic events as mixed 
DCIS and IBC; however, overall the number of copy number 
changes is lower in pure DCIS (65, 68). There have as yet been 
too few genome-wide mutation studies of DCIS for a defini-
tive comparison to IBC on mutation load and diversity. One 
targeted gene sequencing study found that all 20 DCIS studied 
had at least one mutated driver gene comparable with IBC (69); 
however, an exome analysis of high-grade DCIS found that 
a number of cases did not contain any drivers (70). Another 
small exome analysis comparing six pure DCIS with five mixed 
DCIS found that while individual pure DCIS each had a driver 
mutation, overall they had fewer mutations and copy number 
changes than mixed DCIS (63), which tended to have multiple 
drivers.

One of the key molecular differences between DCIS and 
IBC is the prevalence of ERBB2 amplification. In IBC, HER2 
positivity rates in population-based samples are ~14% (71). 
HER2 testing is not routinely done on DCIS cases, as anti-HER2 
therapies are not employed, but the proportion reported in 
DCIS is consistently higher than IBC, ranging 18–56% with 
higher rates in high-grade DCIS, depending on the cohort 
(22, 25, 56, 72, 73). In addition, HER2 positivity may be a 
prognostic factor in DCIS predicting recurrence as DCIS but 
not as invasive cancer (22, 25, 68). Thus, ERBB2 amplification 
alone may be insufficient for invasive progression and may even 
indicate a DCIS less likely to progress to invasion. Additional 
genetic events may be required for progression and whatever 
these changes are, they not only lead to invasion, but also to a 
very aggressive IBC subtype, an intriguing paradox.

One contributing event to invasive progression could be 
TP53 mutation, as studies have consistently shown that TP53 

mutations are less frequent in pure DCIS (15% on average, 
0–32%) (63, 69, 70, 74–80) than IBC (27–37%) (81, 82). In con-
trast, PIK3CA mutations appear to be similarly frequent in DCIS 
(24% on average, 17–55%) (63, 64, 69, 70, 74, 83–85) as to IBC 
(25–36%) (81, 82, 86, 87), although interestingly, several reports 
have noted the presence of PIK3CA mutation in the DCIS  
component of mixed DCIS/IBC but absent in the IBC compo-
nent (64, 83). Some of these cases also had copy number data 
suggestive of either non-clonality or very early clonal divergence  
(64, 83). One study has suggested that GATA3 mutations could 
be more common in DCIS (69), though this remains to be 
validated in other cohorts.

Correlations of mutation or copy number with features of 
DCIS have found that, similar to IBC, ER positivity is associated 
with PIK3CA mutation (69, 84), and also GATA3 mutation (69). 
TP53 mutation is associated with high grade and HER2 positivity 
(69, 76, 88), as well as a higher level of geno mic copy number 
alteration (69). Genome-wide copy number changes and LOH 
events are more common in high-grade DCIS (68, 89–93), with 
specific increases seen for loss of 17p and gains of ERBB2 and 
MYC (68, 92, 94–96). However, as in IBC, low-grade DCIS has 
frequent gain of 1q and loss of 16q (68, 92, 94). ER negative 
tumors have more copy number changes than ER positive, 
both overall and at specific loci (e.g., 8q gain, 5q loss, 15q loss), 
although ER positive tumors have more 16q losses (68). An 
integrated gene expression and copy number analysis found that 
DCIS have similar “integrated cluster” membership to IBC (93), 
and similarly, the breast cancer “intrinsic subtypes” correlated 
with genetic features such as TP53 mutation frequency and copy 
number profiles (68, 69, 88).

expression Analysis of DCiS and iBC
The “intrinsic subtypes” of IBC (97) have been used to categorize 
DCIS, with an IHC approximation finding DCIS to be 49% 
Luminal A (ER+, Ki67 low), 8.7% Luminal B/HER2− (ER+, 
Ki67 high), 17% Luminal B/HER2+ (ER+, HER2+), 16% HER2 
(ER−, HER2+), and 7% Triple Negative (ER−, PR−, HER2−) 
(98). These frequencies contrast with IBC where there is a higher 
proportion of triple negative (14–24%) and a lower proportion 
of HER2 (6–7%) (56, 99). Also in contrast to IBC, the subtypes 
may have limited prognostic value for DCIS, with one study 
showing only the triple-negative group having a worse long-
term outcome (98), which was not statistically significant when 
adjusted for age, size, grade, and therapy. Another study found 
the Luminal A group to have a better survival in a multivariate 
analysis (100), but could not differentiate between the other 
groups. Interestingly, a study investigating different spatial areas 
of DCIS noted significant variability in subtyping with 35% 
showing more than one intrinsic subtype (30).

Several gene expression studies have been conducted for 
both pure and mixed DCIS. While the individual gene lists 
differ between studies, there are a number of common themes. 
First, both mRNA and microRNA profiling have found that 
the strongest expression differences are between normal 
epithelium and DCIS, rather than between DCIS and IBC  
(70, 101). Second, DCIS shows greater similarity to concur-
rent IBC than to other DCIS (102, 103), illustrating that 
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inter-tumor heterogeneity is high and can mask more subtle 
changes. Expression profiles are strongly driven by intrinsic 
subtypes, and comparisons between not controlled DCIS and 
IBC are compromised when unmatched for tumor-intrinsic 
subtype (93). Nonetheless, studies of mixed and pure DCIS 
have found that differentially expressed genes between DCIS 
and invasive components commonly lie in pathways such as 
angiogenesis, cell–cell adhesion, epithelial-to-mesenchymal 
transition, and extracellular matrix (ECM) (70, 93, 102–104). 
However, differential expression of genes expressed highly  
in myoepithelial cells (e.g., SOX10) may merely indicate that 
the cells surrounding the epithelial DCIS tumor cells were 
included in the RNA extraction procedure (70, 104).

One study that had identified the instrinsic subtype as a 
major confounding factor in differential expression analysis per-
formed subgroup tests and found that genes different between 
DCIS and IBC varied across subtypes (93). Luminal tumors 
were more likely to differentially express genes in adhesion 
and ECM pathways, HER2 tumors additionally had cell cycle 
pathways affected while basal-type tumors were more likely to 
have immune response genes affected.

Gene expression differences have also been observed between 
low- and high-grade DCIS, most commonly affecting cell growth 
and metabolism genes (105, 106). When these differentially 
expressed genes are applied to intermediate grade cases, many 
of these could be classified as either low or high grade (105), 
although Hannemann et al. identified a small group of intermedi-
ate grade DCIS that were not closely related to either high- or 
low-grade cases (106).

epigenetics of DCiS
Epigenetic analysis of DCIS has primarily been limited to 
single gene studies of promoter methylation, often with widely 
varying results depending on the method of detection and 
the analytical threshold to methylation positivity applied 
(107). Nonetheless, as with expression studies, some general 
points appear to be consistent. Increased levels of promoter 
methylation have been noted in the progression from normal 
epithelium to DCIS, but few studies show an increase in meth-
ylation in invasive progression and only for a subset of genes 
examined [e.g., TWIST 1 (108), FOXC1 (109), HOXA10 (110)]. 
A genome-wide methylation analysis could not discriminate 
in an unsupervised way between pure DCIS, mixed DCIS, and 
IDC (111). Methylation studies lag substantially behind other 
genome-wide approaches in terms of testing subgroups of 
DCIS, such as based on intrinsic subtyping, which could assist 
in teasing out subtle differences between DCIS and IDC.

Elevated levels of DNA methylation across multiple gene 
promoters have been associated with poor prognostic features 
such as high grade, HER2 positivity, and ER negativity (112), 
however, as yet only a single genome-wide study has undertaken 
an unbiased examination of the association of methylation with 
recurrence (113). This study identified significantly differen-
tially methylated CpGs with enrichment for genes associated 
with homeobox regulation, limb morphogenesis, and polycomb 
target genes. Although the individual genes often differ, the 
methylation of homeobox genes is a recurrent feature of several 

methylation studies of DCIS, including three other genome-
wide approaches (70, 114, 115).

PROgReSSiON OF DCiS TO iNvASive 
DiSeASe

There are a number of theoretical models for the development 
of DCIS and its progression to invasive disease, based on 
molecular profiling and animal studies (116). These models 
vary depending on the ER status of the tumors and also on the 
grade, whereby ER positive invasive carcinomas are thought to 
arise from ER positive precursors (such as ADH and DCIS), 
low-grade invasive cancers arise from low-grade DCIS and so 
on. The models may also be related to the putative cell of origin 
of each subtype, with different normal breast cells proposed to 
be the cells of origin for different invasive subtypes (117). The 
intermediate lesions may also be different, as may the length of 
time spent in each histological stage. For example, while basal-
type invasive carcinomas are thought to arise from a luminal 
stem cell, they are not thought to progress via the hyperplasia–
ADH–DCIS pathway, but to rapidly progress from an unknown 
but short-lived intermediate into high-grade DCIS and then 
quickly to invasive carcinoma. This model is supported by  
the relative underrepresentation of the basal/triple negative 
subtype in DCIS cohorts (73, 118). On the same basis, HER2 
positive tumors are thought to remain for longer in a DCIS state 
before progressing. Basal and triple negative invasive tumors are 
also less likely to have a DCIS component, while HER2 posi-
tive invasive tumors have the most extensive associated DCIS 
(119). The biological mechanism for these differences is unclear, 
especially for the HER2 positive tumors, which are among the 
most aggressive of invasive subtypes.

The study of microinvasive DCIS may offer insights into the 
process and conditions under which invasion might occur. DCIS 
with microinvasion are more likely to be large, detected clinically 
rather than through mammographic screening and to show poor 
prognostic factors such as high grade, comedo necrosis and ER 
negativity, and have a worse outcome compared to DCIS with-
out microinvasion (120, 121). At present, investigation of the 
molecular features of microinvasion has been limited to immu-
nohistochemical analyses, in which it is clear that microinvasion 
is associated with alterations in the local microenvironment, 
both of the myoepithelial cell layer and the stromal cells (122, 
123). However, it is not clear whether such changes are causative 
of, or reactive to, invasion. Future studies employing single-cell 
transcriptome or genome sequencing of the cells involved in a 
microinvasive event could enhance our understanding of the 
invasive process.

THe ReLATiONSHiP OF PRiMARY DCiS 
TO ReCURReNCeS

Assessment of the clonal relationship between primary DCIS 
and later recurrent disease has been attempted in a number of 
different ways. Nuclear grade evaluation shows varying levels of 
concordance, with the same grade seen in 70–85% of recurrences 
when returning as DCIS and 49–53% when invasive (124, 125), 
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TABLe 2 | Summary of results of IHC studies of ductal carcinoma in situ (DCIS) 
recurrence reviewed in Lari and Kuerer (131).

Protein No. studies 
significant

Total no. 
patients

Direction of 
association

Subsequent  
studies

COX2 4/4 629 Positive Associated with 
metastases only (132)

Ki67 6/9 1,365 Positive 3 significant (25, 100, 
133); 1 not  
significant (132)

HER2 4/14 2,365 Positivea Significant for  
DCIS (25, 134)

ER 4/16 2,470 Negative –
PR 2/13 2,051 Negative –
p53 3/10 1,355 Positiveb 2 not significant  

(132, 133)
p16 2/3 576 Positive Significant (132)
Bcl-2 2/3 433 Negative –
CD10 2/2 151 Contradictory –
Cyclin D1 1/5 443 Negative Not significant (133)
Cyclin A 1/2 110 Positive –
p21 1/4 365 Positive –
p27 0/2 237 ns Not significant (135)
EGFR 0/2 288 ns –
HER3 0/2 288 ns –
HER4 1/2 288 Negative –
VEGF 0/1 103 ns –
MYC 0/1 159 ns –
Survivin 1/1 161 Positive Not significant (133)
AR 0/1 95 ns –
SPARC 1/1 97 Positivec –
Cyclin E 0/1 177 ns –

Ns, not significant.
aMay only be associated with recurrence as DCIS.
bScoring methodology for p53 highly variable.
cStromal expression only.
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although better concordance with invasive grade is seen when 
the nuclear pleomorphism component only is considered (76%). 
Immunophenotypic analyses of DCIS and recurrences have 
shown that recurrence as DCIS and invasive carcinoma both 
have high ER status concordance (85 and 84%, respectively, and 
85–95% overall) as well as high HER2 concordance (88 and 91%, 
88–89.5% overall) (124, 126). Immunostaining of p53 was also 
highly consistent [93% concordance (124)].

Using such immunohistochemical and pathological features, 
clonality could be estimated as anywhere between 50 and 
95%. However, the levels of concordance observed by these 
parameters do not accurately represent the clonality rate as: 
(1) the assays can have poor reproducibility across time, with 
differing laboratory procedures and pathologist scoring leading 
to false non-clonality calls, (2) caveats to using grade include 
that intermediate grade has low inter-observer reproducibility 
and that overall invasive grade is measured differently to DCIS 
grade, and (3) most critically, measuring these common, low 
variability features is a blunt tool for positively assessing clonal-
ity: many tumors will share grade and ER status and be entirely 
independent tumors.

Genetic data have the potential to accurately determine 
clonality since recurrent tumors arising from remnants of the 
primary tumor will share key somatic driver events due to the 
shared ancestral origin. There is a surprising paucity of data on 
the genetic relationship of DCIS and their recurrences. Genome-
wide copy number analysis showed that 6/8 recurrences within 
5  years after treatment with WLE were clonally related to the 
primary tumor, and two cases had no copy number changes 
with shared breakpoints indicative of a clonal relationship (68). 
In an older, low-resolution copy number study 17/18 recurrences 
occurring within 10 years were clonally related to their primary 
tumor (127); however, no invasive recurrences were assessed  
and at least five of the cases had involved surgical margins and 
no RT, which increases the chance of clonal recurrence from 
residual disease. Consequently, the high level of concordance 
reported by this study may be an overestimate, and also not 
representative of invasive recurrences. A small microsatellite 
analysis of LOH found evidence for a clonal relationship in 3/3 
DCIS recurring again as DCIS, even in one case after a 15-year 
interval (128). A second LOH analysis (129) evaluated a rare 
group of seven patients where DCIS was mis-diagnosed and left 
untreated, each later developing invasive carcinoma. Just three 
cases showed definite clonal relationship and one case was not 
clonally related, three cases were equivocal/uninformative.

The above genetic studies comprise a total of just 35 informa-
tive cases, mostly using low-resolution methodologies and 
with only a very few as recurrent invasive disease. The overall 
concordance rate is at best 31/35 (89%, binomial confidence 
interval 73–97%), but this could well be an underestimate, given 
the caveats described above.

BiOMARKeRS OF ReCURReNCe AND 
PROgReSSiON

Molecular biomarkers to predict recurrence after a DCIS diagno-
sis can be any of protein, RNA, or DNA molecules. To date, several 

studies have evaluated each in various DCIS cohorts; however, 
none are in clinical practice, mostly due to a combination of 
lack of validation in independent cohorts and/or low predictive 
value. The majority of studies performed are underpowered  
for accurate detection of predictive value (130, 131).

Protein biomarkers using IHC have been the most commonly 
assessed in DCIS, and as reviewed by Lari and Kuerer (131), 
many of the studies find associations with DCIS recurrence 
that are not validated by others (Table  2). However, some of 
the strongest candidates also supported by more recent studies 
include HER2, COX2, Ki67 (>10% positive cells), and p16.

In one of the largest studies to date of multiple markers, 
Kerlikowske et al. (22), examining a 329 case cohort, identified 
different combinations of proteins to be predictive of recurrence 
as DCIS (ER-/HER2+/Ki67+ or COX2−/Ki67+/p16+) or IBC 
(COX2+/Ki67+/p16+). In combination with clinical factors 
(margin status for DCIS recurrence and method of detection for 
invasive recurrence), their stratification of the cohort into risk 
groupings identified low-risk groups (~4% chance of recurrence 
as each of DCIS and IBC within 8 years) and high-risk group 
(24 and 20% chance of recurrence as DCIS and IBC, respec-
tively). These findings were partially validated by Rakovitch 
et al. (25), who also found HER+/Ki67+ (but not ER−) DCIS 
to be more likely to recur as DCIS, but were not predictive of 
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TABLe 3 | Predictive value of OncotypeDX-ductal carcinoma in situ score.

10-year risk any local  
recurrence

10-year risk local 
invasive recurrence

Risk  
category

wide-local 
excision  

(wLe) only

wLe + radiotherapy 
(RT)

wLe only wLe + RT

Low 10–16% 9.4% 4–10% 6.8%
Intermediate 27–33%a 13.6%a 12–21%a Not reported
High 26–33% 20% 16–19% 12%

aUnadjusted.
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IBC recurrence. However, they did not include COX2 or p16 in 
their panel of markers. A follow-up analysis by the Kerlikowske 
group with an additional 5 years of outcome data and 442 new 
cases added found that p16 positivity was associated with both 
local and regional/metastatic invasive recurrence (132). COX2 
and Ki67 were not individually predictive, but COX2 positivity 
added value in prediction of metastatic recurrence. The high-
est risk group of regional/metastatic recurrence were p16+/
COX2+/ER−/HER2+ (22.5% 10-year risk), but this comprised 
just 3% of the cohort.

Several independent studies have also found COX2 to be  
predictive of recurrence; however, most analyses did not dif-
ferentiate between DCIS and IBC recurrence (136–138). One 
study only found COX2 positivity to be predictive of recurrence 
in combination with high Ki67 (139).

Two other studies have also found that tumors with p16+/
Ki67+ have a higher risk of recurrence of either DCIS or IBC 
(139, 140). Interestingly, Witkiewicz et al. (n = 126, WLE only) 
also evaluated stromal p16 staining and found that high stromal 
expression was strongly correlated with disease recurrence.  
In particular, only a single case lacking stromal p16 expression 
had an invasive recurrence (140).

Thus far, only a single small study has evaluated copy number 
as a biomarker of recurrence, and found that DCIS that recurred 
were more likely to have increased levels of copy number change, 
with significant enrichment of gains of 20q and 17q, loss of 
chromosome 15 and allelic imbalance of chromosome 10 (68). 
However, these alterations have yet to be validated in an inde-
pendent cohort. No studies have been performed to assess the 
association of mutations in DCIS with recurrence. One study 
found GATA3 mutations to be present at a higher frequency in 
DCIS than invasive carcinoma and did not detect a difference 
in recurrence rates between mutated and wild-type tumors, but 
could not address invasive recurrences as none occurred in the 
evaluated cohort (69).

Gene expression by detection of mRNA is a popular 
approach in IBC, but to date only the OncotypeDX assay has 
been adapted for DCIS recurrence prediction. This 12-gene 
quantitative PCR-based assay (7 test and five control genes) has 
been tested in two cohorts (141, 142). Both found that the test 
had prognostic value in multivariate analyses (Table  3), and  
yet the low-risk group still had a 10-year chance of any recur-
rence of 10–13%. Neither study was able to demonstrate any dif-
ference in outcome between intermediate- and high-risk groups. 
There are limitations within the studies in that: only ~ 50%  

of patients in each cohort could be tested, which may bias the 
cohort; a result was not possible for ~15% of cases; the con-
fidence intervals were very wide, approaching 40% (especially 
in intermediate and high-risk groups); and the follow-up was 
only ~10 years. Clinicopathological data were also incomplete 
on margin status and adjuvant treatment, both of which will 
influence outcome. In addition, the cases were drawn from a 
prolonged period (1994–2003) during which advances in surgi-
cal techniques have improved. In a subsequent study, Rakovitch 
et al. also evaluated the effect of RT on this predictive test (143). 
The low-risk group did not greatly benefit from the addition  
of RT, whereas the higher risk groups did benefit.

A small study comparing OncotypeDX with histopathological 
features suggested that a low score could be predicted by a com-
bination of PR status, immune infiltrate, and mitotic count (144). 
Such a low-cost approach would be beneficial, especially given 
that economic modeling found no circumstances in which the 
OncotypeDX assay could be cost-effective in determining who 
should receive RT (145). However, incorporating existing risk 
parameters in concert with a molecular assay could improve the 
predictive benefit, and a small clinical utility assessment found 
that patient anxiety and decisional conflict were reduced after 
receiving assay results (146).

Interestingly, many of the risk factors associated with recur-
rence appear to be more strongly associated with recurrence 
as DCIS rather than invasive disease. For example, high grade  
was significantly associated with DCIS but not invasive recur-
rence in two recent biomarker studies (22, 25). HER2 positivity 
also is similarly more strongly related to DCIS recurrence. This 
feature was evaluated by Zhou et al. (147), who identified that 
DCIS recurring as IBC were more often ER positive, while 
DCIS recurrences were more often HER2 positive or EGFR 
positive. No difference was observed for Ki67, CK5/6, or PR. 
In multivariate analyses, symptomatic DCIS was more likely 
to recur as invasive disease than mammographically detected 
DCIS, but contrastingly, large tumor size was more often seen 
in tumors recurring as DCIS. Grade, margins, and treatment 
type were not different between invasive and non-invasive 
recurrences.

DCiS MiCROeNviRONMeNT AND 
ReLevANCe TO PROgReSSiON

The apparent molecular similarities between DCIS and invasive 
disease together with lack of detection of robust tumor-intrinsic 
biomarkers for invasive recurrence after DCIS (i.e., present 
in the tumor epithelial cells) suggests that the breast micro-
environment could play a critical role in progression of DCIS 
to IBC. The microenvironment includes multiple cell types, 
including the myoepithelial cells that encircle the duct, the 
stromal fibroblasts, the vascular system, and the immune cells, 
as well as the duct/acini basement membrane. All components 
are likely to be important in restraining DCIS within the duct.

The myoepithelial cell layer is thought to provide both a physi-
cal barrier to expansion of the luminal epithelial cells into the 
stroma and also an active tumor suppressor role (148) through 
secretion of inhibitory molecules like protease inhibitors and 
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ECM proteins (149). Gene expression profiling of myoepithlial 
cells obtained from DCIS samples showed extensive differences 
compared with normal myoepithelial cells, more so than when 
comparing the epithelial cells or fibroblasts (150), including 
chemokines CXCL12 and CXCL14. DCIS myoepithelial cells 
also show upregulation of some integrins leading to altered 
TGF-β signaling (151) and reduced ability to produce basement 
membrane proteins such as laminin and collagen IV (152, 153). 
Expression of αvβ6 integrin in the myoepithelium of DCIS was 
associated with recurrence, but this has yet to be validated. Some 
DCIS thus appear to have a more abnormal myoepithelial cell 
layer than others, but this has yet to be convincingly associated 
with invasive progression and biomarker utility.

The cross talk between the stroma and cancer cells appears 
to be an important feature of invasive progression, with invasive 
breast cancer-associated fibroblasts (CAFs) promoting progres-
sion of DCIS to invasive carcinoma in mouse models (148, 154). 
The mechanism of this tumor promotion is complex, involving 
metabolic support and pro-tumor inflammatory cytokine produc-
tion (155). Stromal expression profiling has identified several 
differentially expressed genes between normal and mixed DCIS- 
associated stroma, including ECM genes and matrix metallopro-
teinases, but few differences between stroma found close to the 
DCIS component compared with stroma proximal to the IBC 
component (104, 156). In contrast, when stroma close to pure 
DCIS was compared with stroma from IBC cases, angiogenesis-
related genes were more highly expressed in the IBC-related 
stroma (102). These contrasting data suggest that the stromal 
environment may be different for pure DCIS compared to mixed 
DCIS (157). The capacity of CAFs derived from pure DCIS cases 
to promote tumor growth does not appear to have been tested.  
To date, a myxoid stroma type (158), and stromal expression 
of p16 (140) and SPARC (159) have been associated with DCIS 
recurrence, but only in single studies.

The vascular microenvironment of DCIS appears to be 
altered compared to normal breast, and also different to IBC 
based on gene expression studies (102, 103). Within DCIS, two 
different vascular patterns have been observed: a “necklace” 
of vessels surrounding the DCIS-affected duct and a “diffuse 
stromal” pattern, where an increase in microvessels is seen in 
the surrounding stroma (160–162) with the necklace pattern 
associated with different levels of the angiogenic factor thymi-
dine phosphorylase arising from the DCIS tumor cells (163). 
Neither pattern is commonly observed around normal ducts, 
and the stromal pattern is more frequently associated with nega-
tive prognostic features such as HER2 positivity, necrosis, higher 
grade or Ki67 staining and larger size. The incidence of each 
pattern varied widely depending on the study (22–80% for the 
necklace and 37–57% for stromal) likely reflecting both differ-
ent methods and different proportions of tumor subtype in each 
cohort. The presence of the stromal pattern did not significantly 
predict recurrence, however, both cohorts evaluating this feature 
were small (135, 160).

The immune microenvironment is increasingly being explored 
in DCIS, with various studies enumerating tumor-infiltrating lym-
phocytes (TILs) or undertaking immunohistochemical analysis 
of different immune cell types. As in IBC, stromal TILs have 

been associated with poor prognostic features such as comedo 
necrosis, high grade, large size, and ER negativity (162, 164–168). 
Similar results have been observed with B-lymphocytes (CD19+, 
CD20+, or CD138+) (169). HER2 positivity (162, 165, 170) and 
TP53 mutation (171) have also been associated with elevated TIL 
levels. A gene expression profiling approach to identify determi-
nants of invasiveness independent of tumor subtype found that 
the most commonly differentially expressed pathway was the 
immune signature (93). Recently, a combined analysis of genetic 
events and TILs in DCIS found that DNA copy number aber-
ration load was positively associated with TIL levels (171). This 
result was in striking contrast to IBC, where immune signatures 
by RNAseq are negatively correlated with aneuploidy (172). Thus, 
an altered interaction with the immune microenvironment, for 
example, through tumor immune-editing, may be critical in the 
evolution of invasive disease. Despite this possibility, association 
of immune cells with recurrence has proven mixed. The largest 
analysis to date did not find any significant association of TILs 
with DCIS recurrence, although there were hints that different 
subtypes could have a different interaction between immune cell 
presence and recurrence (165). A more complex, but smaller, 
IHC study of immune cells determined that the type of immune 
cells present was critical to predicting recurrence, with CD8, 
HLADR, and CD115 being predictors (164). Thus, using the 
immune microenvironment as a predictive biomarker may be 
complex, requiring detection of specific immune cells in specific 
DCIS subtypes, with different biomarkers for IBC and DCIS 
recurrence, and needing to incorporate other features, possibly 
including genetic events.

CONCLUSiON

The biology of DCIS is still not well understood, and previous 
attempts have been compromised by underestimating the com-
plexity and heterogeneity of the disease. As in IBC, DCIS is not 
a single disease, but varies based on hormonal status, growth 
factor receptor status, proliferation rate, and genetic features. 
In particular, the interaction of all these factors with the micro-
environment in the initiation of neoplasia and in progression to 
invasive disease needs to be better elucidated. Biomarker stud-
ies will require integration of tumor-intrinsic factors (genetic 
events, intrinsic subtypes, proliferation rate, grade), tumor-
extrinsic tissue factors (the immune response, stromal com-
plexity, the relationship with the myoepithelium) and clinical 
factors (margins, tumor size, detection modality, patient age, 
treatment type, etc.), to be truly effective at predicting patient 
outcome and optimizing treatment. Advances in technologies 
enabling single-cell analyses will assist in developing our 
understanding of DCIS clonal heterogeneity and progression, 
while novel high-throughput proteomic approaches and mul-
tiplex spectral imaging assays will facilitate integrated analysis 
of multiple cellular phenotypes to be interrogated, maximizing 
the information that can be obtained from limited material.  
In addition, the proportion of DCIS with non-clonal recur-
rence needs to be assessed. Such complexity demands a col-
laborative, multicenter approach to have sufficient statistical 
power for biomarker validation and implementation. Recently, 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


10

Gorringe and Fox DCIS Biology, Biomarkers, and Diagnosis

Frontiers in Oncology | www.frontiersin.org October 2017 | Volume 7 | Article 248

the Cancer Research UK Grand Challenge and the Dutch 
Cancer Society funded a GBP15 million study to analyze DCIS 
for biomarkers, and the Australian-led PRECISION study has 
similar goals, indicating that funders are now recognizing  
the need to invest in large-scale projects to tackle the issue.
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