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Introduction

DNA microarray enables the researchers to analyze 
the expression of many genes in a single reaction 
quickly and in an efficient manner (Shalon et al., 
1996). A typical DNA microarray analysis involves a 
multi-step procedure: Specific genes are represented by 
fabrication of microarrays which has properly designed 
oligonucleotides; hybridization of cDNA populations onto 
the microarray; scanning hybridization signals and image 
analysis; transformation and normalization of data; and 
analyzing data to detect differentially expressed genes as 
well as the sets of genes that are co regulated. The gene 
expression matrix is a processed data obtained after the 
normalization. Each row in the matrix corresponds to a 
particular gene and each column could either correspond to 
an experimental condition or a specific time point at which 
expression of the genes has been measured (Bilban et al., 
2002; Smyth et al., 2003). The expression level for a gene 
across different experimental conditions is cumulatively 
called the gene expression profile, and the expression 
level of each gene under an experimental condition is 
cumulatively called the sample expression profile (Cho 
and Won 2003; Androulakis et al., 2009). An expression 
profile of a gene or an experimental condition is thought 
of as a vector and can be represented in vector space (Liu 
et al., 2017). 
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Gene expression profiling provides many ways to 
study about the gene expression patterns (Alon et al., 
1999; Pandi and Premalatha 2015). Co-expressed genes 
can be identified by the cluster analysis of gene expression 
data. The main step in analyzing gene expression data is 
to identify the group of genes that are having the similar 
expression pattern. Clustering of gene expression data 
(Yu et al., 2017; Balamurugan et al., 2016) is helpful to 
understand gene regulation, gene function and cellular 
processes. While considering the case of gene expression 
data, the elements are genes. There is no previously 
defined class label for clustering. Clustering of gene 
expression data helps to understand gene functions and 
regulations network and assists in the diagnostics of 
disease conditions and effects of medical treatment. 

In the case of partitional and hierarchical, the solutions 
may be local optimum or may not be necessarily the global 
solution. This makes worse when the solution space is 
very large. 

The number of ways of sorting N objects into K groups 
is given by Liu (1968).
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F o r  e x a m p l e ,  f o r  Q ( 2 5 , 5 )  t h e r e  a r e 
2,436,684,974,110,751 ways of sorting 25 objects into 5 
groups. If the number of clusters is unknown the objects 
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4×1018. Clearly, it is impractical for an algorithm to 
exhaustively search the solution space to find the optimal 
solution. Furthermore traditional clustering algorithms 
search relatively a less subset of the solution space. As 
a result, the probability of success of these methods is 
small and it requires for an algorithm with the potential 
to search large solution spaces effectively. Contrary to the 
localized searching of the traditional algorithm, the global 
optimization algorithm (Kang and Geem, 2004) performs 
a globalized search in the entire solution space. 

Materials and Methods

Problem statement
The clustering problem is expressed as follows:

The set of M genes G = {G1, G2, ...,GN} is to be clustered. 
The genes are to be grouped into non-overlapping clusters      
C= {C1, C2, ..., Ck} (C is known as a clustering), where K 
is the number of clusters, 
, and                             for i#j. 

Assuming                         is a measure of distance 
between genes. Clustering is the task of finding a partition   
{C1, C2, ..., Ck} of G such that                                         

where Oi is one cluster representative of cluster Ci.

The goal of clustering is stated as follows: 
Given,
1. A set of genes G = {G1, G2, ...,GN} 
2. A desired number of clusters K, and 
3. An objective function or fitness function that 

evaluates the quality of a clustering, the system has to 
compute an assignment g: G →{1, 2, ...K} and maximizes 
the objective function. 

The global maximization problem can be defined as 
follows (Paradalos et al., 2001):  Given              where  
aaaaaa   and N is the dimension of the search space S. 
Find       such that .   

The variable y is called the global maximizer of f 
and f(y) is called the global maximum. The process of 
finding the global optimal solution is known as global 
optimization (Gray et al., 1997). A true global optimization 
algorithm will find y regardless of the selected starting 
point 

(Van den Bergh and Engelbrecht, 2002). The 
variable yL is called the local maximizer of L because 
f (yL) is the largest value within a local neighborhood, 
L. Mathematically speaking, the variable yL is a local 
maximizer of the region L if                    where           . For 
clustering, two measures of cluster quality are used. One 
type of measure allows comparing different sets of clusters 
without reference to external knowledge and is called 
an internal quality measure. The other type of measures 
evaluates how well the clustering is working by comparing 
the groups produced by the clustering techniques to known 
classes. This type of measure is called as external quality 
measure. Internal criterion function focuses on producing 
a clustering solution that optimizes a particular criterion 
function that is defined over the genes. These genes are 
part of each cluster and do not take into account the genes 

assigned to different clusters. The proposed work applies 
the global searching strategies for identifying optimal 
clusters in the exhaustive search space. Typical objective 
function in clustering formalizes the goal of achieving 
high intra-cluster similarity, where genes within a cluster 
are similar, and low inter-cluster similarity, where genes 
from different clusters are dissimilar. This is an internal 
criterion for the quality of a clustering. It is formulated 
by minimizing a formal objective function Mean Squared 
Error (MSE) distortion.

                                                              (2)

where
N is the number of Genes;
G = {G1 ,G2 , ,GN }is a set of N gene samples; 
P = { p(i) | i = 1,…N } is class label of G
C = { cj | j = 1,…, K} are K cluster centroids

A Combined Cat Swarm Optimization with Harmony 
Search for Cancer Gene Expression Data Clustering 

The performances of the metaheuristic algorithms 
are mainly dependent on two properties of the algorithm: 
diversification and intensification, also mentioned 
as exploration and exploitation. Like other swarm 
optimization techniques, the philosophy of CSO is “to 
follow the leader.” In CSO, the seeking mode provides 
local search whereas the tracing mode searches globally. 
If the fitness of the current best cat is improved by some 
means, the convergence of CSO would be improved. 
However, it will be better if the current best cat is allowed 
to search locally. It is therefore suggested that the current 
best cat is mandatorily selected for the seeking mode. If it 
happens, the current best cat may upgrade its fitness, and 
later on this will positively influence the movement of all 
the cats going through the tracing mode. Moreover, it can 
also avoid possible local trappings. Although the basic 
CSO algorithm demonstrates good local optimal search 
ability in optimization problems, but it has the problem 
of premature convergence.

Therefore, the CSO is improved by balanced 
intensification and diversification. In the proposed 
work the Cat optimization algorithm is combined 
with conventional harmony search to cluster the gene 
expression data. Recently, nature-inspired algorithms are 
well capable of solving numerical optimization problems 
more efficiently. HS algorithm has been successfully 
applied to a wide range of applications such as structural 
optimization, design optimization of water distribution 
networks, and vehicle routing. Like evolutionary 
algorithms, it generates a population of candidate solutions 
and then iteratively improves on the candidate population 
by adding and removing individual candidates. Unlike 
most evolutionary algorithms, it does not update the entire 
solution population at every iteration but only changes 
one individual at a time. Here, If the solution stagnates 
for designated number of iterations then run harmony 
search for few number of iterations for seeking mode cats. 
Consider cats as harmonies to precede harmony search. 
This maintains critical diversity in the population for more 



Asian Pacific Journal of Cancer Prevention, Vol 18 3453

DOI:10.22034/APJCP.2017.18.12.3451
 Cancer Detection Using MCSO Method

the maximum Figure of Merit (FOM) and minimum 
Adjusted Rand (AR) index values.

Comparative Analysis of Adjusted Rand and FOM 
Validation Index

Table 2 depicts the internal and external validation 
index results for Leukaemia and Breast Cancer gene 
expression datasets of the proposed method that is 
compared with the well known existing methods. The 
high value of adjust Rand index shows that the cluster has 
co-expressed genes while a low value of FOM indicates 
that it is highly correlated. In Leukaemia Cancer dataset, 
GenClust-Random seems to be related to K-means-
Random. Indeed, the relation is quite strong for FOM. 
As for the adjusted Rand index, the minimum values 
of the two algorithms are in many circumstances quite 
close. Such a relation is less pronounced for the maximum 
values, where sometimes one of the two algorithms 
dominates the other. Next, Cast and CSO outperform 
the Avlink in FOM index. Compared with all the other 
methods CSO and proposed MCSO-HS algorithm returns 
significant cluster with minimum FOM and maximum 
adjusted Rand index. MCSO-HS is much better than CSO 
in external measure on the both datasets.

iterations making the early convergence to local optima 
much less likely.

Procedure of MCSO-HS
1. Create N cats in the process.
2. Initialize the velocities of each cat randomly and 

decide the mixture ratio to choose number of cats in 
seeking mode and tracing mode

3. Calculate the fitness value of each cat and keep the 
best cat in memory. 

4. Move the cats according to their flags, if catk is in 
seeking mode, apply the cat to the seeking mode process, 
otherwise apply it to the tracing mode process. 

5. Re-pick number of cats and set them into tracing 
mode according to MR, then set the other cats into seeking 
mode.

6. If the solution stagnates for designated number 
of iterations then run harmony search for few number 
of iterations for seeking mode cats. Consider cats as 
harmonies to proceed harmony search.

7. If the number of iterations completed, terminate the 
process, and otherwise repeat Step3 to Step5.

Results

Datasets
The experiments are conducted on two well–known 

preprocessed gene expression datasets namely Leukaemia 
Cancer, Breast Cancer. The data set is collected from the 
broad institute database (http://www.broadinstitute.org/
cgi-bin/cancer/datasets.cgi/).

Figures 1 and 2 correspondingly show the fitness 
values obtained from HS, CSO and MCSO-HS for 
Leukaemia Cancer and Breast Cancer datasets. The 
results show that the proposed MCSO-HS algorithms 
outperform existing CSO and HS methods in both 
Cancer gene expression data sets. Figures 3 and 4 show 
that results obtained by the proposed technique are also 
compared with GenClust random, Min kmeans-random, 
Max kmeans-random, Cast, Kmeans-Avlink, Avlink and 
GenClust-Avlink (Vito Di Gesú et al., 2005). Obtained 
clustering results are verified after conducting several 
statistical and biological significance tests. The results 
reveal that for both datasets the proposed methods attain 

Parameter Value
No. of Cats (N) 100
SMP 20
SRD 10
CDC 20
SPC 0 or 1
Harmony memory 0.9
considering rate (HMCR)
Pitch Adjustment Rate (PAR) 0.3
Harmony memory size(HMS) 100
Number of iteration(NI) 200
Cluster size 1 to 15

Table 1. Parameter and its Value for Benchmark Datasets

Figure 1. Convergence of MCSO-HS and CSO on 
LeuKaemia Cancer Dataset for 5 Clusters

Figure 2. Convergence of MCSO-HS and CSO on Breast 
Cancer Dataset for 5 Clusters
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Biological annotation for Breast Cancer data using 
GOTermFinder toolbox 

In order to identify the biological annotations for the 
clusters, we use GOTermFinder which is a tool available 
in the Saccharomyces Genome Database (SGD) (http://
www.yeastgenome.org/cgi-bin/GO/goTerm Finder.pl). 
GOTermFinder is designed to search for the significant 
shared GO terms of the groups of genes and provides users 
with the means to identify the characteristics that the genes 
may have in common. Table 3 lists the significant shared 
GO terms used to describe the set of genes in each cluster 
for the process, function and component ontologies. Only 
the most significant terms are shown. For example to the 
cluster 3, the genes are mainly involved in binding activity. 
The tuple (n = 41, p = 1.8 × 10–7) represents that out of 

83 genes in cluster 3, 41genes belong to binding activity 
function, and the statistical significance is given by the 
p-value of p = 1.8 × 10–7. Figure 5 shows the biological 

Figure 3. Plot of Number of Clusters Versus FOM Index 
on Leukaemia Cancer Dataset

Figure 4. Plot of Number of Clusters Versus FOM Index 
on Breast Cancer Dataset

Figure 5. Gene Ontology Biological Process of Breast 
Cancer Data (10 Genes)

Method Leukaemia Cancer 
(Fifth Clusters)

Breast Cancer 
(Fifteenth Clusters) 

Adjusted 
Rand

FOM Adjusted 
Rand

FOM

Genclust random 0.47 57.05 0.51 57.49

Min kmeans –random 0.44 57.05 0.38 55.73

Max kmeans-random 0.49 57.05 0.51 55.73

Cast 0.529 56.66 0.68 50.21

Kmeans-Avlink 0.508 57.36 0.62 59.49

Avlink 0.559 58.78 0.52 62.27

GenClust-Avlink 0.518 57.21 0.8 59.33

HS 0.671 56.35 0.83 49.21

CSO 0.78 55.94 0.85 47.94

MCSO-HS 0.891 54.03 0.92 45.86

Table 2. Comparative Analysis on Leukaemia and Breast 
Cancer Data

Cluster 
No.

No. of 
Genes

Process Function Component

3 83 cell cycle process ( n=38, p=1.9×10-8) binding activity
(n= 41, p=1.8×10-7)

intracellular organelle
(n=62, p=3.3×10-6)

4 78 mitotic cell cycle process ( n=42, p=6.5×10-7) hydrolase activity (n=48,  p=3.2×10-6) cell part (n=58, p=1.9×10-4)

5 131 single-organism process ( n=93, p=1.1×10-3) transferase activity ( n=81, p=1.8×10-2) intracellular part (n=1,344, 
p=2.9×10-1)

Table 3. Significant GO Terms for Three Clusters on Breast Cancer Data 
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network of the cluster for ten genes, the false discovery 
rate (FDR) is very low (0.0006) and it is zero in many 
occasions. Further the corresponding p-value is very 
small (p = 0.00465) which shows that there is a very less 
probability to obtain the gene cluster in random. These 
results mean that the proposed MCSO-HS clustering 
approach can find biologically meaningful clusters.

Discussion

Microarrays are useful to simultaneously monitor the 
expression profiles of thousands of genes under various 
experimental conditions. Identification of gene cluster 
is the main goal in cancer gene expression data analysis 
and is an important task in bioinformatics research. The 
better understanding of functional genomics is obtained 
by extracting the patterns hidden in gene expression data. 
It is handled by clustering which reveals natural structures 
and identify interesting patterns in the underlying data. In 
the proposed work clustering gene expression data is done 
through Modified CSO algorithm to identify the Cancer 
detected gene expression data. The Modified CSO method 
is achieved by the hybridization of HS with CSO and 
gives better results compared with existing methods. The 
performance of CSO and MCSO-HS is analyzed with two 
cancer gene expression benchmark data sets.
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