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Recent development of the quick contrast sensitivity
function (qCSF) method has made it possible to obtain
accurate, precise, and efficient contrast sensitivity
function (CSF) assessment. To improve statistical
inference on CSF changes in a within-subject design, we
developed a hierarchical Bayesian model (HBM) to
compute the joint distribution of CSF parameters and
hyperparameters at test, subject, and population levels,
utilizing information within- and between-subjects and
experimental conditions. We evaluated the performance
of the HBM relative to a non-hierarchical Bayesian
inference procedure (BIP) on an existing CSF dataset of
112 subjects obtained with the qCSF method in three
luminance conditions (Hou, Lesmes, Kim, Gu, Pitt,
Myung, & Lu, 2016). We found that the average d′s of
the area under log CSF (AULCSF) and CSF parameters
between pairs of luminance conditions at the test-level
from the HBM were 33.5% and 103.3% greater than
those from the BIP analysis of AULCSF. The increased d′
resulted in greater statistical differences between
experimental conditions across subjects. In addition,
simulations showed that the HBM generated accurate
and precise CSF parameter estimates. These results have
strong implications for the application of HBM in clinical
trials and patient care.

Introduction

The contrast sensitivity function (CSF), which
quantifies the visibility (1/threshold) of narrow-band

filtered stimuli over a wide range of spatial frequencies,
provides a comprehensive measure of spatial vision
(Ginsburg, 1981; Ginsburg, 2003; Hess, 1981). It is
closely related to daily visual functions (Ginsburg,
2003), and can better quantify deficits in spatial
vision than visual acuity (Jindra & Zemon, 1989;
Marmor, 1986). It has long been recognized that the
CSF provides important information for monitoring
progression of vision change and evaluating treatment
efficacy in eye diseases (Bellucci. Scialdone, Buratto,
Morselli, Chierego, Criscuolo, Criscuoli, Moretti, &
Piers, 2005; Ginsburg, 2006; Loshin & White, 1984;
Levi & Li, 2009; Tan & Fong, 2008; Zhou, Huang, Xu,
Tao, Qiu, Li, & Lu, 2006).

Despite its clinical promise, precise and efficient
CSF assessment has presented a challenge. The CSF
charts provide a fast but imprecise assessment of
contrast sensitivity due to coarse sampling of both
spatial frequency and stimulus contrast (Bradley, Hook,
& Haeseker, 1991; Buhren, Terzi, Bach, Wesemann,
& Kohnen, 2006; Hohberger, Laemmer, Adler,
Juenemann, & Horn, 2007; Pesudovs, Hazel, Doran,
& Elliott, 2004; van Gaalen, Jansonius, Koopmans,
Terwee, & Kooijman, 2009). On the other hand,
the long testing time (30–60 minutes) required for
measuring the CSF with conventional psychophysical
methods has prevented their clinical applications
(Kelly & Savoie, 1973; Treutwein, 1995). The quick
contrast sensitivity function (qCSF) was developed to
address the challenges (Lesmes, Lu, Baek, & Albright,
2010). Based on active learning principles, it estimates
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the parameters of the CSF in a Bayesian adaptive
framework (Kontsevich & Tyler, 1999; Lu & Dosher,
2013; Watson, 2017; Watson & Pelli, 1983). A recent
qCSF implementation with a 10-letter identification
task enabled assessment of the CSF with a 0.10 log unit
standard deviation in about 20 trials (approximately 2
minutes) and reduced the standard deviation of the
estimates by 50% (Hou, Lesmes, Bex, Dorr, & Lu,
2015). Accurate and precise qCSF estimates have been
obtained in both normal (Reynaud, Tang, Zhou, &
Hess, 2014; Rosén, Lundström, Venkataraman, Winter,
& Unsbo, 2014) and clinical populations (Hou, Huang,
Lesmes, Feng, Tao, Zhou, & Lu, 2010; Jia, Zhou, Lu,
Lesmes, & Huang, 2015; Joltikov, de Castro, Davila,
Anand, Khan, Farbman, Jackson, Johnson, & Gardner,
2017; Lesmes, Jackson & Bex, 2013; Lesmes, Wallis,
Jackson, & Bex, 2013; Lesmes, Wallis, Lu, Jackson, &
Bex, 2012; Lin, Mihailovic, West, Johnson, Friedman,
Kong, & Ramulu, 2018; Ou, Lesmes, Christie, Denlar,
& Csaky, 2021; Ramulu, Dave, & Friedman, 2015;
Rosen, Jayaraj, Bharadwaj, Weeber, Van der Mooren,
& Piers, 2015; Stellmann, Young, Pottgen, Dorr, &
Heesen, 2015; Thomas, Silverman, Vingopoulos,
Kasetty, Yu, Kim, Omari, Joltikov, Choi, Kim, Zacks,
& Miller, 2021; Vingopoulos, Wai, Katz, Vavvas, Kim,
& Miller, 2021; Wai, Vingopoulos, Garg, Kasetty,
Silverman, Katz, Laíns, Miller, Husain, Vavvas,
Kim, & Miller, 2021; Yan, Hou, Lu, Hu, & Huang,
2017).

A Bayesian Inference Procedure (BIP) has been
developed to make statistical inference on CSF changes
in a within-subject design based on CSF metrics
extracted from each subject in each experimental
condition (Hou, et al., 2016; Kuss, Jäkel, & Wichmann,
2005; Prins, 2013; Schütt, Harmeling, Macke,
& Wichmann, 2016). Because it scores each test
independently with an uninformative prior without
considering potential relationships of CSF parameters
across subjects and experimental conditions, the
BIP may have overestimated the variance of each
test and resulted in reduced statistical power (Borm,
Fransen, & Lemmens, 2007; Egbewale, Lewis, & Sim,
2014; Wilcox, 2012). In addition, a single summary
metric, the area under log CSF (AULCSF), is usually
used to compare CSFs in different experimental
conditions, potentially leaving out information in
the multidimensional joint distribution of CSF
parameters.

In this study, we developed a Hierarchical
Bayesian Model (HBM) to reduce the variability
of estimated CSF parameters for each test and to
further improve the ability to detect between-condition
CSF changes in a within-subject design. The HBM
is a generative model framework that uses Bayes’
rule to quantify the joint distribution of test-,
subject-, and population-level parameters and
hyperparameters (Kruschke, 2015; Lee, 2006; Lee,

2011; Rouder & Lu, 2005; Wilson, Cranmer, &
Lu, 2020). It explicitly quantifies the covariance of
the hyperparameters and parameters (Daniels &
Kass, 1999; Klotzke & Fox, 2019; Thall, Wathen,
Bekele, Champlin, Baker, & Benjamin, 2003; Wang,
Lin, & Nelson, 2020; Yang, Zhu, Choi, & Cox,
2016). By sharing information within and across
levels via conditional dependencies, it reduces the
variance of the test-level estimates through (1)
decomposition of variabilities from different sources
(test, subject, and population) with parameters
and hyperparameters (Song, Behmanesh, Moaveni,
& Papadimitriou, 2020), and (2) shrinkage of the
estimated parameters at the lower levels toward the
mean of the higher levels when there is not sufficient
data at the lower level (Kruschke, 2015; Rouder &
Lu, 2005; Rouder, Sun, Speckman, Lu, & Zhou,
2003).

Although it has been used in many different
disciplines, such as astronomy (Thrane & Talbot,
2019), ecology (Reum, Hovel, & Greene, 2015; Wikle,
2003), genetics (Storz & Beaumont, 2002), machine
learning (Li & Perona, 2005), cognitive science
(Ahn, Krawitz, Kim, Busmeyer, & Brown, 2011; Lee,
2006; Lee & Mumford, 2003; Merkle, Smithson, &
Verkuilen, 2011; Molloy, Bahg, Li, Steyvers, Lu, &
Turner, 2018; Molloy, Bahg, Lu, & Turner, 2019;
Rouder & Lu, 2005; Rouder et al., 2003; Wilson et
al., 2020) and visual acuity (Zhao, Lesmes, Dorr, &
Lu, 2021), HBM has not been applied to analyze
the CSF. Here, we develop a three-level HBM to
model the entire CSF dataset in a single-factor
(luminance), multi-condition (3 luminance conditions),
and within-subject experiment design. We modeled
the data with CSF parameters at the test level and
hyperparameters at the individual and population
levels, with conditional dependencies across levels. We
evaluated the performance of the HBM relative to the
BIP using an existing dataset of 112 subjects tested
with qCSF in three luminance conditions (Hou et al.,
2016), which was collected to mimic mild, medium,
and large CSF changes observed in clinical settings
(Bellmann, Unnebrink, Rubin, Miller, & Holz, 2003;
Haymes, Roberts, Cruess, Nicolela, LeBlanc, Ramsey,
Chauhan, & Artes, 2006; Kalia, Lesmes, Dorr, Gandhi,
Chatterjee, Ganesh, Bex, & Sinha, 2014; Kleiner,
Enger, Alexander, & Fine, 1988; Midena, Degli Angeli,
Blarzino, Valenti, & Segato, 1997; Owsley, Sekuler,
& Siemsen, 1983). In addition, a simulation study
was conducted to evaluate and compare the accuracy
and precision of the estimates from the HBM and
BIP. We hypothesized that, relative to the BIP, the
HBM would reduce the variability of the estimated
CSF parameters from each test, increase the d′s
of CSF changes between luminance conditions for
each subject, and improve statistical inference across
subjects.
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Figure 1. The Bayesian inference procedure (BIP) for a single test. (a) A three-dimensional prior distribution of the CSF parameters.
(b) Trial-by-trial data. (c) A CSF model with three parameters. (d) Psychometric functions at different spatial frequencies. (e) A
three-dimensional posterior distribution of the CSF parameters.

Bayesian modeling of the CSF

Overview

In a typical within-subject design CSF experiment
with multiple conditions, the trial-by-trial data can
be organized as yijkm = (fijkm, cijkm, rijkm), where rijkm,
either correct or incorrect, is individual i’s response
in trial m of test k in experimental condition j tested
with a stimulus of spatial frequency fijkm and contrast
cijkm. The BIP consists of four components (Hou, et
al., 2016): (1) a log-parabola model of the contrast
sensitivity function with several parameters, (2) a
likelihood function that specifies the probability
of making a correct or incorrect response in each
stimulus condition, (3) a Bayesian procedure to infer
the posterior distribution of the CSF parameters for
each subject in each test, and (4) inference based on
statistics computed from posterior distributions either
at the subject level or aggregated across subjects. In this
section, we first provide a brief review of the BIP, and
then introduce the HBM.

The Bayesian inference procedure

In the BIP (Figures 1, 2a), the contrast sensitivity
S(fijkm, θ ijk) at spatial frequency fijkm is modeled
with a log parabola function with three parameters,
θi jk = (γmax

i jk , f max
i jk , βi jk) (Lesmes et al., 2010; Rohaly &

Owsley, 1993; Watson, & Ahumada Jr, 2005):1

log10
(
S

(
fi jkm, θi jk

)) = log10
(
γmax
i jk

)

− 4
log10 (2)

⎛
⎝ log10

(
fi jkm

) − log10
(
f max
i jk

)
βi jk

⎞
⎠

2

, (1)

where γmax
i jk is the peak sensitivity, f max

i jk is the peak
spatial frequency (cycles/degree), and β ijk is the
bandwidth (octaves) at half of the peak sensitivity.
The probability of making a correct response is
described with a psychometric function (Hou et al.,
2015):
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Figure 2. (a) The Bayesian Inference Procedure (BIP) computes the posterior distribution of CSF parameters for each test
independently. (b) A three-level hierarchical Bayesian model (HBM) of CSFs across multiple individuals, conditions and tests. At the
population level, μ and � are the mean and covariance hyperparameters of the population. At the individual level ρ ij and φj are the
mean and covariance hyperparameters of individual i in experimental condition j. At the test level, θ ijk is the CSF parameter of
individual i in test k of condition j.

p
(
ri jkm = 1|θi jk, fi jkm, ci jkm

) = g +
(
1 − g− λ

2

)
�

×
(
log10

(
ci jkm

) + log10
(
S

(
fi jkm, θi jk

))
σ

)
, (2)

where g is the guessing rate, λ, usually set to 0.04
(Lesmes et al., 2010; Wichmann & Hill, 2001), is the
lapse rate, � is the standard cumulative Gaussian
function, and σ determines the steepness of the
psychometric function. The probability of making an
incorrect response is:

p
(
ri jkm = 0|θi jk, fi jkm, ci jkm

)
= 1 − p

(
ri jkm = 1|θi jk, fi jkm, ci jkm

)
. (3)

Equations 2 and 3 define the likelihood function,
that is, the probability of making a correct or incorrect
response given the stimulus and CSF parameters in a
trial. The goal in most experiments is to infer the CSF
parameters from the experimental data, that is, estimate
the posterior distribution p(θ ijk|Yijk) — the distribution
of the CSF parameters θ ijk given the experimental data
Yijk = {yijkm}, for m=1, …, M, where M is the total
number of trials in a test. This can be accomplished
using Bayes’ rule:

p
(
θi jk|Yi jk

)
=

∏M
m=1 p

(
ri jkm|θi jk, fi jkm, ci jkm

)
p0

(
θi jk

)
∫ ∏M

m=1 p
(
ri jkm|θi jk, fi jkm, ci jkm

)
p0

(
θi jk

)
dθi jk

, (4)

where p0(θ ijk) is the prior probability distribution of the
CSF parameters for individual i in test k of experimental
condition j, which is usually uninformative and the
same for all subjects and experimental conditions, and
the denominator is the integral across all possible values
of θ ijk, and is a constant for a given dataset and BIP.

The hierarchical Bayesian model

We developed a three-level HBM to account for the
entire dataset, incorporating conditional dependencies
across test, individual, and population levels to improve
estimates for each test (see Figure 2b). The HBM is
based on three properties: (1) CSF parameters at the test
level are conditionally dependent on hyperparameters
at the individual level, (2) CSF hyperparameters at the
individual level are conditionally dependent on those at
the population level (“conditional dependency”), and
(3) the probability p(rijkm|θ ijk, fijkm,cijkm ) of response
rijkm is determined only by the CSF parameters θ ijk in
that test (Equations 2, 3).

In the HBM, the joint distribution of CSF
hyperparameter η across all the J experimental
conditions at the population level, p(η), is modeled as a
mixture of 3 × J-dimensional Gaussian distributionsN
with mean μ and covariance�, which have distributions
p(μ) and p(�):

p (η) = N (η, μ, �) p (μ) p (�) . (5)
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The joint distribution of CSF hyperparameter τ i,1: J
of individual i across all experimental conditions 1:J at
the individual level, p(τ i,1: J|η), is modeled as mixtures of
three-dimensional Gaussian distributions with mean ρ ij
and covariance φj, which have distributions p(ρ i,1: J|η)
and p(φj):

p (τi,1:J |η) = p (ρi,1:J |η)
J∏
j=1

N (
τi j, ρi j, φ j

)
p
(
φ j

)
, (6)

where p(ρ i,1: J|η) denotes that ρ i,1: J is conditioned on
η, and φj is a 3 × 3 covariance matrix in experimental
condition j. Finally, at the test level, p(θ ijk|τ ij), the joint
distribution of the CSF parameters, θ ijk, is conditioned
on τ ij.

The probability of obtaining the entire dataset is
computed by probability multiplication:

p (Y1:I,1:J,1:K,1:M |X )

=
I∏

i=1

J∏
j=1

K∏
k=1

M∏
m=1

p
(
ri jkm|θi jk, fi jkm, ci jkm

)

× p
(
θi jk|τi j

)
p (τi,1:J |η) p (η)

=
I∏

i=1

J∏
j=1

K∏
k=1

M∏
m=1

p
(
ri jkm|θi jk, fi jkm, ci jkm

)

× p
(
θi jk|τi j

)N (
τi j, ρi j, φ j

)
p
(
φ j

)
p (ρi,1:J |η)

× N (η, μ, �) p (μ) p (�) , (7)

where X = (θ1: I, 1: J, 1: K, ρ1: I, 1: J, φ1: J, μ, �) are all the
parameters and hyperparameters in the HBM.

We can use Bayes’ rule to compute the joint posterior
distribution of X (Kruschke, 2015; Lee, 2006; Lee, 2011;
Rouder & Lu, 2005; Wilson et al., 2020):

p (X |Y1:N,1:J,1:K,1:M )

=

∏I
i=1

∏J
j=1

∏K
k=1

∏M
m=1 p

(
ri jkm|θi jk, fi jkm, ci jkm

)
× p

(
θi jk|τi j

)N (
τi j, ρi j, φ j

)
p0

(
φ j

)
× p (ρi,1:J |η)N (η, μ, �) p0 (μ) p0 (�)∫ ∏I
i=1

∏J
j=1

∏K
k=1

∏M
m=1 p

(
ri jkm|θi jk, fi jkm, ci jkm

)
× p

(
θi jk|τi j

)N (
τi j, ρi j, φ j

)
p0

(
φ j

)
p (ρi,1:J |η)

× N (η, μ, �) p0 (μ) p0 (�) dX

, (8)

where the denominator is the integral across all possible
values of X and is a constant for a given dataset
and HBM; p0(μ), p0(�), and p0(φj) are the prior
distributions.

Methods

Data

The dataset used in this study included 112
college-aged subjects, each tested once (K = 1) in three
luminance conditions (low = 2.62 cd/m2, medium =
20.4 cd/m2, and high = 95.4 cd/m2) with the qCSF
method (Hou et al., 2016). Each test consisted of 150
trials. Three test trials were presented in each display
consisting of three filtered letters of the same size,
randomly sampled with replacement from 10 SLOAN
letters (C, D, H, K, N, O, R, S, V, and Z), with the
center spatial frequency and contrasts of the letters
determined by qCSF. Subjects were asked to verbally
report the identity of the letters on the screen.

Apparatus

All analysis was conducted on a Dell computer
with Intel Xeon W-2145 @ 3.70 GHz CPU (8 cores
and 16 threads) and 64 GB installed memory (RAM).
The BIP was implemented in Matlab R201Xa
(MathWorks Corp., Natick, MA, USA) and the HBM
was implemented in JAGS (Plummer, 2003) in R (R
Core Team, 2020).

Implementation of the BIP

Because a 10-alternative forced-choice identification
task was used in the experiment, we set g to 0.1, and
σ to 0.1485 in Equation 2 (Foley & Legge, 1981; Hou
et al., 2015; Legge, Kersten, & Burgess, 1987; Lesmes
et al., 2010; Lu & Dosher, 1999). Following the qCSF
procedure (Hou et al., 2015; Lesmes et al., 2010), we
defined a three-dimensional CSF parameter space with
60 log-linearly spaced γmax

i jk values between 1.05 and
1050, 40 log-linearly spaced f max

i jk values between 0.1
and 20 cycles/degree, and 27 log-linearly spaced β ijk
values between 1 and 9 octaves. The weakly informative
prior, p0(θ ij1), identical across all the tests, subjects, and
experimental conditions, was defined by a hyperbolic
secant function (Lesmes et al., 2010):

p0
(
θi j1

)
=

3∏
a=1

sech
(
θa, conffidence × (

log10 (θa) − log10 (θa,mode)
))

,

(9)

where sech(x) = 2
ex+e−x , θa = γmax

i jk , f max
i jk , and β ijk for a

= 1, 2, and 3, respectively, θa, confidence= (0.5, 0.5, 0.5),
and θa, mode = (100, 1, 3).
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L M H

γmax fmax β γmax fmax β γmax fmax β

μ0,min 1.05 0.1 1 1.05 0.1 1 1.05 0.1 1
μ0,max 1050 20 9 1050 20 9 1050 20 9

Table 1. μ0,min and μ0,max of the uniform prior of μ. H, high; L,
low; M, medium.

The posterior distributions of the CSF parameters
p(θ ij1|Yij1) was computed using Equation 4.
Convergence of the BIP solutions was quantified by the
half-width of 68.2% credible interval (HWCI: Clayton
& Hills, 1993; Edwards, Lindman, & Savage, 1963),
equivalent to the standard deviation of the distribution
if it is normal. With sufficient number of trials in the
qCSF, the HWCI can reach its asymptotic minimum
(Hou et al., 2015; Lesmes et al., 2010).

Implementation of the HBM

In the current implementation of the HBM, the
prior of μ, p0(μ), was a nine-dimensional uniform
distribution:

p0 (μ) = U (log(μ0,min) , log (μ0,max)), (10a)

with μ0,min and μ0,max of the three parameters in the
three luminance conditions specified in Table 1.

The weakly informative prior distribution of �,
p0(�), was specified by a 9 × 9 precision matrix � with
a Wishart distribution:

p0 (�) = W (
�−1

BIP/ν, ν
)
, (10b)

p0 (�) = p0
(
�−1) , (10c)

where the degrees of freedom ν = 9, and the expected
mean, �BIP

−1, was based on the covariance matrix
of the estimated CSF parameters �BIP across all
the subjects and luminance conditions from the BIP
procedure.

The weakly informative prior distribution of
φj, p0(φj), was specified with a 3 × 3 precision matrix
�j with a Wishart distribution:

p0
(
� j

) = W
(
φ−1
BIP, j/ν j, ν j

)
, (10d)

p0
(
φ j

) = p0
(
� j

−1) , (10e)

where the degrees of freedom ν j = 3, and the expected
mean, φ−1

BIP, j , was based on the average covariance
matrix φBIP,j computed from the estimated CSF

parameters across all the subjects in luminance
condition j from the BIP procedure.

The R (R Core Team, 2020) function autorun.jags
in JAGS (Plummer, 2003) was used to compute
representative samples of the posterior distributions
of θ ij1 (3 parameters/condition × 3 conditions × 112
subjects = 1008 parameters), ρ i,1: J (9 parameters × 112
subjects= 1008 parameters), φj (6 parameters/condition
× 3 conditions = 18 parameters), μ (9 parameters),
and � (45 parameters) in three Markov Chain
Monte Carlo (MCMC) chains. The MCMC is an
algorithm used to efficiently sample the joint posterior
distribution (Kruschke, 2015). It started at a randomly
selected position in the 2088-dimensional parameter
space. In each step, one of the 2088 parameters was
selected randomly. The one-dimensional conditional
posterior probability distribution of the selected
parameter was evaluated by fixing the values of all
the other 2087 parameters at the current position.
A new value of the selected parameter was chosen
based on the one-dimensional conditional probability
distribution (Equation 8). By reiterating this process,
the probability of visiting a location in the random
walk approximated the joint posterior distribution of
all the 2088 parameters in Equation 8. These steps
were re-iterated until the convergence criterion was
reached.

Gelman and Rubin’s diagnostic (Gelman & Rubin,
1992), the ratio of between-chain and within-chain
variances, was used to quantify the convergence
between different MCMC chains. The convergence
criterion was set at 1.05 for all parameter estimates.
After the convergence criterion was met, the program
terminated when 1,000,000 total samples were
generated in each MCMC chain. There were 10,000 of
the 1,000,000 samples that were stored (thinning ratio
= 100) to ensure at least 10,000 effective samples of X
in subsequent analysis.

Statistical analysis

Goodness of fit
Bayesian predictive information criterion (BPIC;

Ando 2007; Ando 2011) was used to quantify the
goodness of fit to the trial-by-trial data. The BPIC
quantifies the likelihood of the data based on the joint
posterior distribution of the parameters of the model
and penalizes model complexity.

Posterior distributions of the area under log CSF
The posterior distributions of AULCSF were

constructed by computing the AULCSFs from samples
of the corresponding posterior distributions of θ ij1 from
the HBM and BIP.
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d′: Between-condition discriminability of distributions
Discriminability d′ quantifies the signal (mean

separation) to noise (variability) ratio of two probability
distributions. We used the difference distribution
between conditions to compute d′. Each sample in
the difference distribution represented the difference
between two randomly drawn samples from the
corresponding distributions.

For a one-dimension difference distribution, d′ is
defined as (Green & Swets, 1966):

d ′ =
√
2
�

σ
, (11)

where � is the mean separation, and σ is the standard
deviation of the difference distribution.

For a multidimensional difference distribution, d′ is
defined as (Ashby & Townsend, 1986):

d ′ =
√
2� ∗ cov(�)−1 ∗ �T , (12)

where � and cov(�) are the mean separation and
covariance matrix of the difference distribution,
cov(�)−1 is the inverse of cov(�), �T is the transpose of
�, and * represents matrix multiplication.

Statistical tests on CSF parameters and AULCSF
We compared the mean (expected value) and variance

of the posterior distributions of θ ij1 from the HBM
and BIP using Hotelling’s T-squared test (Anderson,
2003) in R (R Core Team, 2020; Nordhausen, Sirkia,
Oja, & Tyler, 2018). We also compared the correlation
coefficients of pairs of CSF parameters from the two
methods with paired t-test.

To quantify the between-condition discriminability
across subjects, we compared the means of the posterior
distributions of θ ij1 and AULCSF between pairs
of experimental conditions from each method with
Hotelling’s T-squared test and paired t-test, respectively.

Simulation

To compare the accuracy and precision of the BIP
and HBM estimates, we conducted a simulation study
to investigate the bias and variability of the estimated
CSF parameters for each test. The dataset consisted of
336 qCSF tests (112 subjects × 3 conditions). θ1: I, 1: J, 1
of the simulated tests were a random sample from the
posterior distribution of τ 1: I, 1: J obtained from the
HBM fit to the real data. Each qCSF test consisted
of 150 trials, identical to the real experiment (Hou et
al., 2016), with the trial-by-trial responses determined
by the CSF parameters of the simulated subject

(Equations 1 to 3). Both the HBM and BIP were fit
to the simulated dataset. The mean of the posterior
distribution of θ ij1 was used as the best estimate for
each test. The bias, root mean square error (RMSE),
variance, d′, and t statistics were computed based on the
posterior distributions of θ ij1 from both methods.

Results

Goodness of fit

The BPIC for the BIP and HBM were 34886 and
34225, respectively, indicating that the HBM fit the
data better than the BIP. Figure 3 shows the estimated
CSFs of one subject from the BIP and HBM in three
luminance conditions.

Many “image-computable” models have used the
CSF as the front-end filter on actual images to predict
human performance in image processing and object
recognition (Chung, Legge, & Tjan, 2002; Malo,
Pons, Felipe, & Artigas, 1997; Schütt, & Wichmann,
2017; Watson, 2000; Watson & Ahumada Jr, 2005;
Watson, & Malo, 2002). Although recent studies have
suggested that a more comprehensive model may
require additional parameters related to non-linearities
in the visual system (Chen, Hou, Yan, Zhang, Xi, Zhou,
Lu, & Huang, 2014; Hou, Lu, & Huang, 2014), the
CSF filtered images nevertheless provide an excellent
demonstration of human visual processing. To illustrate
the differences between the CSF estimates from the BIP
and HBM and their implications for image-computable
models (Figure 4), we applied the mean - SD, mean,
and mean + SD CSFs from the BIP and HBM in the
high luminance condition to filter a letter K (Lu &
Dosher, 2013). Although the mean CSFs from the two
methods are very similar and generated very similar
filtered K’s, the CSFs from the BIP exhibited much
larger uncertainty.

Posterior distributions from the HBM

Figure 5 shows the three-dimensional posterior
distributions of hyperparameters η (marginalized),
τ i,1: J for one individual, and θ i,1: J, 1 for one individual
in one test from the HBM.

Population level
Table 2 shows the mean and covariance matrix

of η. The correlation coefficients were positive and
significant between all three pairs of experimental
conditions. Table 3 shows the d′s of η between the
three pairs of experimental conditions. In the HBM,
the posterior distributions of η constrained τ i,1: J. The
large d′s of the posterior distributions of η between
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Figure 3. Estimated CSFs of one subject from the BIP (a, b, c) and HBM (d, e, f) methods in three luminance conditions
(a, d) L = 2.62 cd/m2, (b, e) M = 20.4 cd/m2, and (c, f) H = 95.4 cd/m2. Color map indicates log10 probability density.

different experimental conditions indicated that the
posterior distributions of η provided strong constraints
on τ i,1: J.

Individual level
Table 4 shows the average covariance matrix of

τ 1: I, 1: J across all 112 individuals and experimental
conditions. Figure 5(b) illustrates the three-dimensional
posterior distributions of τ i,1: J for one individual in all
three luminance conditions. Table 3 shows the average
d′s of τ ij between the three pairs of experimental
conditions. In the HBM, the posterior distributions of
τ i,1: J constrained θ i,1: J, 1. The large d′s of the posterior
distributions of τ i,1: J between different experimental

Figure 4. Visualization of the CSF estimates from the BIP and
HBM. Filtered letter K by the mean - SD (a, d), mean (b, e) and
mean + SD (c, f) CSFs from the BIP (a, b, c) and HBM (d, e, f) in
the high luminance condition. The original image is shown
in (g).

conditions indicated that the posterior distributions of
τ i,1: J provided strong constraints on θ i,1: J, 1.

Test level
We computed the mean, covariance, and correlation

coefficient based on the estimated test-level CSF
parameters θ1: I, 1: J, 1 in the three luminance
conditions from the HBM and compared them with the
results from the BIP.

The means of the posterior distributions of θ ij1
from the HBM and BIP were significantly different (t2
(9,103) = 5.34, p < 0.001), and the average variance of
the estimated CSF parameters from the HBM (mean =
0.00139 log10 units; range = 0.00030 to 0.00739 log10
units) was 65.8% less than that from the BIP (mean =
0.00407 log10 units; range = 0.00035 to 0.11893 log10
units) (t2 (9,103) = 109, p < 0.001), consistent with
the well-known variance shrinkage effect of the HBM
(Kruschke, 2015).

Figures 6 and 7 show histograms of the difference
between the expected values of θ ij1, and the standard
deviation (SD = √

variance) of θ ij1 from the BIP and
HBM. Whereas most of the differences between the
expected values of θ ij1 from the two methods were small
(mean absolute difference = 0.027 log10 units), there
were thirteen instances (out of a total of 3 parameters
× 3 conditions × 112 subjects = 1008) in which the
absolute difference was greater than 0.2 log10 units
(range = 0.200 to 0.676 log10 units). The discrepancies
were associated with large variances of the BIP
estimates in those instances: their average variance of
0.065 log10 units (range = 0.027 to 0.119 log10 units)
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Figure 5. Three-dimensional posterior distributions of η (marginalized) (a), τ i,1: J for one individual (b), and θ i,1: J, 1 (c) for one individual
in one test in the HBM. The colors represent log10 probability density.

Covariance

L M H

Parameter η1 η2 η3 η4 η5 η6 η7 η8 η9 Mean

L η1 6.2E-03 1.1E-03 4.4E-05 4.7E-03 1.9E-03 −4.7E-04 4.2E-03 −2.3E-04 8.4E-04 1.564
η2 1.1E-03 9.5E-03 −1.9E-03 3.2E-03 4.5E-03 −5.3E-04 2.6E-03 1.8E-03 1.0E-03 0.319
η3 4.4E-05 −1.9E-03 1.1E-03 3.0E-05 −6.9E-04 5.6E-04 −1.2E-04 −5.4E-04 5.3E-04 0.462

M η4 4.7E-03 3.2E-03 3.0E-05 6.9E-03 1.7E-03 −1.1E-04 5.4E-03 −1.5E-04 1.2E-03 1.729
η5 1.9E-03 4.5E-03 −6.9E-04 1.7E-03 6.3E-03 −1.7E-03 2.6E-03 1.9E-03 2.9E-04 0.387
η6 −4.7E-04 −5.3E-04 5.6E-04 −1.1E-04 −1.7E-03 1.2E-03 −6.8E-04 −8.1E-04 9.2E-04 0.478

H η7 4.2E-03 2.6E-03 −1.2E-04 5.4E-03 2.6E-03 −6.8E-04 8.5E-03 −2.7E-03 1.3E-03 1.810
η8 −2.3E-04 1.8E-03 −5.4E-04 −1.5E-04 1.9E-03 −8.1E-04 −2.7E-03 1.0E-02 −3.7E-03 0.385
η9 8.4E-04 1.0E-03 5.3E-04 1.2E-03 2.9E-04 9.2E-04 1.3E-03 −3.7E-03 2.9E-03 0.520

Table 2. Mean and covariance of η. H, high; L, low; M, medium.

was 16 times the mean variance (0.00407 log10 units)
of θ ij1in the BIP procedure, suggesting that BIP did
not converge well in those cases. On the other hand,
the HBM generated more precise estimates with on
average a 93.7% reduction of variance (mean = 0.00407
log10 units; range = 0.00139 to approximately 0.00681
log10 units) compared to the BIP in the 13 cases by
incorporating data from all the subjects and conditions
in a single model.

Table 5 lists the average correlation coefficients
between θ ij1 in pairs of luminance conditions across
subjects from the HBM and BIP procedures. All
correlations were negative, with the strongest between
fmax and β. Across all the subjects, 97.4% and 97.9% of
the correlation coefficients from the BIP and HBMwere
statistically significant, respectively. Although the paired
t-test showed that the correlation coefficients between

Hyperparameter M-L H-L H-M

η 8.1 10.2 5.6
τ ij 11.6 11.6 5.5

Table 3. d′ of η and average d′ of τ ij between pairs of luminance
conditions. H, high; L, low; M, medium.

γmax and β in the high luminance condition (p = 0.003)
and between fmaxand β in all three luminance conditions
(p < 0.001) from the two procedures were significantly
different, the magnitudes of the differences were very
small and probably not of practical importance.

Table 6 shows the average d′s of θ ij1 and AULCSF
between pairs of luminance conditions across all the
subjects. Averaged across the three pairs, the AULCSF
d′ from the HBM was 33.5% greater than that from the
BIP. Compared to AULCSF, incorporating information
from the three-dimensional joint distributions of
θ ij1 led to an average d′ increase of 66.6% for the BIP
and 51.7% for the HBM. Compared to the AULCSF
d′ from the BIP, using θ ij1 in the HBM increased
d′ by 103.3% across the three pairs of luminance
conditions.

Statistics on θij1 and AULCSF across individuals

Table 7 shows
√
t2(3, 109) and t(111) of the means

of θ ij1 and AULCSF among the three pairs of
experimental conditions. The HBM generated larger
t values than the BIP for both θ ij1and AULCSF in all
pairs of experimental conditions. Averaged across the
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L M H

Parameter τ 1
1:I,1 τ 2

1:I,1 τ 3
1:I,1 τ 1

1:I,2 τ 2
1:I,2 τ 3

1:I,2 τ 1
1:I,3 τ 2

1:I,3 τ 3
1:I,3

τ 1
1:I, j 2.6E-03 −9.8E-04 −1.0E-06 2.2E-03 −8.0E-04 −3.2E-05 3.4E-03 −1.9E-03 5.5E-05

τ 2
1:I, j −9.8E-04 4.6E-03 −1.8E-03 −8.0E-04 3.6E-03 −1.4E-03 −1.9E-03 8.0E-03 −2.9E-03

τ 3
1:I, j −1.0E-06 −1.8E-03 8.7E-04 −3.2E-05 −1.4E-03 7.2E-04 5.5E-05 −2.9E-03 1.4E-03

Table 4. Average covariance matrix of τ 1: I, 1: J. H, high; L, low; M, medium.

three pairs, t(111) of AULCSF and
√
t2(3, 109) of θ ij1

from the HBM were 51.2% and 49.6% greater than
those from the BIP.

Simulation

The HBM accurately and precisely recovered θ ij1
in the simulation, with very small bias (γmax, fmax,
β: 0.0028, −0.0091, and 0.0023 log10 units), RMSE
(0.0373 log10 units), and average variance (0.00149
log10 units). In comparison, the BIP exhibited lower
accuracy and precision (bias = γmax, fmax, β: 0.0147,
−0.0395, and 0.0118 log10 units; RMSE = 0.0673 log10
units; average variance = 0.00428 log10 units).

Discussion

The HBM provides a general framework that can be
adapted to different experiment designs. In this paper,
we developed a three-level HBM to account for CSF
data of 112 subjects in a single-factor (luminance),
multi-condition (3 luminance conditions), and within-
subject experimental design. We applied the HBM to
quantify the joint distribution of CSF parameters and
hyperparameters at the population, individual, and test
levels and compared the performance of the model
with that of the BIP. The HBM generated more precise
estimates for each test than the BIP by incorporating
information across subjects and conditions to constrain
the estimates. The increased precision led to increased

Figure 6. Histograms of the difference between the expected values of θ ij1 from the HBM and BIP. (a) γmax
i j1 ; (b) fmax

i j1 ; and (c) β ij1.

Figure 7. Histograms of the standard deviation (SD) of θ ij1from the HBM and BIP procedures. (a) γmax
i j1 ; (b) fmax

i j1 ; and (c) β ij1.
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Condition

Method Parameter pair L M H

BIP γmax fmax −0.185 −0.134 −0.214
γmax β −0.072 −0.145 −0.078
fmax β −0.920 −0.910 −0.904

HBM γmax fmax −0.197 −0.169 −0.174
γmax β −0.095 −0.143 −0.150
fmax β −0.899 −0.891 −0.887

Table 5. Average correlations between θ ij1 in pairs of luminance
conditions. H, high; L, low; M, medium.

Method Metric M-L H-L H-M

BIP AULCSF 7.5 10.8 3.4
θ ij1 10.8 16.0 7.0

HBM AULCSF 10.1 13.5 4.8
θ ij1 13.4 19.2 8.6

Table 6. Average d′ of θ ij1 and AULCSF between pairs of
luminance conditions. H, high; L, low; M, medium.

d′s of AULCSF and CSF parameters between different
experimental conditions at the test level for each
subject, and bigger statistical differences across subjects.
Relative to the BIP, the HBM increased the average
d′s of AULCSF and θ ij1 between conditions at the
test level by 24.5% and 20.5%, and the corresponding
t(111)and

√
t2(3, 109) by 51.2% and 49.6%, respectively.

Simulations also showed that the HBM generated
accurate and precise CSF parameter estimates.

The HBM generated larger d′ and t statistics at the
test level because it reduced the variance of θ ij1 by 65.8%
relative to the BIP (0.00139 vs. 0.00407 log10 units).
In addition, the 13 instances in which the absolute
difference of θ ij1 from the HBM and BIP were greater
than 0.2 log10 units further demonstrated the benefit of
incorporating information across tests, subjects, and
conditions in the HBM (Kruschke, 2015; Rouder & Lu,
2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003). In
those cases, the variances of the BIP estimates were
very large (16 times the mean variance), suggesting that

Method Metric M-L H-L H-M

BIP AULCSF 41.78 45.35 21.01
θ ij1 27.05 34.90 17.87

HBM AULCSF 63.88 62.78 34.11
θ ij1 40.99 48.35 28.38

Table 7.
√
t2(3, 109) and t(111) between means of θ ij1 and

AULCSF. H, high; L, low; M, medium.

the BIP did not converge well. On the other hand, the
HBM generated much more precise CSF estimates for
each test by incorporating data across subjects and
conditions in a single model. The ability of the HBM
to generate more precise estimates from insufficient
or poor-quality data can be quite valuable in clinical
trials.

The HBM can be used to conduct two types of power
analyses. First, a replication power analysis computes
the power of different sample sizes in replicated
experiments with the exact same experimental design
(Kruschke, 2015). Simulated data for new subjects can
be generated from the posterior distributions of the
hyperparameters based on the HBM fit to the existing
dataset, just as we did in the simulation. In this case,
the original data of 112 subjects shall be combined
with the simulated data to compute the power for each
new sample size. A more interesting application of
the HBM is in prospective power analysis (Kruschke,
2015). In that case, no data have been collected for a
new experiment; simulated data of the new experiment
must be based on the generative model constructed
based on results from a different experiment. An
HBM for the new experimental design is then
constructed and fit to the simulated data. Therefore,
data from existing studies can only be used as prior
knowledge and cannot be combined with the simulated
data.

A certain sample size is required for the joint
posterior distribution of the CSF hyperparameters and
parameters in the HBM to become stable. This can be
done by evaluating the stability of the estimates with
different sample sizes. Relative to the noninformative
diffuse prior used in the BIP, Gu, Kim, Hou, Lesmes,
Pitt, Lu, and Myung (2016) showed that (1) an
informative prior from the HBM fit to as few as five
subjects could provide significant improvement in
qCSF measurements of new subjects in the hierarchical
adaptive design optimization (HADO) procedure,
(2) prior constructed from larger samples further
improved the accuracy and precision of the estimation,
and (3) the improvement stabilized when the sample
size was about 30. Simulation studies are necessary to
determine the minimum sample size required for the
HBM to converge for a given experiment.

Although the MCMC algorithm automatically
selected by the JAGS (Plummer, 2003) provided an
efficient sampling method, the weakly informative
priors of the covariance matrices at both the subject
and population levels were very helpful. With these
priors, it took about 54 hours for each MCMC chain
to generate at least 10,000 effective samples (Kruschke,
2015) for all parameters on a computer with eight cores.
Fifty-four hours are practical given that the actual
physical time decreases with increasing number of
CPUs used in parallel computation (Kruschke, 2015).
On the other hand, the HBM using diagonal covariance
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matrices as the priors took 18% longer (63.5 hours) to
generate 10,000 effective samples for all parameters,
and did not converge, as indicated by the larger
variances of the estimated CSF parameters at both
the subject (0.00298 log10 units and 114% increase)
and population levels (0.212 log10 units and 2873%
increase), although the Gelman and Rubin’s diagnostic
was below 1.05 for all parameters, which is based on
the ratio of between-chain and within-chain variances
but not the magnitudes of the variances. The effects of
priors on covariance estimation were consistent with
previous studies (Hobert & Casella, 1996; Rouder et al.,
2003).

Although the HBM in the current study was
developed to account for group differences in a
within-subject design, HBM-based approaches
can be developed to detect deviations in individual
patients belonging to different subpopulations (e.g.
healthy versus different stages of an eye disease,
or different eye diseases) using different tests (null
hypothesis significance testing versus estimation of
magnitude/effect size) in both frequentist and Bayesian
approaches (Kruschke & Liddell, 2018). The HADO
method (Gu, Kim, Hou, Lesmes, Pitt, Lu, & Myung,
2016; Kim, Pitt, Lu, Steyvers, & Myung, 2014) provides
a potential framework. HADO uses an informative
prior obtained from all previously tested subjects
with the same CSF characteristics (e.g. testing in the
same luminance condition). It took 20 to 30 trials
for the qCSF method with an uninformative diffuse
prior to achieve the same initial precision level of
the HADO procedure with the informative prior.
Moreover, HADO with a mixture prior that represent
a wide range of CSF properties (e.g. across different
luminance conditions) still achieved higher precision
than qCSF with an uninformative prior, and could
mitigate the problem of mis-specified prior and improve
the qCSF method on testing individual subjects. The
joint posterior distributions of the hyperparameters
at the population and individual levels from HBM
can provide informative priors within the HADO
framework for new individuals and repeated tests of
the same individual, respectively. Furthermore, the
HBM can be extended to model additional covariance
between parameters of different measurements (e.g.
CSF and visual acuity) in a joint modeling approach
(Palestro, Bahg, Sederberg, Lu, Steyvers, & Turner,
2018; Turner, Forstmann, Wagenmakers, Brown,
Sederberg, & Steyvers, 2013) to account for multiple
test results of multiple subjects and conditions, and
potentially further increase statistical power in detecting
changes of functional vision in normal and clinical
populations. Therefore, the HBM framework can be
used to take advantage of all available information at
different levels to enable sensitive detection of CSF
changes, and thereby improve patient care and clinical
trials with increased statistical power.

Conclusions

In this paper, we developed a three-level HBM to
account for CSF data of 112 subjects in a within-
subject, single-factor (luminance), multi-condition
(3 luminance conditions) experimental design. The
HBM was used to compute the joint distribution of
CSF parameters and hyperparameters at population,
individual, and test levels to fully utilize information
across levels to accurately estimate the CSF in each test.
Relative to the BIP, the HBM increased the average d′s
of AULCSF and θ ij1 between conditions at the test level
by 24.5% and 20.5 %, and the corresponding t statistics
by 51.2% and 49.6%, respectively. Future research
will further evaluate the potential value of the HBM
for analyzing clinical changes in contrast sensitivity,
whether in individual patients or groups in clinical
trials.

Keywords: contrast sensitivity function, quick contrast
sensitivity function (qCSF), hierarchical Bayesian model
(HBM), d′s
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Footnote
1Hou et al., (2016) used a four-parameter CSF model with a low frequency
truncation level δ as the fourth parameter (Lesmes et al., 2010; Watson &
Ahumada, 2005). Because of the range of low-frequencies that were tested
in this dataset, we used the three-parameter CSF model without δ because
it was not very well constrained. The three-parameter log-parabola CSF
also reduced the total number of parameters and the complexity of the
HBM.



Journal of Vision (2021) 21(12):9, 1–17 Zhao, Lesmes, Hou, & Lu 13

References

Ahn, W.-Y., Krawitz, A., Kim, W., Busmeyer, J. R.,
& Brown, J. W. (2011). A Model-Based FMRI
Analysis with Hierarchical Bayesian Parameter
Estimation. Journal of Neuroscience, Psychology,
and Economics, 4(2), 95–110.

Anderson, T. W. (2003). An introduction to multivariate
analysis. Hoboken, N.J.: Wiley-Interscience.

Ando, T. (2007) Bayesian predictive information
criterion for the evaluation of hierarchical Bayesian
and empirical Bayes models. Biometrika, 94,
443–458.

Ando, T. (2011) Predictive Bayesian Model Selection.
American Journal of Mathematical andManagement
Sciences, 31, 13–38.

Ashby, F. G., & Townsend, J. T. (1986). Varieties of
Perceptual Independence. Psychological Review,
93(2), 154–179.

Bellmann, C., Unnebrink, K., Rubin, G. S., Miller, D.,
& Holz, F. G. (2003). Visual acuity and contrast
sensitivity in patients with neovascular age-related
macular degeneration. Results from the Radiation
Therapy for Age-Related Macular Degeneration
(RAD-) Study. Graefe’s Archive for Clinical and
Experimental Ophthalmology, 241, 968–974.

Bellucci, R., Scialdone, A., Buratto, L., Morselli, S.,
Chierego, C., & Criscuoli, A. et al. (2005). Visual
acuity and contrast sensitivity comparison between
Tecnis and AcrySof SA60AT intraocular lenses: A
multicenter randomized study. Journal of Cataract
& Refractive Surgery, 31, 712–717.

Borm, G. F., Fransen, J., & Lemmens,W. A. J. G. (2007).
A Simple Sample Size Formula for Analysis of
Covariance in Randomized Clinical Trials. Journal
of Clinical Epidemiology, 60(12), 1234–1238.

Bradley, A., Hook, J., & Haeseker, J. (1991). A
comparison of clinical acuity and contrast
sensitivity charts: Effect of uncorrected myopia.
Ophthalmic and Physiological Optics, 11, 218–226.

Buhren, J., Terzi, E., Bach, M., Wesemann, W., &
Kohnen, T. (2006). Measuring contrast sensitivity
under different lighting conditions: Comparison
of three tests. Optometry & Vision Science, 83,
290–298.

Chen, G., Hou, F., Yan, F.-F., Zhang, P., Xi, J., & Zhou,
Y. et al. (2014). Noise Provides New Insights on
Contrast Sensitivity Function. PLoS One, 9(3),
e90579.

Chung, S. T. L., Legge, G. E., & Tjan, B. S. (2002).
Spatial-frequency characteristics of letter
identification in central and peripheral vision.
Vision Research, 42, 2137–2152.

Clayton, D., & Hills, M. (1993) Statistical models in
epidemiology. Oxford, UK: Oxford University
Press.

Daniels, M. J., & Kass, R. E. (1999). Nonconjugate
Bayesian Estimation of Covariance Matrices
and Its Use in Hierarchical Models. Journal of
the American Statistical Association, 94(448),
1254–1263.

Edwards, W., Lindman, H., & Savage, L.J. (1963)
Bayesian statistical inference for psychological
research. Psychological Review, 70(3), 193–
242.

Egbewale, B. E., Lewis, M., & Sim, J. (2014). Bias,
Precision and Statistical Power of Analysis of
Covariance in the Analysis of Randomized Trials
with Baseline Imbalance: A Simulation Study.
BMC Medical Research Methodology, 14, 49.

Foley, J. M., & Legge, G. E. (1981). Contrast detection
and near-threshold discrimination in human vision.
Vision Research, 21, 1041–1053.

Gelman, A., & Rubin, D. B. (1992) Inference from
iterative simulation using multiple sequences,
Statistical Science, 7, 457–511.

Ginsburg, A. P. (1981). Spatial filtering and vision:
Implications for normal and abnormal vision. In L.
Proenz, J. Enoch, & A. Jampolsky (Eds.), Clinical
applications of visual psychophysics (pp. 70–106).
Cambridge, UK: Cambridge University Press.

Ginsburg, A. P. (2003). Contrast Sensitivity and
Functional Vision. International Ophthalmology
Clinics, 43(2), 5–15.

Ginsburg, A. P. (2006). Contrast sensitivity:
Determining the visual quality and function of
cataract, intraocular lenses and refractive surgery.
Current Opinion in Ophthalmology, 17, 19–26.

Green, D. M., & Swets, J. A. (1966). Signal Detection
Theory and Psychophysics. New York, NY: John
Wiley & Sons.

Gu, H., Kim, W., Hou, F., Lesmes, L. A., Pitt, M. A.,
Lu, Z.-L., . . . Myung, J. I. (2016). A Hierarchical
Bayesian Approach to Adaptive Vision Testing: A
Case Study with the Contrast Sensitivity Function.
Journal of Vision, 16(6), 15.

Haymes, S. A., Roberts, K. F., Cruess, A. F., Nicolela,
M. T., LeBlanc, R. P., & Ramsey, M. S. et al.
(2006). The letter contrast sensitivity test:
Clinical evaluation of a new design. Investigative
Ophthalmology & Visual Science, 47, 2739–
2745.

Hess, R. F. (1981). Application of contrast-sensitivity
techniques to the study of functional amblyopia. In
L. Proenz, J. Enoch, & A. Jampolsky (Eds.), Clinical
applications of visual psychophysics (pp. 11–41).
Cambridge, UK: Cambridge University Press.



Journal of Vision (2021) 21(12):9, 1–17 Zhao, Lesmes, Hou, & Lu 14

Hobert, J. P., & Casella, G. (1996). The effect of
improper priors on Gibbs sampling in hierarchical
linear mixed models. Journal of the American
Statistical Association, 91, 1461–1473

Hohberger, B., Laemmer, R., Adler, W., Juenemann,
A. G., & Horn, F. K. (2007). Measuring contrast
sensitivity in normal subjects with OPTEC 6500:
Influence of age and glare. Graefe’s Archive
for Clinical and Experimental Ophthalmology,
245,1805–1814.

Hou, F., Huang, C.-B., Lesmes, L. A., Feng, L.-X.,
Tao, L., Zhou, Y.-F., . . . Lu, Z.-L. (2010). qCSF in
clinical application: Efficient characterization and
classification of contrast sensitivity functions in
amblyopia. Investigative Ophthalmology & Visual
Science, 51, 5365–5377.

Hou, F., Lesmes, L. A., Bex, P., Dorr, M., & Lu,
Z.-L. (2015). Using 10AFC to further improve the
efficiency of the qCSF method. Journal of Vision,
15(9):2, 1–18.

Hou, F., Lesmes, L. A., Kim, W., Gu, H., Pitt, M. A.,
Myung, J. I., . . . Lu, Z.-L. (2016). Evaluating the
Performance of the QCSF Method in Detecting
Contrast Sensitivity Function Changes. Journal of
Vision, 16(6), 18.

Hou, F., Lu, Z.-L., & Huang, C.-B. (2014). The external
noise normalized gain profile of spatial vision.
Journal of Vision, 14(13):9, 1–14.

Jia, W., Zhou, J., Lu, Z.-L., Lesmes, L. A., & Huang,
C.-B. (2015). Discriminating Anisometropic
Amblyopia from Myopia Based on Interocular
Inhibition. Vision Research, 114, 135–141.

Jindra, L. F., & Zemon, V. (1989). Contrast Sensitivity
Testing - a More Complete Assessment of Vision.
Journal of Cataract and Refractive Surgery, 15(2),
141–148.

Joltikov, K. A., de Castro, V. M., Davila, J. R., Anand,
R., Khan, S. M., Farbman, N., . . . Jackson, G.
R. et al. (2017). Multidimensional functional
and structural evaluation reveals neuroretinal
impairment in early diabetic retinopathy.
Investigative Ophthalmology & Visual Science, 58,
BIO277–BIO290.

Kalia, A., Lesmes, L. A., Dorr, M., Gandhi, T.,
Chatterjee, G., & Ganesh, S. et al. (2014).
Development of pattern vision following early
and extended blindness. Proceedings of the
National Academy of Sciences, USA, 111, 2035–
2039.

Kelly, D. H., & Savoie, R. E. (1973). A study of sinewave
contrast sensitivity by two psychophysical methods.
Perception & Psychophysics, 14, 313–318.

Kim,W., Pitt, M. A., Lu, Z.-L., Steyvers, M., &Myung,
J. I. (2014). A Hierarchical Adaptive Approach to

Optimal Experimental Design.Neural Computation,
26(11), 2465–2492.

Kleiner, R. C., Enger, C., Alexander, M. F., & Fine,
S. L. (1988). Contrast sensitivity in age-related
macular degeneration. Archives of Ophthalmology,
106, 55–57.

Klotzke, K., & Fox, J.-P. (2019). Bayesian Covariance
Structure Modeling of Responses and Process
Data. Frontiers in Psychology, 10, 1675.

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian
Adaptive Estimation of Psychometric Slope and
Threshold. Vision Research 39(16), 2729–2737.

Kruschke, J. K. (2015). Doing Bayesian data analysis:
a tutorial with R, JAGS, and Stan. San Diego, CA:
Academic Press.

Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian
New Statistics: Hypothesis testing, estimation,
meta-analysis, and power analysis from a Bayesian
perspective. Psychonomic Bulletin & Review, 25(1),
178–206.

Kuss, M., Jäkel, F., &Wichmann, F. A. (2005). Bayesian
inference for psychometric functions. Journal of
Vision, 5(5), 8.

Lee, M. D. (2006). A Hierarchical Bayesian Model of
Human Decision-Making on an Optimal Stopping
Problem. Cognitive Science, 30(3), 1–26.

Lee, M. D. (2011). How Cognitive Modeling Can
Benefit from Hierarchical Bayesian Models. Journal
of Mathematical Psychology, 55(1), 1–7.

Lee, T. S., & Mumford, D. (2003). Hierarchical
Bayesian Inference in the Visual Cortex. Journal
of the Optical Society of America A -Optics Image
Science and Vision, 20(7), 1434–1448.

Legge, G. E., Kersten, D., & Burgess, A. E. (1987).
Contrast discrimination in noise. Journal of the
Optical Society of America A: Optics, Image
Science, and Vision, 4, 391–404.

Lesmes, L. A., Jackson, M.L., & Bex, P. (2013).
Visual function endpoints to enable dry AMD
clinical trials. Drug Discovery Today: Therapeutic
Strategies, 10(1), e43–e50.

Lesmes, L. A., Lu, Z.-L., Baek, J., & Albright, T. D.
(2010). Bayesian adaptive estimation of the contrast
sensitivity function: The qCSF method. Journal of
Vision, 10(3):17, 1–21.

Lesmes, L. A., Wallis, J., Jackson, M. L., & Bex,
P. (2013). The reliability of the qCSF method
for contrast sensitivity assessment in low vision.
Investigative Ophthalmology & Visual Science, 54,
2762. [Abstract]

Lesmes, L. A., Wallis, J., Lu, Z.-L., Jackson, M. L.,
& Bex, P. J. (2012). Clinical application of a novel
contrast sensitivity test to a low vision population:



Journal of Vision (2021) 21(12):9, 1–17 Zhao, Lesmes, Hou, & Lu 15

The qCSF method. ARVO Meeting Abstracts, 53,
4358.

Levi, D. M., & Li, R. W. (2009). Improving the
performance of the amblyopic visual system.
Philosophical Transactions of the Royal Society B:
Biological Sciences, 364, 399–407.

Li, F.-F., & Perona, P. (2005). A Bayesian Hierarchical
Model for Learning Natural Scene Categories.
Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, Volume 2, pp. 524–531.

Lin, S., Mihailovic, A., West, S. K., Johnson, C. A.,
Friedman, D. S., Kong, X., . . . Ramulu, P. Y. (2018).
Predicting Visual Disability in Glaucoma With
Combinations of Vision Measures. Translational
Vision Science & Technology, 7(2), 22.

Loshin, D. S., & White, J. (1984). Contrast sensitivity.
The visual rehabilitation of the patient with macular
degeneration. Archives of Ophthalmology, 102,
1303–1306.

Lu, Z. L., & Dosher, B. A. (1999). Characterizing
human perceptual inefficiencies with equivalent
internal noise. Journal of the Optical Society of
America A: Optics, Image Science, and Vision, 16,
764–778.

Lu, Z.-L., & Dosher, B.A. (2013). Visual Psychophysics:
From Laboratory to Theory. Cambridge, MA: MIT
Press.

Malo, J., Pons, A.M., Felipe, A., & Artigas, J.M. (1997).
Characterization of the human visual system
threshold performance by a weighting function
in the Gabor domain. Journal of Modern Optics,
44(1), 127–148.

Marmor, M. F. (1986). Contrast sensitivity versus
visual acuity in retinal disease. British Journal of
Ophthalmology, 70, 553–559.

Merkle, E. C., Smithson, M., & Verkuilen, J. (2011).
Hierarchical Models of Simple Mechanisms
Underlying Confidence in Decision Making.
Journal of Mathematical Psychology, 55(1), 57–67.

Midena, E., Degli Angeli, C., Blarzino, M. C.,
Valenti, M., & Segato, T. (1997). Macular function
impairment in eyes with early age-related macular
degeneration. Investigative Ophthalmology & Visual
Science, 38, 469–477.

Molloy, M. F., Bahg, G., Li, X., Steyvers, M., Lu, Z.-L.,
& Turner, B. M. (2018). Hierarchical Bayesian
Analyses for Modeling BOLD Time Series Data.
Computational Brain & Behavior, 1(2), 184–
213.

Molloy, M. F., Bahg, G., Lu, Z.-L., & Turner, B.
M. (2019). Individual Differences in the Neural
Dynamics of Response Inhibition. Journal of
Cognitive Neuroscience, 31(12), 1976–1996.

Nordhausen, K., Sirkia, S., Oja, H., & Tyler, D. E.
(2018). Tools for Multivariate Nonparametrics.
Package ‘ICSNP’ in CRAN repository. Retrieved
from: https://cran.r-project.org/package=ICSNP.

Ou, W. C., Lesmes, L. A., Christie, A. H., Denlar,
R. A., & Csaky, K. G. (2021). Normal- and
Low-Luminance Automated Quantitative Contrast
Sensitivity Assessment in Eyes With Age-Related
Macular Degeneration. American Journal of
Ophthalmology, 226, 148–155.

Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast
sensitivity throughout adulthood. Vision Research,
23, 689–699.

Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L.,
Steyvers, M., & Turner, B. M. (2018). A Tutorial on
Joint Models of Neural and Behavioral Measures
of Cognition. Journal of Mathematical Psychology,
84, 20–48.

Pesudovs, K., Hazel, C. A., Doran, R. M., & Elliott,
D. B. (2004). The usefulness of Vistech and FACT
contrast sensitivity charts for cataract and refractive
surgery outcomes research. British Journal of
Ophthalmology, 88, 11–16.

Plummer, M. (2003). JAGS: A program for analysis of
Bayesian graphical models using Gibbs sampling.
In Proceedings of the 3rd international workshop
on distributed statistical computing. Retrieved
from: https://www.r-project.org/nosvn/conferences/
DSC-2003/Drafts/Plummer.pdf.

Prins, N. (2013). The psi-marginal adaptive method:
How to give nuisance parameters the attention they
deserve (no more, no less). Journal of Vision, 13(7),
3.

R Core Team (2020). R: A language and environment
for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing.
https://www.R-project.org/.

Ramulu, P., Dave, P., & Friedman, D. (2015). Precision
of contrast sensitivity testing in glaucoma. ARVO
Annual Meeting Abstracts, 56, 2225.

Reynaud, A., Tang, Y., Zhou, Y., & Hess, R. (2014).
A unified framework and normative dataset for
second-order sensitivity using the quick contrast
sensitivity function (qCSF). Journal of Vision,
14(10), 1428.

Reum, J. C. P., Hovel, R. A., & Greene, C. M. (2015).
Estimating Continuous Body Size-Based Shifts in
Delta N-15-Delta C-13 Space Using Multivariate
Hierarchical Models. Marine Biology, 162(2),
469–478.

Rohaly, A. M., & Owsley, C. (1993). Modeling the
contrast-sensitivity functions of older adults.
Journal of the Optical Society of America A, Optics
and Image Science, 10, 1591–1599.

https://cran.r-project.org/package10ICSNP
https://www.r-project.org/nosvn/conferences/DSC-2003/Drafts/Plummer.pdf
https://www.R-project.org/


Journal of Vision (2021) 21(12):9, 1–17 Zhao, Lesmes, Hou, & Lu 16

Rosen, R., Jayaraj, J., Bharadwaj, S. R., Weeber, H. A.,
Van der Mooren, M., & Piers, P. A. (2015). Contrast
sensitivity in patients with macular degeneration.
ARVO Annual Meeting Abstracts, 56, 2224.

Rosén, R., Lundström, L., Venkataraman, A. P.,
Winter, S., & Unsbo, P. (2014). Quick contrast
sensitivity measurements in the periphery. Journal
of Vision, 14(8):3, 1–10.

Rouder, J. N., & Lu, J. (2005). An Introduction to
Bayesian Hierarchical Models with an Application
in the Theory of Signal Detection. Psychonomic
Bulletin & Review, 12(4), 573–604.

Rouder, J. N., Sun, D. C., Speckman, P. L., Lu, J., &
Zhou, D. (2003). A Hierarchical Bayesian Statistical
Framework for Response Time Distributions.
Psychometrika, 68(4), 589–606.

Schütt, H. H., Harmeling, S., Macke, J. H., &
Wichmann, F. A. (2016). Painfree and accurate
Bayesian estimation of psychometric functions for
(potentially) overdispersed data. Vision Research,
122, 105–123.

Schütt, H. H., & Wichmann, F. A. (2017). An
image-computable psychophysical spatial vision
model. Journal of Vision, 17(12), 12.

Song, M., Behmanesh, I., Moaveni, B., &
Papadimitriou, C. (2020). Accounting for Modeling
Errors and Inherent Structural Variability through a
Hierarchical Bayesian Model Updating Approach:
An Overview. Sensors, 20(14), 3874.

Stellmann, J. P., Young, K. L., Pottgen, J., Dorr,
M., & Heesen, C. (2015). Introducing a New
Method to Assess Vision: Computer-Adaptive
Contrast-Sensitivity Testing Predicts Visual
Functioning Better than Charts in Multiple
Sclerosis Patients. Multiple Sclerosis Journal -
Experimental, Translational & Clinical, 1, 1–8.

Storz, J. F., & Beaumont, M. A. (2002). Testing
for Genetic Evidence of Population Expansion
and Contraction: An Empirical Analysis of
Microsatellite DNA Variation Using a Hierarchical
Bayesian Model. Evolution, 56(1), 154–166.

Tan, D. T. H., & Fong, A. (2008). Efficacy of neural
vision therapy to enhance contrast sensitivity
function and visual acuity in low myopia. Journal
of Cataract & Refractive Surgery, 34, 570–
577.

Thall, P. F., Wathen, J. K., Bekele, B. N., Champlin,
R. E., Baker, L. H., & Benjamin, R. S. (2003).
Hierarchical Bayesian Approaches to Phase II
Trials in Diseases with Multiple Subtypes. Statistics
in Medicine, 22(5), 763–780.

Thomas, M., Silverman, R. F., Vingopoulos, F.,
Kasetty, M., Yu, G., & Kim, E. L. et al. (2021).
Active Learning of Contrast Sensitivity to

Assess Visual Function in Macula-Off Retinal
Detachment. Journal of VitreoRetinal Diseases,
5(4), 313–320.

Thrane, E., & Talbot, C. (2019). An Introduction
to Bayesian Inference in Gravitational-Wave
Astronomy: Parameter Estimation, Model
Selection, and Hierarchical Models. Publications
of the Astronomical Society of Australiam 36,
e010.

Treutwein, B. (1995). Adaptive psychophysical
procedures. Vision Research, 35, 2503–2522.

Turner, B. M., Forstmann, B. U., Wagenmakers, E.-J.,
Brown, S. D., Sederberg, P. B., & Steyvers, M.
(2013). A Bayesian Framework for Simultaneously
ModelingNeural andBehavioralData.NeuroImage,
72, 193–206.

van Gaalen, K. W., Jansonius, N. M., Koopmans,
S. A., Terwee, T., & Kooijman, A. C. (2009).
Relationship between contrast sensitivity and
spherical aberration: Comparison of 7 contrast
sensitivity tests with natural and artificial pupils
in healthy eyes. Journal of Cataract & Refractive
Surgery, 35, 47–56.

Vingopoulos, F., Wai, K. M., Katz, R., Vavvas,
D. G., Kim, L. A., & Miller, J. B. (2021).
Measuring the Contrast Sensitivity Function in
Non-Neovascular and Neovascular Age-Related
Macular Degeneration: The Quantitative Contrast
Sensitivity Function Test. Journal of Clinical
Medicine, 10(13), 2768.

Wai, K. M., Vingopoulos, F., Garg, I., Kasetty,
M., Silverman, R. F., & Katz, R. et al.
(2021). Contrast sensitivity function in
patients with macular disease and good visual
acuity. British Journal of Ophthalmology,
https://doi.org/10.1136/bjophthalmol-2020-318494.
[e-pub ahead of print].

Wang, C., Lin, X., & Nelson, K. P. (2020). Bayesian
Hierarchical Latent Class Models for Estimating
Diagnostic Accuracy. Statistical Methods in
Medical Research, 29(4), 1112–1128.

Watson, A. B. (2017). QUEST+: A general multi-
dimensional Bayesian adaptive psychometric
method. Journal of Vision, 17(3):10, 1–27.

Watson, A.B. (2000). Visual detection of spatial
contrast patterns: Evaluation of five simple models.
Optics Express, 6(1), 12–33.

Watson, A. B., & Ahumada, A. J. (2005). A Standard
Model for Foveal Detection of Spatial Contrast.
Journal of Vision, 5(9), 717–740.

Watson, A.B., & Malo., J. (2002). Video quality
measures based on the standard spatial observer.
Proceedings of the IEEE International Conference
on Image Processing. 3, 41–44.

https://doi.org/10.1136/bjophthalmol-2020-318494


Journal of Vision (2021) 21(12):9, 1–17 Zhao, Lesmes, Hou, & Lu 17

Watson, A. B., & Pelli, D. G. (1983). Quest: A Bayesian
adaptive psychometric method. Perception &
Psychophysics, 33(2), 113–120.

Wichmann, F. A., &Hill, N. J. (2001). The psychometric
function: I. Fitting, sampling, and goodness of fit.
Perception & Psychophysics, 63, 1293–1313.

Wikle, C. K. (2003). Hierarchical Bayesian Models
for Predicting the Spread of Ecological Processes.
Ecology, 84(6), 1382–1394.

Wilcox, R. (2012). Modern Statistics for the Social and
Behavioral Sciences: A Practical Introduction (pp.
101–102). Boca Rato, Florida, USA: CRC Press.

Wilson, J. D., Cranmer, S., & Lu, Z.-L. (2020). A
Hierarchical Latent Space Network Model for
Population Studies of Functional Connectivity.
Computational Brain & Behavior, 3, 384–399

Yan, F.-F., Hou, F., Lu, Z.-L., Hu, X., & Huang, C.-B.
(2017). Efficient Characterization and Classification

of Contrast Sensitivity Functions in Aging.
Scientific Reports, 7, 5045.

Yang, J., Zhu, H., Choi, T., & Cox, D. D. (2016).
Smoothing and Mean-Covariance Estimation of
Functional Data with a Bayesian Hierarchical
Model. Bayesian Analysis, 11(3), 649–670.

Zhao, Y., Lesmes, L. A., Dorr, M., & Lu, Z.-L. (2021).
Quantifying Uncertainty of the Estimated Visual
Acuity Behavioral Function With Hierarchical
Bayesian Modeling. Translational Vision Science &
Technology, 10(12), 18.

Zhou, Y. F., Huang, C.-B., Xu, P. J., Tao, L. M., Qiu,
Z. P., & Li, X. R. et al. (2006). Perceptual learning
improves contrast sensitivity and visual acuity
in adults with anisometropic amblyopia. Vision
Research, 46(5), 739–750.


