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Assessment of Technical Skill (OSATS), yielding summed 
scores from 5 to 20. Motion data from each trial were pro-
cessed to calculate 280 features. We used regularized least 
squares regression to identify the most predictive features 
from different subsets of the motion data and then built six 
regression tree models that predict summed OSATS score. 
Model accuracy was evaluated via leave-one-subject-out 
cross-validation.
Results  The model that used all sensor data streams per-
formed best, achieving 71% accuracy at predicting summed 
scores within 2 points, 89% accuracy within 4, and a correla-
tion of 0.85 with human ratings. 59% of the rounded aver-
age OSATS score predictions were perfect, and 100% were 
within 1 point. This model employed 87 features, including 
none based on completion time, 77 from tool tip motion, 3 
from tool tip visibility, and 7 from grip angle.
Conclusions  Our novel hardware and software automati-
cally rated previously unseen trials with summed OSATS 
scores that closely match human expert ratings. Such a sys-
tem facilitates more feedback-intensive surgical training 
and may yield insights into the fundamental components 
of surgical skill.

Keywords  Pediatric laparoscopic surgery · Intracorporeal 
suturing · Box trainer · Objective skill assessment · Motion 
analysis · Machine learning

Minimally invasive surgery (MIS) has led to decreased post-
operative pain, earlier hospital discharge, and decreased 
scarring compared to open surgery [1]. In several adult sur-
gical procedures, such as appendectomy, MIS has become 
the recommended standard [2]. Despite the benefits of MIS 
methods, challenges remain in the development of training 
programs that effectively simulate operating conditions. 

Abstract 
Background  Minimally invasive surgeons must acquire 
complex technical skills while minimizing patient risk, a 
challenge that is magnified in pediatric surgery. Trainees 
need realistic practice with frequent detailed feedback, but 
human grading is tedious and subjective. We aim to vali-
date a novel motion-tracking system and algorithms that 
automatically evaluate trainee performance of a pediatric 
laparoscopic suturing task.
Methods  Subjects (n = 32) ranging from medical students 
to fellows performed two trials of intracorporeal suturing 
in a custom pediatric laparoscopic box trainer after watch-
ing a video of ideal performance. The motions of the tools 
and endoscope were recorded over time using a magnetic 
sensing system, and both tool grip angles were recorded 
using handle-mounted flex sensors. An expert rated the 63 
trial videos on five domains from the Objective Structured 
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While smaller incisions greatly benefit patients, minimally 
invasive methods introduce new ergonomic challenges 
for the training surgeon. Compared to open surgery, MIS 
requires planning for constrained space, the use of less intui-
tive movements through trocars, and the ability to interpret 
a three-dimensional surgical field from a two-dimensional 
video image [3]. Due to the unique nature of minimally inva-
sive skills, an increased demand arose for synthetic models 
such as box trainers and virtual reality simulators that teach 
basic laparoscopic skills free of the pressures of operating 
on real patients [4].

Surgical simulators are widely regarded as safe and effec-
tive tools for practice and assessment during the early stages 
of a surgeon’s training. The use of box trainers and virtual 
reality simulators allows surgeons to improve their skills out-
side of the operating room and allows senior physicians to 
evaluate and correct the trainee’s approach without concern 
for a patient’s life. These artificial simulators have reproduc-
ible setups, allowing for longitudinal evaluation. Box train-
ers with realistic internal components such as artificial tissue 
are especially favored as training tools due to the fidelity 
of the physics of instrument handling and contact interac-
tions and the realistically constrained workspace provided 
by the box. Previous studies [5–7] have validated the use 
of these box trainers to evaluate surgical skill, and others 
[8] have validated that skills acquired through simulation 
can be transferred to the operating room. Studies have also 
been done on virtual reality simulators, which were similarly 
able to predict surgical skill [9–11]. Although they play an 
important role in many training programs, virtual simulators 
are still not widely favored in comparison to box trainers 
because the physics of virtual reality are not robust enough 
to exactly mimic procedures [12]. The higher cost of virtual 
reality systems also affects their adoption.

Instrument motion tracking has been validated as a 
method of analysis for use in laparoscopic skills assessment 
[13–16], and the use of motion analysis to quantify surgi-
cal skill has further enhanced box trainers and allowed for 
quantification to accompany qualification of surgical skill 
[17]. The incorporation of motion analysis has allowed for 
more in-depth characterization of differences between nov-
ices and experts, although distinguishing skill on a finer 
scale that includes surgeons with intermediate capabilities 
continues to present a challenge [15]. As reviewed by Reiley 
et al. [17], the techniques of laparoscopic motion analysis 
have also been successfully adapted for evaluating trainee 
skill at robot-assisted MIS, where the surgeon operates the 
instruments through joystick-like hand controllers rather 
than through direct physical interaction. Moving beyond 
motion sensing, investigations have shown that statistical 
analysis of the vibrations of the robotic instruments and the 
forces applied to the inanimate task materials can be used 
to distinguish between novice and expert surgeons [18] and 

to rate different aspects of a trainee’s task performance on 
standardized 5-point scales [19].

Recently, MIS methods have been adapted for use on 
infants and small children [20–22]. While pediatric MIS 
offers many financial and medical advantages to the patient, 
training new surgeons in its techniques presents additional 
challenges compared to adult MIS. Specifically, the ergo-
nomic constraints arising from a smaller working space, 
shorter and narrower tools, ports closer together, and an 
overall smaller margin of error make pediatric MIS par-
ticularly challenging [23]. For this reason, as MIS use has 
expanded in pediatric populations, training programs have 
sought to develop pediatric-specific training approaches and 
simulators. Small box trainers simulating the smaller pediat-
ric body cavity have been developed and validated by Jimbo 
et al. [24] and Ieiri et al. [25]. Each group demonstrated the 
validity of their custom simulator using the Objective Struc-
tured Assessment of Technical Skills (OSATS) [26]. While 
this method of assessment has been fully established and 
validated for a range of simple and complex skills, imple-
mentation of OSATS to assess trainees requires a significant 
amount of time from a reviewer, and trainees rarely receive 
immediate feedback about their performance [27]. Thus, we 
and others are interested in the possibility of automating 
the assessment of surgical skills performed with real instru-
ments on simulated tissue.

This article presents and validates a custom pediatric 
laparoscopic box trainer for use in a MIS training program 
at the Children’s Hospital of Philadelphia (CHOP). Specifi-
cally, we use a novel motion-tracking system, a corpus of 
recorded task performances, and video-reviewer-generated 
OSATS scores to create machine learning algorithms capa-
ble of automatically assigning scores to future performances 
of an intracorporeal laparoscopic suturing task. This system 
and its possible extensions may assist in the assessment of 
trainee skill while reducing the human cost of training and 
reviewing performances.

Materials and methods

We created a custom apparatus for automatically evaluating 
trainee skill at a pediatric laparoscopic intracorporeal sutur-
ing task. Reaching this goal required us to build a suitable 
box trainer, instrument it with motion sensors, and write 
software for the user interface. The full setup is shown in 
Fig. 1. Evaluation of this training apparatus involved recruit-
ment of trainee participants, recording a large number of 
task performances, rating each trial video on standardized 
scales, analyzing the recorded motion data, and building sta-
tistical models that can automatically rate new trials based 
only on recorded data.
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Custom laparoscopic box trainer

Before creating an automatic skill assessment tool, we 
identified the need for a box trainer that more accurately 
represents the ergonomic challenges of pediatric surgery. 

Specifically, the box trainer needs to support the use of 
smaller instruments and provide the limited working space, 
visibility, and depth of a pediatric abdomen. As shown in 
Fig. 2A, a laparoscopic box trainer with exterior measuring 
35.6 cm wide by 35.6 cm long by 7.0 cm tall was designed 
and manufactured with rigid sides and a compliant arched 
top surface. Custom trocars were created for compatibility 
with the pediatric box trainer out of 3D printed acrylonitrile 
butadiene styrene plastic and inserted into the top of the box 
trainer 4 cm from the center line of the workspace on each 
side. Each trocar gimbal measured 0.7 cm in diameter at the 
instrument insertion point. A 1-cm-diameter hole was placed 
at the midpoint between the two trocars to allow for insertion 
of an endoscope.

A length of simulated bowel (Tactility Simulated Bowel 
#2129, The Chamberlain Group) was cut to 7.6 cm and 
attached to an 8.3-cm-long by 4.8-cm-wide wood insert 
with two pins, one placed at each end of the artificial tis-
sue. A 2.5-cm-long incision was cut into the center of the 
specimen. The simulated bowel was replaced before every 
trial for the sake of consistency. A removable 14-cm-long 
by 19-cm-wide by 7-cm-tall 3D printed insert was fabri-
cated and used to secure the wood insert into the box trainer 
using hook-and-loop fasteners. The complete internal setup 
is shown in Fig. 2B.

The surgical instruments and endoscope used in this study 
were the same tools employed for routine laparoscopic intra-
corporeal suturing at CHOP. As shown in Fig. 3, a 20-cm-
long Karl Storz CLICKline® instrument with 3.5  mm 
diameter and a 1-cm-long Dissect/Grasp forceps tip (also 
known as a Maryland) was placed in the left trocar, and a 
20-cm-long Karl Storz Ultramicro Needle Holder (needle 
driver) with 3 mm diameter was placed in the right trocar. 
A 4-mm-diameter pediatric endoscope with 30° upward tilt 

Fig. 1   Full training setup

Fig. 2   Custom laparoscopic box trainer: A exterior and B interior
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(model 26009 BA, Karl Storz) was used for visualization of 
the surgical field. Recording of each trial was done by a Karl 
Storz HD Video Endoscopy System.

Sensors

An Ascension trakSTAR 3D electromagnetic motion-track-
ing system with a mid-range transmitter was employed to 
track the motion of both tools and the endoscope; all meas-
ured motions were transformed to be relative to the coordi-
nate frame shown in Fig. 1. A trakSTAR sensor (Model 130) 
was attached 2.5 cm from the tip of each laparoscopic tool 
aligned with the shaft, and an additional sensor was attached 
to the surface of the endoscope lens at a 30° angle from 
the shaft. The electromagnetic transmitter emits a magnetic 
field that each trakSTAR sensor measures to resolve all six 
degrees of freedom: three translational degrees of freedom 
(moving left/right, TX; moving forward/backward, TY; and 
moving up/down, TZ) as well as three rotational degrees of 
freedom (tilting up/down, RX; rotating around the tool axis, 
RY; and bending left/right, RZ). The position and orientation 

of all three sensors are measured with the resolutions of 
1.4 mm and 0.5° at a rate of approximately 20 Hz.

Mounting the magnetic motion sensors directly on the 
metallic surface of each instrument’s shaft resulted in poor 
signal quality; adding a layer of rubber heat-shrink tubing 
beneath the sensor improved the signal quality to the recom-
mended level. A thin layer of electrical tape and an outer 
layer of heat shrink were used to fasten the magnetic sensor 
and wiring rigidly to each tool. Furthermore, the table on 
which the box trainer rests is metallic, which was found to 
distort the motion tracking somewhat. However, we wanted 
to use this table rather than a non-metallic table of fixed 
height to allow each participant to adjust the setup for proper 
ergonomics. Thus, we placed a 7.6-cm-thick block of foam 
between the adjustable metal table and covered it with a thin 
piece of wood to which the box trainer was then mounted.

In addition to tool tip motion, we wanted to record each 
instrument’s final degree of freedom: opening and closing of 
the handle, which controls grasping motion and forces. It is 
important that this sensor does not impede normal tool use 
and movement during the task. For this application, a 5.6-cm-
long flex sensor (Spectra Symbol SEN-10264) was fastened 
to the inside of the handle of each tool using electrical tape, 
as shown in Fig. 3. The resistance of the flex sensor increases 
as it bends, enabling us to measure grip angle. The two cor-
responding analog voltages were sampled by an Arduino 
Uno (ATmega328P) microcontroller and communicated to 
the computer via universal serial bus (USB) at 20 Hz.

Calibration

The tool-mounted trakSTAR sensors were calibrated before 
the study to identify the location of the instrument tip rel-
ative to the position and orientation of the sensor on the 
instrument shaft. Calibration was checked after every five 
participants or so to verify that the heat-shrink tubing kept 
each sensor rigidly attached. A previously developed device 
[28] was adapted to perform calibration, as shown in Fig. 4. 
The calibration rig was rigidly attached to the wood table 
surface directly to the left of the box trainer and within the 
range of the trakSTAR transmitter. Circular disks were 
placed in the rig to steady each tool during the calibration 
procedure, and the tool was fastened into the rig using a 
strap. The rig keeps the tool tip stationary as the user rotates 
the handle to many different positions and orientations. We 
recorded 30 s of such motion, and a hemisphere was then 
fit to the recorded positions of the sensor. A distance vector 
from any point on the hemisphere to the center represents 
the displacement from the sensor to the tip of the instru-
ment, and the recorded orientation of each sensor pose on 
the hemisphere was used to calculate the orientation of the 
sensor relative to the instrument shaft. The results of calibra-
tion matched up well with direct measurements.

Fig. 3   Each instrument shaft is equipped with a magnetic motion-
tracking sensor, and each handle with a flex sensor. A Karl Storz 
CLICKline® with Dissect/Grasp forceps tip (Maryland) and B Karl 
Storz Ultramicro Needle Holder (needle driver)
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Each flex sensor was calibrated prior to every subject’s 
first trial to account for any slight changes in its measure-
ments. For the Maryland, calibration involved holding the 
tool open for 5 s followed by holding it fully closed for 5 s. 
Calibration of the needle driver involved holding the tool 
open, closed without engaging the ratchet, and fully ratch-
eted closed for 5 s each. The voltages measured during these 
calibration activities were used to convert flex sensor volt-
ages to grip angles for each trial.

The trakSTAR sensor on the endoscope was calibrated 
before the study began to determine the camera’s field of 
view. The basic premise for this calibration was the least 
squares fitting of a cone to the field of view. A circle of 
known radius was printed on a sheet of paper and fastened 
to a piece of cardboard. The circle was then held at two dif-
ferent distances away from the camera parallel to the lens, 
and a separate trakSTAR sensor was used to trace the circle 
at each of these distances. The camera’s viewing axis was 
estimated by holding the free sensor in the center of the 
field of view. The positions of the two traced circles and the 
estimated axis were used calculate the size, position, and 

orientation of the viewable cone relative to the sensor on the 
endoscope. The resulting geometry corresponded well with 
direct measurements.

User interface

All data were recorded, timestamped, and saved using 
MATLAB version 2016a (The MathWorks). The software 
we created allows the user to calibrate the sensors, enter 
information about the participant, and set up data recording. 
A screenshot of the interface is shown in Fig. 5. A foot pedal 
on the ground and red light-emitting diodes (LEDs) in the 
box trainer were used for controlling data recording.

Recruitment of subjects

Study procedures were reviewed by the CHOP Institutional 
Review Board (IRB). The IRB determined the study to be 
exempt from further review due to its educational nature, the 
fact that no patients were enrolled or involved, and the lack 
of compensation for participants. Subjects were recruited 
from the University of Pennsylvania Hospital System and the 
Children’s Hospital of Philadelphia. Recruitment methods 
included word-of-mouth, e-mail, and verbal announcement 
during educational sessions in the Pediatric Endoscopic Sur-
gical Training and Advancement Laboratory (PEDESTAL). 

Fig. 4   The device used to calibrate the placement of the trakSTAR 
sensors on the instruments. During use, the tool tip is inserted into 
the white mount, and the tool shaft is strapped to the vertical portion, 
which can rotate to all angles via a spherical joint centered around the 
tool tip

Fig. 5   Graphical user interface
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Medical students, surgical residents, and surgical fellows 
with experience in laparoscopic surgery were asked to par-
ticipate; a total of 32 subjects were enrolled in the study. 
Table 1 shows the demographics of the recruited pool of 
participants.

Task and procedure

Participants first watched an un-narrated but visually anno-
tated video of ideal task performance by an expert; a nar-
rated copy of this video is included with this article. The 

subject was then asked to use the custom box trainer to tie 
one double-throw knot followed by two single-throw knots 
with an 8-cm-long 2.0 Ethibond suture on an RB-1 needle 
to close the incision in the simulated bowel. Clarification 
was allowed prior to data recording, but no instruction or 
clarification was allowed once the first trial was initiated. A 
member of the study team placed the suture directly on top 
of the pre-cut artificial tissue and instructed the subject to 
grasp the needle prior to starting the trial. Video recording 
began when the subject first held the tools. The subject was 
instructed to tap the start pedal when he or she was ready 
to begin the task, which triggered the computer to begin 
recording data from all sensors. Illumination of LEDs inside 
the box trainer indicated that data collection had begun. Par-
ticipants were not observed during the task in order to pre-
vent later rating bias. Data acquisition ended and the LEDs 
turned off when the subject tapped the pedal a second time. 
Trials were capped at 10 min, and data acquisition was auto-
matically terminated at that time for subjects who had not 
yet completed the task. All but one participant attempted the 
task twice, with a brief break between trials. Figure 6 shows 
a still frame from a sample performance video. In total, 63 
trials were recorded.

Video review and OSATS ratings

The skill assessment scores used in this study were on a scale 
from 1 to 5 in each of five categories taken from the OSATS 
inventory [29]. The chosen categories included Respect for 
Tissue (how appropriately the trainee handled tissue), Time 
and Motion (economy and efficiency of movement), Instru-
ment Handling (fluidity of instrument movements), Flow 
of Operation (fluidity with which task was completed), and 
Knowledge of Specific Procedure (measure of whether all 

Table 1   Participant demographics. One subject completed only one 
trial, and the rest did two. Several participants had experience with 
more than one task requiring bimanual dexterity

Number of participants 32
Number of trials recorded 63
Age in years
 1st quartile: 24–27 9
 2nd quartile: 28–29 8
 3rd quartile: 30–31 7
 4th quartile: 32–36 8

Gender
 Female 17
 Male 15

Level of training
 Medical student 6
 Resident 21
 Fellow 5

Number of laparoscopic procedures performed in the month prior 
to trial

 0 7
 > 0 and ≤ 10 8
 > 10 and ≤ 50 12
 > 50 and ≤ 100 3
 > 100 2

Surgical glove size
 5.5 2
 6 5
 6.5 9
 7 11
 7.5 4
 8 1

Handedness
 Left handed 0
 Right handed 31
 Ambidextrous 1

Experience with tasks requiring manual dexterity
 Sports 3
 Musical instruments 15
 Video games 6
 None 11

Fig. 6   Frame from a sample video of the task, showing the visibility 
of the tools in the foreground, the typical camera view quality, and 
LEDs illuminated in the background, which indicate that the trial data 
are being recorded
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steps were completed). The Use of Assistants and Knowl-
edge of Instruments OSATS domains were excluded from 
analysis because they are not relevant for an unassisted task 
that uses the same instruments throughout.

All recorded videos were de-identified and randomized 
prior to review. Only the segment of the video where the 
LEDs were illuminated was viewed and rated. A surgical 
research fellow was trained by an attending surgeon and 
then assigned five scores for each trial, yielding a total of 
315 ratings. These scores are the ground-truth labels for our 
machine learning pipeline, which seeks to rate surgical skill 
based on only the recorded motion data. The five categorical 
ratings were turned into two scores for each trial, one being a 
sum of the scores in the five categories and the other being a 
rounded average of the scores in the five categories.

Analysis of motion parameters

We sought to reduce the time-varying motion data recorded 
in each trial to a smaller set of meaningful values for further 
analysis. Raw motion data were filtered using a fourth-order 
two-way low-pass Butterworth filter with a cutoff frequency 
of 6 Hz to eliminate noise. The data were then re-sampled to 
exactly 20 Hz to account for any small differences in sam-
pling frequency between trials. 280 motion analysis features 
(MAFs) were designed and then computed for each trial. 
Motion analysis was split into several categories based on 
the sensor from which the MAF was derived. These catego-
ries included trial time (T), linear and angular tool tip motion 
(M), tool tip visibility (V), and grip angle (G).

Time MAFs included the duration of the trial as well as 
the square, square root, inverse, and squared inverse of this 
value. Linear and angular tip motion features were derived 
directly from the position and orientation of each instrument. 
Features in these two categories were further divided into 
the subcategories of path length, velocity, and acceleration 
overall and in each Cartesian direction. Velocity and accel-
eration categories were further divided into instantaneous 
and average subcategories. For each of the instantaneous 
subcategories, features included maximum and minimum 
instantaneous values, range of instantaneous values, and 
average values. Tool tip visibility MAFs included the ratio of 
time that each instrument spent within the camera view ver-
sus outside of the camera view. Grip angle features include 
the number of instantaneous peaks, instantaneous velocity of 
grip flexion, and instantaneous acceleration of grip flexion 
for each tool. For completeness, the calculated MAFs are 
summarized in Table 2.

Calculation of this full set of 280 MAFs took an average 
of 13.29 s on a 2011 MacBook Pro with a 2.3 GHz Intel Core 
i5 processor and 4 GB of RAM. Calculation of the 247 tip 
motion MAFs was the most time-intensive, taking 12.43 s. 
In comparison, calculating the five time MAFs took 0.03 s, 

calculation of the 8 tool tip visibility MAFs took 0.33 s, and 
calculation of the 20 grip angle MAFs took 0.57 s.

Statistical analysis

Six models were created to predict summed OSATS score 
based on the following different subsets of MAFs:

•	 Model T: time MAFs
•	 Model TG: time and grip MAFs
•	 Model TM: time and tip motion MAFs
•	 Model TMV: time, tip motion, and tool visibility MAFs
•	 Model TMG: time, tip motion, and grip MAFs
•	 Model TMVG: time, tip motion, visibility, and grip 

MAFs

Prior to analysis, the feature space of the training set 
was standardized by subtracting the mean and dividing by 
the standard deviation of each MAF. Each model was then 
trained to predict the sum of the five 5-point scores given 
by the human rater based only on these standardized motion 
features. As 280 features is a high number, the least abso-
lute shrinkage and selection operator (LASSO) elastic net 
technique [30] was used to mathematically identify the most 
relevant features in the training set for each of the six predic-
tive models. The resulting smaller set of features was used 
to train a regression tree model for each OSATS category. 
To create models that can generalize more effectively to data 
from new participants, we used leave-one-subject-out cross-
validation. Each model is trained and optimized on the data 
from all but one subject, and its performance is then evalu-
ated on the reserved trials, a process that repeats across all 
subjects to yield a performance average based on all col-
lected data. We examine both summed score and rounded 
average score.

For each way of predicting a trainee’s score, we report 
six accuracy metrics; each metric varies from 0 to 1, with 
1 being best. For summed score, we report the proportion 
of test trials for which the model predicted a score within 2 
points of the reviewer-generated score; for example, a trial 
that received a summed rating of 15 would need to be given 
a 13, 14, 15, 16, or 17 to be counted as correct according 
to this measure. As a similar but more lenient metric, we 
next report the proportion of trials for which the predicted 
summed score fell within 4 points of the actual score. Third, 
we calculated the Pearson product-moment correlation coef-
ficient between the actual and predicted summed scores. For 
rounded average scores, we report the proportion of test tri-
als that were rated with exact accuracy (error of 0 points), as 
well as the proportion that fell within 1 point on the 4-point 
scale. Finally, we present the correlation between actual and 
predicted rounded average scores.
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Table 2   Motion analysis 
features (MAFs)

Sensor type Motion analysis features

Time (calculation time: 0.03 s) Total trial time
Inverse of trial time
Inverse square of trial time
Square of trial time
Square root of trial time

Tool tip visibility (calculation time: 
0.33 s)

Time inside camera view
Time outside camera view
Time visible/(time visible + time not visible)

Grip (calculation time: 0.57 s) Velocity
 (Peaks ≥ 5°/s)/trial time
 (Peaks ≥ 10°/s)/trial time
 (Peaks ≥ 20°/s)/trial time
 Time v = 0
 Time v > 0
 Time v = 0/(time v = 0 + time v > 0)
Acceleration
 (Peaks ≥ 100°/s2)/trial time
 Time a = 0
 Time a > 0
 Time a = 0/(time a = 0 + time a > 0)

Tip motion (calculation time: 12.43 s) Linear path
 X, Y, and Z path lengths (for each tool)
 Total path length (for each tool)
 Path range (for each tool)
 Ratios of values from each tool
Angular paths
 Roll, elevation, and azimuth angular path lengths (for each tool)
 Total angular path length (for each tool)
 Angular path range (for each tool)
 Ratios of values from each tool
Average linear speed
 Vxa, Vya, and Vza (for each tool)
 Total average speed (for each tool)
 Ratios of values from each tool
Instantaneous linear velocity
 Vxi, Vyi, and Vzi (for each tool)
 Max, min, and std. dev. of each value (for each tool)
 Ratios of values from each tool
 (Peaks ≥ 2 cm/s)/trial time
 (Peaks ≥ 5 cm/s)/trial time
 (Peaks ≥ 10 cm/s)/trial time
 (Peaks ≥ 100 cm/s)/trial time
Average angular speed
ωxa, ωya, and ωza (for each tool)
 Total average speed (for each tool)
 Ratios of values from each tool
Instantaneous angular velocity
ωxi, ωyi, and ωzi (for each tool)
 Max, min, and std. dev. of each value (for each tool)
 Ratios of values from each tool
 (Peaks ≥ 1°/s)/trial time
 (Peaks ≥ 10°/s)/trial time
 (Peaks ≥ 20°/s)/trial time
 (Peaks ≥ 200°/s)/trial time
Average linear acceleration
 axa, aya, and aza (for each tool)
 Total average speed (for each tool)
 Ratios of values from each tool
 Ratios of values from each tool
Instantaneous linear acceleration
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Two simple control models were also created for com-
parison with our regression-based methods. The first model 
guessed randomly, which is expected to perform poorly, and 
the second predicted the median observed score on every 
trial, which is expected to perform only slightly better. Each 
of the six metrics described above was also calculated for 
these models, except that by definition one cannot calculate 
a correlation for the median model because its output does 
not vary.

Results

OSATS ratings

The blinded expert reviewer rated each recorded trial video 
on five OSATS domains using the standard 1–5 scale; how-
ever, the rater identified no trials that merited a 5 in any cat-
egory, presumably because no attending surgeons took part 
in this study. The five resulting ratings from 1 to 4 were then 
summed to generate a total skill score that ranges from 5 to 
20. The distribution of these summed scores for all 65 trials 
is shown in the top half of Fig. 7. The mode of the summed 
scores was 5 out of 20 (n = 8), and the median was 14. We 
also calculated each trial’s average integer OSATS score by 
dividing the summed score by 5 and rounding; the resulting 
score distribution is shown in the bottom half of Fig. 7. The 
mode of the rounded average scores was 3 (n = 21), and the 
median was also 3. To help validate these ratings, we also 
examined their distribution for each training level, as shown 
in Table 3. The mean and standard deviation rounded aver-
age OSATS scores were 1.33 ± 0.49 for medical students, 
2.93 ± 0.49 for residents, and 3.60 ± 0.52 for fellows.

One participant completed only a single repetition of the 
simulated pediatric suturing task, earning a summed score 
of 5, which corresponds to an average OSATS score of 1. 
The rest of the subjects (n = 31) completed two trials of 
the task, so we can examine the trends in their individual 

Table 2   (continued) Sensor type Motion analysis features

 axi, ayi, and azi (for each tool)
 Max, min, and std. dev. of each value (for each tool)
 Ratios of values from each tool
 (Peaks ≥ 10 cm/s2)/trial time
 (Peaks ≥ 100 cm/s2)/trial time
 (Peaks ≥ 1000 cm/s2)/trial time
  (Peaks ≥ 10,000 cm/s2)/trial time
Average angular acceleration
αxa, αya, and αza (for each tool)
 Total average speed (for each tool)
 Ratios of values from each tool
Instantaneous angular acceleration
αxi, αyi, and αzi (for each tool)
 Max, min, and std. dev. of each value (for each tool)
 Ratios of values from each tool
 (Peaks ≥ 50°/s2)/trial time
 (Peaks ≥ 100°/s2)/trial time
 (Peaks ≥ 1000°/s2)/trial time
 (Peaks ≥ 10,000°/s2)/trial time
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Fig. 7   OSATS scores generated by the blinded expert video reviewer 
for all 63 trials. Top: summed scores, bottom: rounded average scores
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scores. Figure 8 shows the reviewer-generated score of 
each subject’s first trial plotted against the score assigned 
to the same subject’s second trial. The Pearson product-
moment correlation coefficient between these two metrics 
is R = 0.89, indicating a high correlation. Five participants 
(16.1%) showed a slight decrease in performance on the 
second trial, four (12.9%) had no change in performance, 
and 22 (71.0%) improved their summed score. Individuals 
who first scored at either the bottom or the top of the range 
tended to earn a similar score on the second trial. In con-
trast, subjects who first earned between 10 and 15 out of 20 
showed the most improvement.

Automatic scoring performance

A combination of regularized least squares regression 
(LASSO) and regression trees was used to create models 
that can predict the summed OSATS score of a previously 
unseen trial using only the data recorded from our instru-
mented box trainer. We label the four employed sensors 
as the trial completion timer (T), the two flex sensors that 
measure the grip angle of the instrument handles (G), the 
magnetic motion tracking of the instrument tips (M), and 
the visibility of the instrument tips to the camera (V). We 
explored the relative contributions of these different sensors 
by creating six regression models using different combina-
tions of the 280 total features, yielding T, TG, TM, TMV, 
TMG, and TMVG models.

As described in the previous section, each regression tree 
model was trained 32 separate times, always leaving out the 
data from one subject. The six models were all optimized 
to achieve the best possible performance on the training set 
data through cross-validation. We also report results from 
the random model, which guesses a summed score from 
5 to 20 with uniform probability, and the median model, 

Table 3   Distribution of rounded average OSATS scores for the three 
groups of trainees who participated in the study

Level of training 1 2 3 4 Mean ± std. dev.

Medical students (12 trials) 8 4 0 0 1.33 ± 0.46
Residents (41 trials) 1 12 17 11 2.93 ± 0.49
Fellows (10 trials) 0 0 4 6 3.60 ± 0.52
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Fig. 8   Relationship between first trial summed score and second summed trial score for all subjects who completed two trials (n = 31)



1850	 Surg Endosc (2018) 32:1840–1857

1 3

which always guesses the median score (14 out of 20 for 
summed and 3 out of 5 for average). Table 4 shows the aver-
age performance of these eight model types on the training 
data. All of the regression models achieved good results on 
the training data, even the simplistic Model T. But to test 
our approach’s ability to rate data from new trials, each of 
the resulting models was then used to predict scores for its 
respective omitted trials (the testing set), and the results 
were averaged across subjects. Table 5 reports the results 
achieved by the eight models for predicting summed as well 
as rounded average OSATS scores on the testing data.

As expected, the random model performed worst on all 
metrics for both training and testing. The somewhat more 
intelligent median model performed consistently worse than 
all six of the machine learning models, with only two excep-
tions: the testing accuracy of Model TM was worse than 
that of the median model on both of the more lenient accu-
racy metrics (predicting summed score within 4 points and 
rounded average score within 1 point). Of the six regression 
models, the one that tested worst was Model TM, which 

estimates the score using only the task completion time and 
the tool tip motion features.

At the other end of the spectrum, the model with the best 
performance on all six testing accuracy metrics was Model 
TMVG, which uses features from all four sensor types to 
estimate the score for a given trial. It predicted a summed 
score that was within 4 points of the reviewer’s summed 
score 89% of the time, and its rounded average scores were 
always within 1 point of the true label. The correlation 
between the reviewer’s scores and those of this predictive 
model was 0.85 for both score types.

Despite the relatively poor performance of the model that 
considered only time and tip motion data, the second best 
performing model behind TMVG was Model TMV, which 
added just eight tool visibility features to the set available to 
Model TM. This model estimated a summed score within 4 
points of the reviewer-generated score 83% of the time, and 
its rounded average score was within 1 point of the review-
er’s score 97% of the time. After Model TMV, the next 
best performing model overall was Model TG, which used 
only time and grasp angle features. This model especially 

Table 4   Averaged automatic 
scoring performance for the 
eight models on the training 
data

The abbreviations indicate which features are included in each model: T time, G grip angle, M tip motion, 
and V tool visibility. NaN signifies “not a number” and occurs because correlation with a constant rating is 
undefined

Model Summed scores Rounded average scores

± 2 Accuracy ± 4 Accuracy Correlation ± 0 Accuracy ± 1 Accuracy Correlation

Random 0.28 0.47 < 0.01 0.27 0.69 0.01
Median 0.35 0.62 NaN 0.33 0.86 NaN
T 0.97 1.00 0.91 0.88 1.00 0.86
TG 0.95 0.99 0.95 0.86 1.00 0.92
TM 0.98 1.00 0.96 0.88 1.00 0.93
TMV 0.94 0.99 0.98 0.85 1.00 0.94
TMG 0.89 0.99 0.97 0.84 1.00 0.93
TMVG 0.77 0.98 0.98 0.73 1.00 0.94

Table 5   Averaged automatic 
scoring performance for the 
eight models on testing data 
from participants whose data 
were not used during training

The abbreviations indicate which features are included in each model: T time, G grip angle, M tip motion, 
and V tool visibility. NaN signifies “not a number” and occurs because correlation with a constant rating is 
undefined

Model Summed scores Rounded average scores

± 2 Accuracy ± 4 Accuracy Correlation ± 0 Accuracy ± 1 Accuracy Correlation

Random 0.24 0.48 < 0.01 0.25 0.68 0.03
Median 0.35 0.62 NaN 0.33 0.86 NaN
T 0.52 0.78 0.69 0.44 0.94 0.69
TG 0.52 0.68 0.68 0.54 0.95 0.68
TM 0.46 0.60 0.42 0.38 0.81 0.42
TMV 0.59 0.83 0.78 0.51 0.97 0.78
TMG 0.54 0.70 0.59 0.49 0.89 0.60
TMVG 0.71 0.89 0.85 0.59 1.00 0.85
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benefited from the class boundaries, predicting rounded 
average score within 1 point 95% of the time.

The performance of each model was also visually evalu-
ated through the creation of four-by-four confusion matri-
ces, as shown in Fig. 9. These plots illustrate how the auto-
matically generated rounded average ratings compare to the 
reviewer-generated scores in each category for the testing 
sets; perfect performance would entail that all trials fall 
along the main diagonal. These plots show that Models T 
and TM have the widest distribution of scores, while the 
high-performing Model TMVG shows the best score dis-
tribution, with no errors greater than 2 points. All of the 
sensor-and-regression-based models seem moderately suc-
cessful at identifying trials that deserve a rating of 1, but 
distinguishing between 2’s, 3’s, and 4’s appears to be more 
challenging.

Features selected

While up to now we have been focusing on the accuracy 
achieved when using different types of sensor data to rate 
surgical skill, the regression models also contain important 
information about the aspects of the data that were most 
important for the rating. Namely, each model selected a dif-
ferent subset of features for the final regression tree analy-
sis. Table 6 provides the number of each type of feature 
employed in each model, as well as the total number of avail-
able features in each category. Because of the low dimen-
sionality of their feature spaces, Models T and TG selected 
all and nearly all of their available features, respectively. In 
contrast, Models TM and TMV selected the highest num-
bers of features (over 100). While the addition of visibility 
features increased the number of features selected for Model 
TMV, the addition of grasp angle features slightly decreased 
the number of features selected in Model TMG. Of the mod-
els that involve tool tip motion, Model TMVG selected the 
fewest features. With the exception of one feature in Model 
TMV, Models TM, TMV, TMG, and TMVG included none 
of the features based on task completion time.

Of the eight possible visibility features, the three that 
were selected by both TMV and TMVG included the time 
that the needle driver was within the camera frame, the ratio 
of the time the needle driver was in frame over the total 
time in the trial, and the ratio of time that the needle driver 
was out of frame over the total time in the trial. While these 
same features appear for the Maryland grasper in Model 
TMV, they are not used within Model TMVG. Looking fur-
ther into the selected features, we found that all models that 
included grip angle data selected features that consider the 
ratio between the amounts of time each handle was engaged 
versus held stationary. Additionally, these models tended to 
select features that analyzed the number of peaks in the grip 
angle velocities.

The tip motion features (M) are divided into ten sub-
categories, including linear path, angular path, average 
linear speed, average angular speed, instantaneous linear 
velocity, instantaneous angular velocity, average linear 
acceleration, average angular acceleration, instantaneous 
linear acceleration, and instantaneous angular accelera-
tion. The models that utilized tip motion data (TM, TMV, 
TMG, TMVG) selected features from all ten subcatego-
ries. In contrast, Model TMVG used fewer features from 
each subcategory, with the largest number of features 
coming from the angular acceleration subcategory. Mod-
els TM, TMV, and TMG selected more features related to 
path length in each direction compared to Model TMVG, 
with Models TM and TMV selecting the most path-
length-related features of the four. These three models 
also relied more heavily in general on individual features 
for each tool, whereas Model TMVG more heavily relied 
on features that took the ratio of values between the two 
tools.

Best model features

Finally, we examined the features chosen for the top-per-
forming Model TMVG to glean insights into which types 
of instrument movements may most closely relate to skill 
at the studied task. Model TMVG selected seven features 
in the linear path tip motion subcategory, including three 
features related to linear path in the y direction (in–out 
motion), two in the z direction (up–down motion), one in 
the x direction (left–right motion), and one for total path 
length. Five of these features represented ratios or summa-
tions of values from both tools, while the remaining two 
were related to Maryland movement in the y and z direc-
tions. Each direction of rotation was approximately evenly 
represented in the seven features selected from angular 
path, with rotation around the x-axis (tilting the tool up 
and down) being represented in three features. Similar to 
path length, five of these features represented ratios or 
summations of values from both tools, with the remaining 
two being related to Maryland rotation around the y-axis 
(approximately rotation about the shaft of the tool) and 
needle driver rotation around the x-axis (tilting the tool 
up and down).

Four features were chosen from the average linear 
velocity subcategory, with one feature related to each 
direction and the last feature related to the average speed 
overall. Of these four selected features, two gave ratios 
between the tools, and the remaining two were related to 
average velocity in the x and y directions for the Mary-
land. Four angular velocity features were also selected 
for the final model, and these features did not include 
any values related to the average rate of change of rota-
tion around the x-axis (tilting the tool up and down). 
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Fig. 9   Confusion matrices for the six models generated from motion 
data. The abbreviations indicate which features are included in each 
model: T time, G grip angle, M tip motion, and V tool visibility. Each 
cell represents the number of testing trials predicted to have the score 

in the column divided by the total number of trials given the score in 
that row by the reviewer. The color intensity of each cell is propor-
tional to the value of the cell on a scale from 0 to 1
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Rate of change of the angle around the y-axis (rotation 
approximately about the instrument shaft) was selected 
as an important feature for both the Maryland and the 
needle driver.

Features related to the instantaneous linear and angular 
velocity of each tool represented 12 and 11 features in the 
final TMVG model, respectively. The number of features 
related to movement in each direction was relatively equal 
in the case of instantaneous linear velocity, while most 
features chosen from the available instantaneous angular 
velocity options represented rotations around the z-axis 
(bending instruments left and right). In both cases, many 
features generated by peak analysis were chosen for the 
final model.

Only two features were selected from the average linear 
acceleration subcategory, including the ratio of the average 
acceleration in y for both tools and the ratio of the average 
acceleration in z for both tools. The only feature selected 
from the average angular acceleration subcategory was the 
ratio of the average accelerations about the y-axis (rotating 
approximately around the axis of the tool).

Of the ten tip motion subcategories, the instantaneous 
linear and angular acceleration categories contributed the 
most features to the final model. Instantaneous acceleration 
in the y direction was best represented in the linear accelera-
tion subcategory, with seven features contributed; x and z 
linear accelerations contributed three features each. Angular 
accelerations about the x-axis and the y-axis contributed six 
features each to the final model, and angular accelerations 
about the tool z-axis contributed three.

Eight features related to grip motion were selected for 
the final model, including three features generated from 
peak analysis of Maryland velocities, the ratio of non-
zero to zero velocity and acceleration in both tools, and 
one feature generated from peak analysis of needle driver 
acceleration. The last three features selected for the TMVG 
model were related to the visibility of the needle driver in 
the workspace.

Discussion

The results of the study enable us to evaluate the strengths, 
weaknesses, and limitations of the proposed approach, as 
well as its potential utility in surgical training. The summed 
OSATS scores given by the blinded expert rater ranged from 
5 to 20, yielding rounded averages from 1 to 4. Resident tri-
als earned a wide variety of ratings, with rounded average 
scores ranging from 1 to 4, while all medical student trials 
received rounded average scores of 1 or 2 and all fellow 
trials received scores of 3 or 4. These results closely fol-
low our expectations for performance at each training level 
and provide a level of validation to the scores given by our 
expert rater. Additionally, the variability of scores received 
by subjects in each group, especially the residents, shows 
that skill and level of training are not perfectly correlated.

Most of the 31 participants who completed two trials 
improved their summed score on the second try, as would be 
expected due to learning. The five subjects whose summed 
score decreased on the second attempt dropped at most 2 
points, which is 12.5% of the 16-point range. For the most 
part, the differences between scores decreased with increas-
ing first trial score, showing more consistent performance at 
the higher levels of skill. Again, these trends help validate 
our expert ratings and simultaneously underline the impor-
tance of evaluating a particular task performance rather than 
the trainee.

The six predictive models created from the motion data 
performed better on previously unseen trials than both the 
random and median prediction models with the exception of 
Model TM, which performed slightly worse than the median 
model when predicting summed score within 4 and rounded 
average score within 1. Models TMV and TMG both per-
formed better than Model TM in all measures of accuracy, 
showing that the visibility and grip features added important 
information that was not provided by the tip motion data. 
This notion is further validated by the fact that the best per-
forming model was Model TMVG, which utilized features 
from all four types of sensors.

We were especially surprised to find that Model TM 
exhibited the worst performance of the six tested models, as 
task completion time and tip motion are known to pertain 
closely to surgical skill. Upon further inspection, we found 
that this model had some of the highest accuracies and cor-
relations on the training data but the largest decrease in per-
formance from training to testing. These two facts lead us to 
believe that this model was overfitting to the training data, 
making it less generalizable for future trials.

Model TMVG was superior to all five of the other devel-
oped models when rating trials from a subject whose data 
were not used in training. In addition to having the high-
est accuracies and correlations, this model also had the 
best agreement between training and testing performance. 

Table 6   Number of features included in each model out of the total 
number of features available in that category

The abbreviations indicate which features are included in each model: 
T time, G grip angle, M tip motion, and V tool visibility. A hyphen 
appears when a given model does not employ sensor data of the spec-
ified type

Model Overall Time Motion Visibility Grasp

T 5/5 5/5 - - -
TG 24/25 5/5 - - 19/20
TM 101/252 0/5 101/247 - -
TMV 107/260 1/5 100/247 6/8 -
TMG 95/272 0/5 89/247 - 6/20
TMVG 97/280 0/5 77/247 3/8 7/20
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This model was the only model of the six that predicted 
all rounded average scores within 1 point of the reviewer-
generated scores. Additionally, this model was the most con-
sistent in terms of correctly classifying each score, whereas 
other models correctly classified some scores with much 
more consistency than others. For example, Model T was 
able to correctly classify rounded average scores of 1 with 
an accuracy of 0.78, but it classified scores of 2 with an 
accuracy of only 0.19.

Gaining insight into the characteristics of movement 
that distinguish between different surgical skill levels was 
of particular interest to our group. Several previous stud-
ies [31–33] have used task completion time as a predictive 
feature when comparing novice and intermediate surgeons 
to experts. Interestingly, our best model did not select any 
features based solely on task completion time, which shows 
that completion time is not necessarily predictive when 
evaluating surgeons on a finer scale. Upon broad inspection 
of the features selected by each model, we found that more 
features of the Maryland motion were selected compared to 
the number of features calculated from needle driver motion. 
This emphasis is likely related to bimanual dexterity and 
handedness, since 31 of the 32 subjects were right handed, 
and they all held the Maryland in their left hand.

Broad inspection of the models also showed that the 
addition of visibility and/or grip features to the TM model 
decreased the number of tip motion features selected. Fur-
ther, the TM model’s tip motion features mostly relate to the 
movements of the individual tools, whereas Models TMV, 
TMG, and TMVG mainly employ tip motion features that 
compare motion between the two tools. Adding information 
from the camera motion sensor and the grip angle sensors 
seems to elucidate which tip motion features are redundant 
and generally increase the generalizability of the TM model.

A more detailed inspection of the features chosen for the 
TMVG model reveals that the visibility of the needle driver 
in the camera view is important in evaluating skill, whereas 
Maryland visibility is not as predictive. This result is again 
likely related to handedness and bimanual dexterity, as the 
Maryland was held in the non-dominant hand of our mostly 
right-handed participants: less skilled surgeons move their 
non-dominant hand less than their dominant hand, causing 
the Maryland to stay in frame by default. The grip features 
selected included several values related to changes in the 
grip velocity and grip acceleration for the two tools. The 
feature that counts the number of extreme changes in needle 
driver grip angle acceleration divided by the total trial time 
was of particular interest, as trainees who received rounded 
average scores of 1 tended to move the needle driver grip 
abruptly compared to the more fluid movements of the sur-
geons with higher skill.

Model TMVG selected 77 tip motion features, which was 
the smallest number of tip motion features used by any of the 

four models that use tip motion data. Of the 10 subcategories 
of tip motion, instantaneous angular acceleration was the 
most well represented in the best model. Most of these fea-
tures were related to rotations of the instrument around the 
shaft of the tool and up and down in the box. We speculate 
that this first type of feature was predictive because rotat-
ing around the tool shaft feels natural in the environment of 
the box trainer, perhaps causing less experienced surgeons 
to overuse this movement. On the other hand, rotating the 
tool up and down feels less natural and thus may be more 
challenging for novice surgeons. Other categories of features 
used in this model pertain to instrument acceleration in and 
out of the box, which probably relates to depth perception, 
and to various instrument velocities and path lengths, which 
we believe are correlated with economy of motion.

This study has a number of strengths compared to previ-
ous studies and standards of training. First, our dataset was 
labeled with blinded ratings of each task performance rather 
than broader assessments of the subject’s level of training 
or past experience. The variations in score between trainees 
at the same level and even within individual subjects pro-
vide validation of the wisdom of this method. Rating skill 
automatically through motion analysis is also much faster 
than having a human rate each performance. While a com-
puter can analyze an entire motion recording in a matter of 
seconds, the time that a rater takes to review a performance 
is always on the order of the length of the trial, requiring a 
significant human resource cost and burden to senior phy-
sicians. Relatedly, ratings done by a computer are purely 
mathematical and based on computed differences between 
skill levels rather than subjectively based on an expert opin-
ion. Further, unlike a human rater, a computer is not biased 
by presentation order or trainee identity, and it can rate each 
performance without getting bored and without directly 
comparing to the trial presented immediately before the 
current trial.

We were also able to expand the characterization of sur-
gical skill to include information about tool visibility and 
grip angle. Adding visibility parameters added relatively lit-
tle financial cost (about 500 USD for an additional sensor) 
compared to the total cost of the motion-tracking system 
(about 4000 USD) as well as minimal computational cost 
(calculation time: 0.33 out of 13.29 s). Similarly, adding 
flex sensors to the handles added little financial cost (about 
50 USD for two sensors and associated circuitry) as well as 
minimal computational cost (calculation time: 0.57 out of 
13.29 s). As discussed above, information from both of these 
sensor streams significantly improved skill prediction, so 
other researchers should consider incorporating such sensors 
into their setups.

Our approach to modeling surgical skill is both flexible 
and extendable due to the infinite number of features that can 
be created from the motion data. By extension, the ability 



1855Surg Endosc (2018) 32:1840–1857	

1 3

of this model to adapt to different numbers and types of 
features opens the door to giving each subject more granu-
lar feedback about their performance than can typically be 
provided by human raters in dry-lab settings. Using LASSO 
to automatically select the features that correlate best with 
human ratings, we provide a framework for back-tracking to 
the finer motions and techniques that make up surgical skill, 
down to the millimeter or degree.

Despite these strengths, the design of our system is com-
plex and includes a number of customized electrical and 
software components that would be difficult for non-engi-
neers to replicate. Additionally, the subjects completed the 
suturing task on inanimate materials rather than in vivo; 
although these components closely mimic a pediatric abdo-
men, they differ from what a surgeon experiences in the 
operating room. Instrumenting the tools with magnetic 
motion sensors also required the removal of metal compo-
nents from the environment of the box trainer to avoid inter-
ference with the signal from the transmitter. Relatedly, the 
sensors were attached externally on the tools, and despite 
the care taken to prevent these sensors from interfering with 
the task, some interference is inevitable due to the small 
size of the box trainer and its tools. Developing our mod-
els also required human ratings, which were time consum-
ing and human resource intensive to acquire. Lastly, while 
feature selection was automated in our algorithm, feature 
creation was a human-resource-intensive manual task. While 
LASSO is able to choose the most mathematically relevant 
features out of a feature set, it is limited to the features that 
are entered as inputs, and better features may be possible.

A number of factors also limited the scope of our study. 
While a range of subjects from varying levels of training 
were recruited, we were limited to the population of surgeons 
at CHOP and the University of Pennsylvania Health System. 
Relatedly, the expert performance for this task was based 
on the technique employed by Dr. Thane Blinman, who is 
responsible for the MIS training program at CHOP. His tech-
nique was not validated by other expert surgeons prior to 
this study. Further limitations arose from the fact that there 
are a limited number of truly expert pediatric minimally 
invasive surgeons, and their time demands proved prohibi-
tive for study participation, with a fixed number of fellows 
per year and a larger number of rotating residents at differ-
ent training levels. Surgeons at another institution would 
likely employ slightly different techniques and might present 
a broader range of skills than the participants included in 
our study, who did not vary significantly in technique used. 
Furthermore, our model was unable to rate rounded average 
scores of 5 due to the lack of participation of any individu-
als at this level of performance, such as attending surgeons. 
An additional limitation arose from the fact that we focused 
our efforts on a single task due to the limited time that each 
subject had available to participate and the fact that machine 

learning methods benefit from large data sets. The study 
was also limited by the fact that trial scores had to be gener-
ated by a human reviewer. We tried to minimize the effect 
of subjectivity in the rater’s scores by summing the scores 
from five OSATS categories and taking the rounded average, 
but different raters may have given different scores. Further, 
despite the fact that videos were randomized, only the tools 
were visible in the videos, and the rater was blinded to the 
identity of the subject, presentation order bias may have 
impacted the scores given to many trials. For example, if 
the previous video showed a particularly poor performance 
and the next was a large improvement, the better video may 
receive a 4, whereas it would have received a 3 if rated on 
its own. Lastly, while we have laid a foundation for giving 
specific, motion-based feedback at the end of each trial, this 
capability has not yet been implemented.

The findings from this research have a number of implica-
tions for MIS training both within and outside of pediatrics. 
Using a system like ours provides methods by which surgical 
training programs may use less direct supervision to train 
surgeons outside of the operating room without hindering 
the learning process. By extension, a box trainer such as 
the one presented allows surgeons to receive feedback every 
time they practice a task, and it can use tools that are identi-
cal to those used in the operating room. Besides providing 
feedback more frequently, using a wide variety of motion-
based features creates the possibility of giving trainees more 
detailed feedback that would allow them to correct finer 
errors in their motions; we are particularly excited about 
the possibility of moving away from giving only numerical 
scores from 1 to 5 and instead providing the trainee with 
quantitatively founded recommendations on how to improve 
skill. If implemented well, this approach could alleviate 
some of the burden of teaching finer surgical movements 
from senior physicians. Lastly, the use of our pediatric box 
trainer addresses the need to create training systems that 
better prepare training surgeons for the more ergonomically 
challenging environment of a pediatric abdomen.

Future applications of this approach are extensive. To 
increase the robustness of our system, our analysis tech-
niques could be expanded to recognize equivalent expert 
techniques from several training programs and hospitals. 
This expansion could possibly be used to identify where a 
surgeon trained or which procedures he or she has practiced 
most. A natural extension from this study would compare 
the training progression for subjects who receive numeri-
cal ratings and standardized feedback from a human rater 
compared to the progression for those who get more detailed 
ratings and feedback from automatic algorithms associated 
with the box trainer. Additionally, a statistical analysis of 
significance can be done to further determine the precise way 
in which each of the selected features contributes to surgical 
skill. Beyond the capabilities of the current system, future 
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applications could be to test the ergonomics and comfort of 
new laparoscopic tools compared to the current standard, as 
well as testing other clinically relevant laparoscopic tasks 
inside of the box. A more complex application would be to 
completely remove the human rater from the models and use 
unsupervised learning methods such as neural networks and 
deep learning to find the natural boundaries between surgical 
skill levels. Finally, a future application that could provide 
even more enhanced feedback is adapting the current algo-
rithm to track the trainee’s performance in real time and give 
feedback throughout the procedure, rather than only at the 
end. Specifically, this application could include the detection 
of phenomena such as ineffective repetitive movements and 
non-dominant hand neglect, two habits of training surgeons 
that we believe may be corrected more easily in real time 
rather than retrospectively.
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