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Cholesterol gallstone disease, one of the commonest digestive diseases in western countries, is induced by an imbalance in
cholesterol metabolism, which involves intestinal absorption, hepatic biosynthesis, and biliary output of cholesterol, and its
conversion to bile acids. Several components of the metabolic syndrome (e.g., obesity, type 2 diabetes, dyslipidemia, and
hyperinsulinemia) are also well-known risk factors for gallstones, suggesting the existence of interplay between common
pathophysiological pathways influenced by insulin resistance, genetic, epigenetic, and environmental factors. Cholesterol gallstones
may be enhanced, at least in part, by the abnormal expression of a set of the genes that affect cholesterol homeostasis and
lead to insulin resistance. Additionally, epigenetic mechanisms (mainly DNA methylation, histone acetylation/deacetylation, and
noncodingmicroRNAs)maymodify gene expression in the absence of an altered DNA sequence, in response to different lithogenic
environmental stimuli, such as diet, lifestyle, pollutants, also occurring in utero before birth. In this review, we will comment
on various steps of the pathogenesis of cholesterol gallstones and interaction between environmental and genetic factors. The
epigenomic approach may offer new options for therapy of gallstones and better possibilities for primary prevention in subjects
at risk.

1. Introduction

Cholesterol gallstone disease is one of the most prevalent and
most costly digestive diseases requiring hospital admission,
since its prevalence ranges from 10% to 15% in adults.Medical
expenses for gallstone treatment exceeded $4 billion in
facility charges in 2004 in theUnited States [1] and rise to $6.5
billion when surgical complications occur [2].The formation
and growth of cholesterol gallstones, which accounts for
75% of the gallstones in westernized countries [3–5], are
secondary to abnormal cholesterol homeostasis [6]. Of note,
the main risk factors for cholesterol gallstone disease (e.g.,
obesity, type 2 diabetes, dyslipidemia, and hyperinsulinemia)
are also well-known components of the metabolic syndrome
[7–11], supporting the hypothesis that gallstone disease is

just another component of the metabolic syndrome [12–14]
(Table 1). Due to the high prevalence of the metabolic syn-
drome, it has been suggested that the phenotype of cholesterol
gallstones may result from the interaction between insulin
resistance, genetic factors, and a number of environmental
factors [15]. A series of gallstone (LITH) genes have been
identified, which affect cholesterol homeostasis and promote
cholesterol gallstone formation and growth [15]. Also, a
strong interest has developed to investigate the epigenetic
mechanisms that are able to influence gene expression in
the absence of an altered DNA sequence [16], in response to
several environmental stimuli [15].

A comprehensive analysis of these latter aspects as key
factors in linking cholesterol homeostasis to gene expression
and to the environment might provide a clue for both the
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Table 1: Major risk factors for cholesterol gallstones.

Independent
(i) Increasing age
(ii) Female gender
(iii) Race
(iv) Family history

Dietary
(i) High calorie
(ii) High cholesterol
(iii) High fat
(iv) High trans-fatty acids
(v) Low fiber
(vi) Low cis-unsaturated fats
(vii) High refined carbohydrates

Life style
(i) Low grade physical activity
(ii) Prolonged fasting
(iii) Rapid weight loss
(iv) Pregnancy and parity
(v) Oral contraceptives
(vi) Estrogen replacement therapy

Associated conditions
(i) The metabolic syndrome
(ii) Obesity
(iii) Insulin resistance
(iv) Diabetes type 2
(v) Nonalcoholic fatty liver disease
(vi) Gallbladder and/or intestinal stasis

Adapted and modified from Portincasa et al. The Lancet, 2006 [17].

prevention of gallstone formation in subjects at risk and
future therapeutic approaches viamanipulation of cholesterol
homeostasis.

2. Cholesterol Homeostasis and the Formation
of Cholesterol Gallstones

2.1. Multifactorial Contributions to the Pathogenesis of Gall-
stones. Precipitation of excess cholesterol in bile as solid
plate-like monohydrate crystals is a prerequisite for the
formation of cholesterol gallstones [18, 19]. It is evident that all
factors contributing to cholesterol homeostasis (i.e., intesti-
nal cholesterol absorption, hepatic cholesterol biosynthesis,
biliary output, and cholesterol conversion to bile acids) play
a vital role in the pathogenesis of cholesterol gallstones. In
fact, specific pathogenic factors concurring to the formation
of cholesterol gallstones in humans must include hepatic
hypersecretion of cholesterol into bile leading to a supersatu-
rated bile, accelerated cholesterol nucleation/crystallization,
defective gallbladder motility (a form of cholesterol-induced
leiomyopathy leading to gallbladder stasis [6, 20, 21]),
increased absorption of intestinal cholesterol, and LITH gene
expression [17, 22–28] (Figure 1).

2.2. Liver, Bile, Intestine, Gene Expression, and Cholesterol
Homeostasis. The liver plays a central role in cholesterol
homeostasis and lipoprotein metabolism since it is mainly
involved in synthesis and catabolism of cholesterol and
lipoproteins and is the exclusive excretory route for choles-
terol from the body [21].

In normal subjects with an extremely low dietary choles-
terol intake (∼30mg/day, pure vegetarians), biliary choles-
terol mainly derives from de novo synthesis [33]. In the
physiological steady state, hepatic secretion of biliary choles-
terol principally derives from newly synthesized cholesterol,
plasma lipoproteins (the main source of biliary choles-
terol is HDL cholesterol, as mainly suggested by animal
models [34–37]), and intestinal absorption of cholesterol.
Dietary and reabsorbed biliary cholesterol is delivered by
the enterolymphatic circulation to the liver for resecretion
into bile. As demonstrated by both human and animal
studies, reabsorption of biliary cholesterol by the enterocytes
has different absorption efficiency [38, 39] and depends on
sterol transport proteins compared to dietary cholesterol
[40–42]. Intestinal absorption of cholesterol is a multistep
process regulated bymultiple genes [41], which is determined
by the balance between influx and efflux of intraluminal
cholesterol molecules crossing the brush border membrane
of the enterocyte [41].

The rate of whole-body cholesterol synthesis by the liver
is approximately 8–10mg/day/kg body weight in humans
[43], and, under normal physiological conditions, de novo
synthesis contributes to biliary cholesterol secretion approx-
imately by 15% [44–47]. Interestingly, cholesterol synthesis
by the liver is suppressed by a negative feedback regulatory
mechanism through the sterol regulatory elementary binding
protein-1 (SREBP-1) pathway when dietary cholesterol intake
is increased, which also induces an enhanced secretion of
cholesterol into bile, the conversion of cholesterol into bile
acids (subsequently for secretion into bile), an increased
cholesterol esterification and storage, and an enhanced
lipoprotein secretion into the circulation [21]. In humans,
the fibroblast growth factor receptor 4 (FGFR4) may have
an effect on maintaining bile acid homeostasis by regulating
the expression of cholesterol 7alpha-hydroxylase (CYP7A1),
the rate-limiting enzyme for the classic pathway of bile acid
biosynthesis [48]. Additionally, the liver X receptor (LXR)
plays a main role in cholesterol homeostasis because it can
activate the transcription of the genes, such as ABCG5/8,
ABCA1, and ABCG1, involved in the response to excess
cholesterol intake [49–51]. In mice, it has been reported that
there is an increased propensity to cholesterol crystallization
and gallstone formation in bile following the activation of
hepatic LXR and direct upregulation of the major cholesterol
efflux transporters ABCG5 and ABCG8 on the canalicular
membrane of hepatocyte [52].

2.3. Altered Cholesterol Homeostasis: The Lithogenic State.
Pathologic conditions linked to cholesterol gallstone forma-
tion in humans are characterized by a “lithogenic state,” in
which the de novo synthesis could provide the liver with
more cholesterol for secretion into bile. The current view
on the physical chemistry of cholesterol carriers in bile is
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Figure 1: Current view on the complex interplay of pathogenic factors in cholesterol gallstone formation. The combination of multiple
disturbances affecting cholesterol homeostasis in bile is essential for cholesterol gallstone formation. LITH genes and genetic defects play
a crucial role in the formation of cholesterol gallstones. A large number of LITH genes have been identified in mouse models of cholesterol
gallstones, and based onmouse studies, several human LITH genes have been identified, and their contributions to the formation of cholesterol
gallstones are now being investigated. Hepatic hypersecretion of biliary cholesterol leads to unphysiological supersaturation of gallbladder
bile with cholesterol. At the enterocyte (small intestine) level, absorption of cholesterol is enhanced via the Niemann-Pick C1-like 1 (NPC1L1)
pathway. In bile, as a consequence, accelerated phase transitions of cholesterol occur, which are facilitated by prolonged gallbladder stasis
due to impaired gallbladder motility and immune-mediated gallbladder inflammation, as well as hypersecretion of mucins and accumulation
of mucin gel in the gallbladder lumen [6, 17]. In bile, growth of solid plate-like cholesterol monohydrate crystals to form gallstones is a
consequence of persistent hepatic hypersecretion of biliary cholesterol together with enhanced gallbladder mucin secretion and incomplete
evacuation by the gallbladder due to its impaired motility function [6, 29]. The two inlets on the left depict the major pathways of cholesterol
absorption and secretion at the enterocyte level and at the hepatocyte level, respectively, as mediated by specific transporter proteins. Also,
relative cholesterol hypersecretion into hepatic bile may or may not be accompanied by normal, high, or low secretion rates of biliary bile
acids or phospholipids. Although NPC1L1 is expressed in the liver, its mRNA expression and protein concentrations are very low compared
to those in the small intestine, thereby suggesting that hepatic NPC1L1 could have a minor role in regulating biliary cholesterol secretion.

summarized in Figure 2. Bile contains the three classes of
biliary lipids (i.e., bile acids, phospholipids, and cholesterol),
and specific cholesterol carriers in health include simple
and mixed micelle and small and large vesicles. Sustained
cholesterol supersaturation in bile will lead to a cascade of
events in which excess cholesterol will lead to nucleation
and crystallization and finally precipitate as solid plate-
like monohydrate crystals, the first key step in cholesterol
gallstone formation.

Bile becomes desaturatedwith cholesterol after long-term
administration of statins, the competitive inhibitors ofHMG-
CoA reductase, and the rate-limiting enzyme in cholesterol
biosynthesis [53–60].

Compared to gallstone-resistant AKR mice, susceptible
C57L mice on the lithogenic diet still display higher HMG-
CoA reductase activities together with lower activities of both
bile acid synthetic enzymes cholesterol 7𝛼-hydroxylase and
sterol 27-hydroxylase [61]. Furthermore, higher HMG-CoA
reductase activities have been found in gallstone patients
compared with control subjects [62–65]. This evidence
underscores the role of de novo cholesterol synthesis in the
formation of lithogenic bile in humans at risk for gallstones.

The small intestine also plays a key role in the absorption
of both dietary and biliary cholesterol, which is present in bile
solely in the unesterified form (at least 97% of total sterols in
bile) [15].
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Figure 2: (a) The figure shows the physical states of lipids in human bile [21]. Bile is composed mainly of water (more than 90%) [30]. Bile
acids are highly soluble, while cholesterol and phospholipids are highly insoluble in water. In bile, bile acids are found as monomers up to the
critical micellar concentration (≈1–3mM), a cut-off value after which bile acids can self-aggregate as simple micelles, binding a molecule of
cholesterol.This step leads to increased aqueous solubility of cholesterol. Phospholipids in an aqueous environment can self-aggregate to form
stable bilayer vesicles containing also a trace amount of bile acids, if any. A large amount of the cholesterol molecules is inserted into these
bilayers of vesicles between the hydrophobic acyl chains of phospholipids. With typical gallbladder lipid concentrations and compositions,
simple bile acid and mixed bile acid-lecithin micelles coexist in a ratio of 1 : 5. Unilamellar vesicles are larger spherical carriers in which even
more cholesterol is solubilized into the bilayers of phospholipids. The ratio of unilamellar vesicles to micelles depends on the bile acid and
phospholipid concentrations of bile, which is the greatest in bile with low bile acid and high phospholipid concentrations. Furthermore, at low
bile acid concentrations and high phospholipid concentrations, these biliary phospholipids often form large multilamellar layers of vesicles.
High concentrations of bile acids can dissolve these vesicles to form mixed micelles. (b) The picture depicts the ternary bile salt-cholesterol-
phospholipid phase diagram in which the different pathways of cholesterol solubilization and/or precipitation in bile are shown [17]. The
concentrations of three biliary lipids (bile acids, cholesterol, and phospholipids) are shown as percentages on the three axes of the triangle
with a total lipid concentration of 7.2 g/dL, pH 7, and a temperature of 37∘C [31, 32]. Different zones occupying areas within the triangle are
shown, with each one containing different cholesterol carriers. The one-phase (𝜑) zone under the saturation curve contains only micelles
and represents the bile being unsaturated with cholesterol. Above, three other zones exist with cholesterol supersaturation: a right two-
phase (R 2-𝜑) zone containing saturated micelles and vesicles; a central three-phase (C 3-𝜑) zone containing saturated micelles, vesicles, and
solid cholesterol crystals; and a left two-phase (L 2-𝜑) zone containing saturated micelles and solid cholesterol crystals. Whereas cholesterol
precipitation is rapid in case of excess bile acids, at increasing amounts of phospholipids, cholesterolmay reside in vesicles with phospholipids.
At this moment, solid cholesterol crystal formation is slower or absent. Cholesterol crystallization, the first key step in cholesterol gallstone
disease, is increasing at increasing concentrations of cholesterol, in the central and left zones, above the “safe” and physiological micellar zone.

The importance of the gallbladder on the regulation of
reabsorption of biliary cholesterol has been underlined by an
animal model showing that the gallbladder can modulate the
physical states of cholesterol, which may in turn influence
the intestinal absorption of biliary cholesterol. In this model,
crystallized bile markedly reduced cholesterol uptake and
absorption by the enterocyte [42].

The average intake of cholesterol in the western diet is
approximately 300–500mg per day (predominantly animal
origin). The small intestine contains both unesterified and

esterified cholesterol, with the latter usually in small propor-
tion [66]. Any cholesteryl ester entering the intestine must be
hydrolyzed by pancreatic cholesterol esterase in order to be
absorbed. Bile delivers 500–2400mg of cholesterol per day
to the intestine [67], and this amount is approximately two
to three times the dietary cholesterol. An additional source
of intraluminal cholesterol (about 300mg of cholesterol per
day) comes from the turnover of intestinal mucosal epitheli-
um [41]. It has been demonstrated that intestinal factors have
amajor role in the pathogenesis ofmouse gallstone formation
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[68], since the deficiency of cholesterol esterification in
the intestine of ACAT2 knockout mice leads to a marked
reduction in intestinal cholesterol absorption and complete
resistance to diet-induced cholesterol gallstones.

Additionally, the lack of expression of intestinal Apo-B48
(but not Apo-B100) leads to a significant reduction in biliary
cholesterol secretion and gallstone formation, possibly by
decreasing intestinal absorption and hepatic bioavailability
of cholesterol [69]. Apo-E knockout mice on the lithogenic
diet show reduced biliary cholesterol secretion and gall-
stone prevalence, possibly due to a decreased availability
of chylomicron-derived cholesterol in the liver for biliary
cholesterol secretion [70]. Although results from animal
studies underscore the role of cholesterol derived from the
intestine on biliary cholesterol secretion and provide clear
evidence that high dietary cholesterol through this pathway
enhances cholelithogenesis, human studies concerning this
topic gave conflicting results. It has been demonstrated
that biliary cholesterol saturation increases with increasing
cholesterol intake, inducing the formation of lithogenic bile
and solid cholesterol crystals in some subjects [71]. Con-
versely, a group of 9 healthy women showed no increase
in biliary cholesterol saturation after a high-cholesterol diet
[72], and 6 normolipidemic women and 6 hyperlipidemic
patients without gallstones showed no change in biliary
cholesterol saturation when dietary cholesterol was increased
from 300mg to 1,500mg daily [73]. An increase in biliary
cholesterol saturation with modest increments in dietary
cholesterol has been noticed in a group of 12 patients with
asymptomatic gallstones (six men and six women), as com-
pared with 7 healthy women (the diets containing 500,
750, and 1,000mg of cholesterol daily for 3-week periods in
random sequence). Interestingly, the biliary cholesterol satu-
ration increased in this study group independently from the
presence of gallstones [74]. Results from this study showed
that women with gallstones had higher biliary cholesterol
saturation than normal women at corresponding levels of
cholesterol consumption, and six of the seven normal women
formed lithogenic bile when ingesting a diet containing
1,000mg of cholesterol. The discrepancies in human studies
might be explained, at least in part, by differences in popu-
lation sampling, by dissimilar diets, and by variations in the
absorption efficiency of intestinal cholesterol.

3. Genetic, Epigenetic, and
Environmental Factors

The analysis of the mechanisms linking environmental fac-
tors to the genes in the determination of human health is
of importance in the field of life sciences and biomedical
research. Several studies have demonstrated that family
history, genetics, dietary, and cultural habits have a main role
in the onset of gallstones [75–77]. Furthermore, a number of
observations have found that a complex genetic basis could
play a key role in determining individual predisposition to
develop cholesterol gallstones in response to environmental
factors [22, 23, 26, 28], and a wide spectrum of environmental

and genetic risk factors may influence the onset of gallstone
disease in humans [78, 79]. The analysis of twin pairs from
The Swedish Twin Registry showed that genetic factors are
estimated to account for about 25% of gallstone risk [80] and
that twins carrying a heterozygous or homozygous ABCG8
D19H genotype have a significantly increased risk of gallstone
disease [81]. The ABCG8 p.D19Hmay lead to lower intestinal
cholesterol absorption, lower serum cholesterol levels, and
higher hepatic cholesterol synthesis, and polymorphisms
in the ABCG5/ABCG8 genes are certainly related to the
variations in plasma lipid levels, cholesterol saturation of bile
[82], and insulin resistance [83]. An inventory of human
cholesterol gallstone (LITH) genes has been depicted [15],
and this list is rapidly growing. It has been recently suggested
that susceptibility to gallstone disease may be influenced in
humans by mucin gene polymorphisms [84] or FGFR4 poly-
morphism [48] and that the mucin-like protocadherin gene
(MUPCDH) polymorphism rs3758650 has been considered a
genetic marker to predict symptomatic gallstone disease [85].
Furthermore, carriers of CG genotype of ABCG8 rs11887534
showed higher risk of gallstones, as well as gallbladder and
bile duct cancer compared with carriers of the GG genotype
[86].

On the other hand, besides genes, the role of epigenetics
has been highlighted by a number of human studies as
the key factor in the onset of several chronic metabolic
[87–92] and nonmetabolic diseases, such as cancer [93–
95] cardiovascular diseases [96], neurodegenerative diseases
[97], and birth defects [98], as a consequence of exposure
to “toxic” agents occurring in utero before birth [16, 99].
They occur when the function of a gene is altered by
various mechanisms, although its DNA sequence remains
stable [16]. Transgenerational effects and fetal programming
result from a mother’s exposure and are inherited through
successive generations in the absence of direct exposure of
the offspring. Fetal programming, in turn, results in the
onset of diseases in adult age, underlying the importance
of developmental factors in influencing the risk of later-life
disease [100]. Diet [101, 102] or environmental exposition to a
number of chemical agents like heavy metals (e.g., cadmium,
arsenic, nickel, chromium, and methylmercury) [103–107],
air pollutants (e.g., particulate matter, black carbon, and
benzene), and endocrine-disrupting/reproductive toxicants
(e.g., diethylstilbestrol, bisphenol A, persistent organic pol-
lutants, dioxin, and pesticides [108–112]) are able to induce
epigenetic changes (mainly DNAmethylation, histone acety-
lation/deacetylation [113], and noncoding microRNAs) [114,
115], which are involved in a wide range of metabolic diseases
including obesity [90, 116], abnormal hepatic triglyceride
accumulation [91], and themetabolic syndrome [92, 117], type
2 diabetes [87–89], all well-known risk factors for gallstone
disease andmainly attributable to insulin resistance. Interest-
ingly, it has been recently reported by a cluster of analyses a
significant association of gallbladder diseases with environ-
mental pollutants (heavy metals) in drinking water [118].

The interaction of histone acetyltransferases (HATs) and
histone deacetylases (HDACs) and histones strongly affects
gene transcription, and, in particular, it has been suggested
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that HDACs are important in the regulation of lipid home-
ostasis [113]. Of note, microRNAs (miR-122, miR-370, and
miR-33) have a major influence on cholesterol homeostasis.
They are important posttranscriptional regulators of gene
expression [119–121] and strongly affect cholesterol metabo-
lism [122]. It has been recently reported by an animal model
that maternal low-protein diet during gestation and lactation
significantly alters cholesterol homeostasis in weaning piglets
through altered epigenetic regulation (promoter hypomethy-
lation, decreased histone H3, H3 lysine 9 monomethylation,
H3 lysine 27 trimethylation, and increased H3 acetylation) of
theHMGCR (the rate-limiting enzyme in cholesterol biosyn-
thesis) and CYP7A1 (the rate-limiting enzyme for conversion
of cholesterol to bile acids) genes, with possible long-term
consequences in cholesterol homeostasis later in adult life
[101]. In the rat, maternal undernutrition leads to long-
term dysregulation of cholesterol metabolism in the offspring
through epigenetic mechanisms [102].

In humans, it has been reported that placental insufficien-
cy-induced intrauterine growth restriction secondary to
adverse events in utero may be responsible for metabolic
events leading to the metabolic syndrome [102, 123, 124].

The bile acid receptor farnesoid X receptor (FXR) is
currently considered to be the intracellular “sensor” of bile
acids [125, 126]. Cells synthesize oxysterols under conditions
of cholesterol overload, and oxysterols in turn bind and
activate LXR, which acts to reduce systemic cholesterol bur-
den [125–127]. FXR is highly expressed in the enterohepatic
system and regulates the expression of the genes involved
in the maintenance of cholesterol, bile acid, and triglyceride
homeostasis [128]. Of note, it has been recently suggested by a
comparison of genomic FXR-binding sites in healthy control
and obese mice that FXR transcriptional signaling is altered
in diet-induced obese mice, which may underlie aberrant
metabolism and liver function in obesity [129].

In conclusion, frequent metabolic abnormalities such as
atherosclerosis, obesity, metabolic syndrome, and gallstone
disease are related to impaired cholesterol homeostasis. The
current view that such abnormalities gain clinical relevance
only during adulthood and elderly age is dramatically chang-
ing. Both genetic and epigenetic studies suggest a very
early onset of chronic disease already in utero. Epigenetic
mechanisms underlying such developmental events are still
under investigation, in particular in the case of choles-
terol homeostasis and gallstone disease. Starting from these
particular metabolic conditions, a better understanding of
mechanisms resulting in chromatin remodeling in response
to environmental stimuli acting on the epigenome may offer
new options for therapy of cholesterol cholelithiasis and
better possibilities for primary prevention in subjects at risk.

Abbreviations

ABC: ATP-binding cassette (transporter)
NPC1L1: Niemann-Pick C1-like 1 protein. Adapted

from de Bari et al. [130], Wang et al. [21],
and Portincasa and Wang [6].
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