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Abstract 

Background: Combined pulmonary fibrosis and emphysema (CPFE) is a novel clinical entity with a poor prognosis. 
This study aimed to develop a clinical nomogram model to predict the 1-, 2- and 3-year mortality of patients with 
CPFE by using the machine learning approach, and to validate the predictive ability of the interstitial lung disease-
gender-age-lung physiology (ILD-GAP) model in CPFE.

Methods: The data of CPFE patients from January 2015 to October 2021 who met the inclusion criteria were retro-
spectively collected. We utilized LASSO regression and multivariable Cox regression analysis to identify the variables 
associated with the prognosis of CPFE and generate a nomogram. The Harrell’s C index, the calibration curve and the 
area under the receiver operating characteristic (ROC) curve (AUC) were used to evaluate the performance of the 
nomogram. Then, we performed likelihood ratio test, net reclassification improvement (NRI), integrated discrimination 
improvement (IDI) and decision curve analysis (DCA) to compare the performance of the nomogram with that of the 
ILD-GAP model.

Results: A total of 184 patients with CPFE were enrolled. During the follow-up, 90 patients died. After screening out, 
diffusing lung capacity for carbon monoxide (DLCO), right ventricular diameter (RVD), C-reactive protein (CRP), and 
globulin were found to be associated with the prognosis of CPFE. The nomogram was then developed by incorpo-
rating the above five variables, and it showed a good performance, with a Harrell’s C index of 0.757 and an AUC of 
0.800 (95% CI 0.736–0.863). Moreover, the calibration plot of the nomogram showed good concordance between the 
prediction probabilities and the actual observations. The nomogram also improved the discrimination ability of the 
ILD-GAP model compared to that of the ILD-GAP model alone, and this was substantiated by the likelihood ratio test, 
NRI and IDI. The significant clinical utility of the nomogram was demonstrated by DCA.

Conclusion: Age, DLCO, RVD, CRP and globulin were identified as being significantly associated with the prognosis 
of CPFE in our cohort. The nomogram incorporating the 5 variables showed good performance in predicting the mor-
tality of CPFE. In addition, although the nomogram was superior to the ILD-GAP model in the present cohort, further 
validation is needed to determine the clinical utility of the nomogram.
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Introduction
Pulmonary interstitial fibrosis and emphysema are two 
distinct clinical entities with different pathogeneses and 
pathophysiologic manifestations. However, an increas-
ing number of studies consider that the two phenotypes 
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can coexist within one patient [1, 2]. Cottin et al. defined 
a novel phenotype, “combined pulmonary fibrosis and 
emphysema (CPFE)”, in 2005 [3]. CPFE is a clinical syn-
drome characterized by the coexistence of emphysema 
in the upper zones and fibrosis in the bases of the lungs 
[1, 2]. The median survival time for CPFE patients is 
reported to be 2.1 to 6.1 years, which is extremely poorer 
than that of patients with fibrosis or emphysema alone 
[4, 5]. Therefore, a validated risk assessment is desper-
ately needed for the cognition and management of CPFE 
patients.

The study of prognostic prediction of CPFE remains 
challenging because of the heterogeneity in disease-spe-
cific variables and the lack of awareness for this clini-
cal entity [5–9]. Unfortunately, research evaluating and 
establishing a prognostic prediction system for CPFE is 
rare to date. The interstitial lung disease-gender-age-lung 
physiology (ILD-GAP) model is widely used to predict 
the prognosis of chronic ILD subtypes, including idio-
pathic pulmonary fibrosis (IPF), connective tissue disease 
associated ILD (CTD-ILD) and unclassifiable ILD [10]. 
The previous researches indicated that the prevalence of 
emphysema was around 27% in patients with chronic ILD 
subtypes, including IPF and CTD-ILD [11]. CPFE is a 
distinct chronic ILD subtype with special clinical features 
and a poor prognosis [3]. However, previous studies have 
not performed CPFE subtyping analysis with the ILD-
GAP model. Therefore, there is an urgent need to explore 
the prognostic factors of CPFE and to assess and improve 
the ILD-GAP model [11].

In this study, we investigated the prognostic factors of 
CPFE and established a comprehensive nomogram to 
predict the mortality of CPFE in a Chinese population. 
Furthermore, we also evaluated the prognostic predictive 
performance of the ILD-GAP model in CPFE.

Methods
Study population
This study was a retrospective cohort study that included 
184 confirmed CPFE patients who were admitted to 
the First Affiliated Hospital of Zhengzhou University 
between January 2015 and October 2021.

Patients were diagnosed with CPFE according to the 
criteria suggested by Cottin et al. [3], namely, the radio-
graphic presence of centrilobular and/or paraseptal 
emphysema (≥ 10%) in the upper zones and pulmonary 
fibrosis in the bases of the lungs.

CTD was defined according to the criteria recom-
mended by the American Rheumatism Association and 
the American College of Rheumatology [12–19], includ-
ing systemic sclerosis (SSc), rheumatoid arthritis (RA), 
polymyositis/dermatomyositis (PM/DM), sjogren syn-
drome (SS), ankylosing spondylitis (AS), systemic lupus 

erythematosus (SLE), antineutrophil cytoplasmic anti-
body (ANCA)-associated vasculitis (AAV), mixed con-
nective tissue disease (MCTD), and undifferentiated 
connective tissue disease (UCTD).

The exclusion criteria were as follows: (1) patients who 
met the criteria for the diagnosis of CPFE, but CPFE was 
secondary to other etiologies, including pneumoconio-
sis (asbestosis or siderosis); (2) patients with incomplete 
data; and (3) patients younger than 18 years old.

Ethics issue
The ethical approval of this study was granted by the Eth-
ics Committee of Scientific Research and Clinical Trials 
of the First Affiliated Hospital of Zhengzhou University 
(approval number: 2019-KY-116) prior to the data col-
lection. Since the data were deidentified and aggregated, 
written consent was waived.

Data collection
Data were collected from electronic medical records at 
the initial diagnosis. The collected data included demo-
graphic characteristics, systematic classification, pul-
monary function test results, echocardiography results, 
high-resolution computed tomography (HRCT) images 
and laboratory test results.

The demographic characteristics included age, sex, 
body mass index, smoking history, complications (lung 
cancer and pulmonary hypertension) and treatment. Pul-
monary hypertension (PH) was defined according to the 
echocardiographic criteria for high probability of PH rec-
ommended by the European Society of Cardiology and 
the European Respiratory Society (ESC/ERS): the peak 
tricuspid regurgitation velocity (TRV) > 3.4  m/s; or the 
TRV is 2.9–3.4  m/s within the signs assessing the right 
ventricular (RV) size, the pressure overload, the pattern 
of blood flow velocity out of the RV, the diameter of the 
pulmonary artery and an estimate of right atrial pressure 
[20].

The systematic classifications included idiopathic CPFE 
and CTD-CPFE, using the classification criteria of CTD 
as the inclusion standard.

The variables of the pulmonary function test that we 
collected included the percentage of the predicted val-
ues (%Predicted) for forced expiratory volume in the 
first second  (FEV1), forced vital capacity (FVC), total 
lung capacity (TLC), peak expiratory flow (PEF), maxi-
mal midexpiratory flow rate (MMEF, also known as FEF 
25–75), DLCO and the ratio of  FEV1 to FVC  (FEV1/FVC).

The collected echocardiography data included right 
atrial area (RAA), RVD (from the right ventricular four-
chamber view, the straight line joining the midpoint of 
the tricuspid valve annulus to the right ventricular apex 
in end-diastole constituted the RVD) [21, 22], left atrial 
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area, left ventricular end diastolic diameter, ascend-
ing aortic diameter, aortic annulus diameter, pulmonary 
artery diameter, pulmonary regurgitant peak velocity, 
and left ventricular ejection fraction (LVEF).

HRCT scans were examined by two independent 
chest radiologists, and final conclusions on the findings 
were reached by consensus. The collected HRCT images 
included fine reticular opacity, ground-glass opacity, 
pseudoplaque, flocculent shadow (any area that prefer-
entially attenuates the X-ray beam and therefore appears 
more opaque than the surrounding area), parenchymal 
band, honeycomb shadow, traction bronchiectasis, local 
pleural thickening and mediastinal lymphadenopathy. 
The detailed description of these images refers to the 
Fleischner terminology [23].

The collected laboratory examination data included 
leukocyte count, erythrocyte count, haemoglobin 
count, platelet count, red cell distribution width, plate-
let distribution width, aspartate transaminase, alanine 
aminotransferase, γ glutamyl transferase, alkaline phos-
phatase, total protein, albumin (ALB), globulin, total 
bilirubin, direct bilirubin, indirect bilirubin, urea nitro-
gen, creatinine, uric acid, glomerular filtration rate, total 
cholesterol, total triglycerides, high-density lipoprotein, 
low-density lipoprotein, B-type natriuretic peptide, CRP, 
procalcitonin, erythrocyte sedimentation rate, com-
plement component C3, complement component C4, 
immunoglobulin A, immunoglobulin M, immunoglobu-
lin G, Krebs von den Lungen-6 (KL-6), partial pressure of 
carbon dioxide, partial pressure of arterial oxygen, blood 
oxygen saturation, lactate, alpha-fetoprotein, carcinoem-
bryonic antigen, carbohydrate antigen 125, cytokeratin-
19-fragment (CYFRA21-1), neuron-specific enolase, 
carbohydrate antigen 199, carbohydrate antigen 153, car-
bohydrate antigen 724 and serum ferritin.

Follow‑up and outcome assessment
The study endpoint was all-cause mortality during fol-
low-up until January 2022. Follow-up information was 
obtained from patients or their families via telephone 
interviews.

Statistical analysis
Missing data were processed by multiple imputations. 
Imputation for missing variables was considered if miss-
ing values were less than 20%. A t test or corrected t test 
was used to compare the continuous variables of normal 
distribution between the two groups, which were pre-
sented as the mean ± standard deviation (mean ± SD). 
Continuous nonnormally distributed data were com-
pared using the Mann–Whitney U test and presented as 
the median and interquartile range (IQR, 25–75th per-
centiles). Categorical variables of the two groups were 

compared by the χ2 test and presented as frequencies 
(percentages). LASSO regression analysis was used for 
data dimension reduction and variable selection. The 
penalty value (λ value) was selected by tenfold cross-val-
idation, and the best subset of the variables was selected 
by using the “glmnet” package of R. The significance of 
each variable in the best subset was evaluated by univari-
able Cox regression analysis. The variables with P values 
less than 0.05 were entered into the forward stepwise 
regression multivariable Cox analysis. A nomogram was 
constructed based on the results of multivariate Cox 
regression analysis and by using the “rms” package of 
R. For clinical use of the model, the risk scores of each 
patient were calculated based on the nomogram. The 
performance of the nomogram was assessed by discrimi-
nation and calibration [24]. The discriminative ability of 
the model was determined by the area under the receiver 
operating characteristic (ROC) curve (AUC). In addi-
tion, the nomogram was subjected to 1000 bootstrap 
resamples for internal validation to assess its predictive 
accuracy [25]. The calibration of the internal validation 
model was performed by a visual calibration plot com-
paring the predicted and actual probability of mortality. 
The ILD-GAP stage was calculated based on gender (0–1 
points), age (0–2 points), and two physiologic lung func-
tion parameters—FVC and DLCO (0–5 points) [10]. The 
predictive performance of the nomogram and ILD-GAP 
model were evaluated by a likelihood ratio test (using 
“lmtest” R package), NRI and IDI (using “survC1” and 
“survIDINRI” R package), the comparison of the Harrell’s 
C index (using “survival” R package) and AUC values 
(using “ROCR” R package). Finally, decision curve analy-
sis (DCA) was performed by the source file “stdca. R”. All 
analyses were performed using SPSS version 26.0 and R 
version 4.1.1. For all the analyses, P < 0.05 was considered 
to be statistically significant.

Results
Clinical characteristics
A total of 204 patients with confirmed CPFE were 
screened in the present study according to the above 
defined criteria. After excluding the patients with CPFE 
secondary to pneumonoconiosis (n = 3), patients with 
incomplete data (n = 6), those younger than 18 years old 
(n = 1) and those lost to follow-up (n = 10), 184 patients 
were included in this study, as presented in Fig. 1. Dur-
ing follow-up (median duration 16.9 months), a total of 
90 (48.9%) patients died. The clinical characteristics of 
all patients in the study are shown in Table 1 (at the end 
of the article). In our study cohort, 143 (78%) were male, 
105 (57%) had a history of smoking, and the mean age at 
the initial diagnosis was 67 ± 11  years old. The median 
overall survival time was 32.8  months. Compared with 
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the surviving patients, the deceased patients were sig-
nificantly older, were more likely to have pulmonary 
hypertension and lung cancer, and treated without ace-
tylcysteine (all P < 0.05). Compared with patients who 
were alive, those who died were more likely to have lower 
FVC, TLC, DLCO, LVEF and higher RVD (all P < 0.05). 
Additionally, the deceased patients were more likely 
to have mediastinal lymphadenopathy, higher levels of 
serum KL-6 and CYFRA21-1 (all P < 0.05).

Model establishment
Ninety-five prognostic variables were enrolled in this 
study. First, we reduced the dimension and selected the 
best prognostic subset of these indicators by LASSO 
regression analysis. Then, a ten-fold cross validation of 
the LASSO model was performed for tuning parameter 
selection via the minimum criteria (Fig.  2A). The track 
of each prognostic indicator coefficient was observed in 
the LASSO coefficient profiles with the changing of the 
log (lambda) in the LASSO algorithm (Fig. 2B). The opti-
mal lambda value was 0.104 (log(lambda): − 2.262) using 
the LASSO algorithm, and 6 variables were selected as 
potential influencing factors of prognosis—age, DLCO, 
RVD, CRP, ALB and globulin. To explore the poten-
tial influencing factors associated with the prognosis of 
CPFE, we further conducted univariate and multivari-
ate Cox regression analyses. Univariable Cox regression 
analysis revealed that increased age (HR 1.053, 95% CI 
1.031–1.076), RVD (HR 1.115, 95% CI 1.074–1.158), CRP 
(HR 1.009, 95% CI 1.005–1.013) and globulin (HR 1.066, 
95% CI 1.038–1.094) were correlated with a higher mor-
tality risk (all P < 0.001) (Table 2). However, higher DLCO 
(HR 0.965, 95% CI 0.952–0.978) and ALB (HR 0.906, 95% 
CI 0.867–0.948) were correlated with a lower mortal-
ity risk (both P < 0.001) (Table  2). Significant indicators 
(P value < 0.05) in the univariate analysis were entered 
into a multivariate Cox model, and the results showed 

that the 5 variables of age, DLCO, RVD, CRP and globu-
lin affected all-cause mortality significantly (all P < 0.05) 
(Table 2). The nomogram for prognostic prediction was 
established according to the results of the multivariable 
Cox regression analysis (Fig. 3).

Performance of the model
The predictive performance of the nomogram was good 
in our study cohort. The C-index value was 0.757, and 
the mean Harrell’s C index in the validation cohort con-
structed by 1000 bootstrap resamples was 0.853. The 
AUC of the nomogram was 0.800 (95% CI 0.736–0.863) 
(Fig.  4A). The calibration curves of the nomogram 
showed high consistency between the predicted and the 
actual 1-, 2- and 3-year survival probabilities in our study 
cohort (Fig. 5).

The ILD-GAP model exhibited increasing mortal-
ity risk in patents with higher scores by univariate vari-
able Cox regression (HR 1.652, 95% CI 1.391–1.962, 
P < 0.001; Table  2). The C-index value was 0.657 of the 
ILD-GAP model, which was lower than that of the nomo-
gram (0.757). The likelihood ratio test showed that there 
was a statistically significant enhancement of the predic-
tive performance when the inclusion of nomogram in the 
ILD-GAP model (P < 0.001), but there was no significant 
difference when the inclusion of the ILD-GAP model in 
nomogram (P = 0.160) (Table 3). Moreover, the NRIs of the 
nomogram and the ILD-GAP model for 1-, 2- and 3-year 
mortality were 0.332 (95% CI 0.086–0.476, P = 0.013), 
0.362 (95% CI 0.087–0.511, P = 0.020) and 0.173 (95% 
CI −  0.069 to 0.381, P = 0.120), respectively, and the 
IDIs of the nomogram and the ILD-GAP model for 1-, 
2- and 3-year mortality were 0.145 (95% CI 0.054–0.213, 
P < 0.001), 0.142 (95% CI 0.057–0.230, P < 0.001) and 0.084 
(95% CI − 0.030 to 0.175, P = 0.133), respectively (Table 4). 
These results indicated that the nomogram showed a bet-
ter prognostic performance than the ILD-GAP model in 
the present cohort. Then, we performed DCA to evaluate 
the net clinical benefit that the nomogram would bring to 
patients compared with the ILD-GAP model. In this study, 
the nomogram showed a better net benefit than the ILD-
GAP model for clinical intervention for the optimal deci-
sion threshold > 0% (Fig. 6).

Discussion
CPFE is a clinical syndrome without full recognition that 
is characterized by progressive worsening respiratory 
symptoms and markedly impaired lung diffusion function 
[2, 3, 26]. Unfortunately, limited studies have reported its 
prognostic risk factors [7, 27]. Moreover, none of the pre-
vious studies developed a prognostic predictive system 
for CPFE patients. In the present study, we explored the 
clinical characteristics and prognostic features of CPFE 

Screened patients
n= 204

CPFE secondary to 
pneumonoconiosis

n=3
Incomplete clinical records

n=6
Age younger than 18 years

n=1
Eligible CPFE patients

n=194
Lost to follow-up

n=10
Final enrolled patients

n=184

Survival patients 
n= 94

Deceased patients
n= 90

Fig. 1 Flowchart of the patients included in the analysis. 
Abbreviations: CPFE: combined pulmonary fibrosis and emphysema
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patients based on the real-world data. Then, we incorpo-
rated 5 optimal prognostic variables into a user-friendly 
nomogram for predicting the prognosis of CPFE. We also 
performed a series of validations to evaluate the predic-
tive performance of the ILD-GAP model.

We used LASSO regression to screen out 6 variables 
from the 95 candidates by examining the predictor-out-
come association by shrinking the regression coefficients. 

LASSO is a method for dimension reduction and variable 
selection, and the number of selected predictors is not 
limited by the sample size when the number of samples 
is more than the number of the variables [28, 29]. There 
were 95 variables in 180 samples of this study; therefore, 
LASSO regression was a proper and credible method 
to establish the model. Then, we used multivariate Cox 
regression analysis to substantiate the prognostic value of 

Table 1 Clinical characteristics of the CPFE patients

CPFE combined pulmonary fibrosis and emphysema; mean ± SD mean ± standard deviation; BMI body mass index; IQR interquartile range; FEV1 forced expiratory 
volume in the first second; FVC forced vital capacity; FEV1/FVC the ratio of FEV1 to FVC; TLC total lung capacity; DLCO diffusing lung capacity for carbon monoxide; 
RAA  right atrial area; RVD right ventricular diameter; LVEF left ventricular ejection fraction; HRCT  high-resolution computed tomography; KL-6 Krebs von den Lungen-6; 
CYFRA21-1 cytokeratin-19-fragment

*Comparison of the performance of the deceased patients and the surviving patients for clinical characteristics

Data were presented as the means ± SDs, numbers (%) or medians (IQR)

Variable All patients (n = 184) Deceased patients (n = 90) Surviving patients (n = 94) P value*

Age, y 66.8 ± 10.5 69.4 ± 9.2 64.2 ± 11.0 0.001

Sex, n (%)

Male 143 (77.7) 71 (78.9) 72 (76.6) 0.709

Female 41 (22.3) 19 (21.1) 22 (23.4)

BMI, kg/m2 23.6 (21.5, 25.6) 23.4 (21.4, 25.0) 23.7 (21.5, 26.0) 0.379

Smoking, n (%) 105 (57.1) 51 (56.7) 54 (57.5) 0.915

Comorbidities, n (%)

Pulmonary hypertension 48 (26.1) 33 (36.7) 15 (16.0) 0.001

Lung cancer 6 (3.3) 6 (6.7) 0 (0.0) 0.033

Baseline lung function

FEV1, %Predicted 82.8 (72.4, 90.0) 82.3 (71.5, 87.9) 84.0 (73.5, 96.1) 0.099

FVC, %Predicted 84.0 (72.4, 91.1) 82.9 (66.0, 89.1) 86.1 (74.8, 96.4) 0.025

FEV1/FVC, % 77.9 (71.0, 85.3) 78.0 (72.8, 83.7) 77.9 (68.5, 85.7) 0.574

TLC, %Predicted 74.2 (66.4, 80.3) 73.1 (63.8, 78.4) 74.6 (68.5, 83.0) 0.034

DLCO, %Predicted 44.0 (36.0, 52.1) 40.3 (27.0, 47.2) 46.7 (40.7, 58.6)  < 0.001

Echocardiography

RAA,  cm2 14.0 ± 3.6 14.5 ± 4.5 13.7 ± 2.4 0.135

RVD, mm 17.3 ± 3.3 18.5 ± 4.0 16.1 ± 1.8  < 0.001

LVEF, % 63.0 (61.0, 64.0) 62.0 (60.0, 64.0) 63.1 (61.8, 65.0) 0.027

Image of HRCT, n (%)

Fine reticular opacity 94 (51.1) 50 (55.6) 44 (46.8) 0.235

Ground-glass opacity 15 (8.2) 7 (7.8) 8 (8.5) 0.856

Patchy shadow 89 (48.4) 47 (52.2) 42 (44.7) 0.306

Traction bronchiectasis 16 (8.7) 6 (6.7) 10 (10.6) 0.339

Honeycomb shadow 43 (23.4) 23 (25.6) 20 (21.3) 0.493

Local pleural thickening 146 (79.3) 76 (84.4) 70 (74.5) 0.095

Mediastinal lymphadenopathy 115 (62.5) 64 (71.1) 51 (54.3) 0.018

KL-6, U/ml 1201.6 (830.0, 1263.8) 1217.9 (1095.8, 1296.4) 1175.5 (696.5, 1262.0) 0.028

CYFRA21-1, ng/ml 3.8 (2.3, 5.7) 4.2 (2.7, 6.4) 3.0 (2.1, 5.3) 0.015

Treatment, n (%)

Pirfenidone 76 (41.3) 36 (40.0) 40 (42.6) 0.725

Glucocorticoids 86 (46.7) 46 (51.1) 40 (42.6) 0.245

Acetylcysteine 118 (64.1) 51 (56.7) 67 (71.3) 0.039

Immunosuppressive agents 27 (14.7) 15 (16.7) 12 (12.8) 0.455

Follow-up time, months 16.9 (6.7, 33.3) 9.4 (2.3, 21.7) 21.0 (13.2, 38.6)  < 0.001
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the 6 variables. The results of multivariable Cox analysis 
showed that age, DLCO, RVD, and the levels of serum 
CRP and globulin were significantly associated with the 
prognosis of CPFE.

Age has been reported as a risk factor for the progno-
sis of CPFE and many other lung diseases because older 
individuals typically have more comorbidities and poorer 
health status [30]. CPFE has a mixed pattern of pulmo-
nary function that preserved lung volumes associated 
with disproportionately reduced DLCO [3]. The cause 
may be the reduction of normally functioning alveolar 
capillary units and pulmonary capillary blood volume, 
which reduces the effective surface area available for gas 
exchange [2]. In addition, alveolar membrane thicken-
ing, excessive accumulation of extracellular matrix and 
alveolar epithelial cell damage may also be involved in the 
process of decreasing DLCO according to past studies [2, 
31]. Consistently, in this study, a lower DLCO was dem-
onstrated to be associated with the prognosis of CPFE. 
We also found that RVD was associated with poor prog-
nosis in our study. Ventricular remodelling, mainly show-
ing ventricular wall hypertrophy and cardiac dilatation, is 
one of the mechanisms of heart failure. Moreover, most 
patients complicated with heart failure show a reduced 
cardiac index, which is the most accurate prognostic 
determinant of CPFE [32]. Previous studies showed that 
pulmonary hypertension (PH) had a higher prevalence 
in patients with CPFE with a poor prognosis [33]. In our 
study, PH was also associated with worse outcomes (HR 
2.093, 95% CI 1.360–3.222, P < 0.05) in the univariable 
Cox regression analysis. However, PH was not selected 
in the LASSO regression analysis. The probable reason is 
that RVD, which is essentially a marker of right ventric-
ular dilation, may be collinear with PH given that right 
ventricular dilation is often a consequence of PH. With 
the progression of PH, the pulmonary artery systolic 
pressure will decrease with the occurrence of right heart 
failure, while right ventricular dilation is irreversible.
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Fig. 2 In the least absolute shrinkage and selection operator (LASSO) 
model, the minimum standard was adopted to obtain the value 
of the super parameter λ by tenfold cross-validation. The λ value 
was confirmed as 0.104 (log(lambda): − 2.262), where the optimal 
lambda resulted in 6 nonzero coefficients. A Six risk factors selected 
using LASSO regression analysis. Solid vertical lines were drawn at 
the optimal values using the minimum criteria (red line) and the 
1 standard error of the minimum criteria (black line) (at minimum 
criteria including Age, DLCO, RVD, CRP, Albumin and Globulin). B 
LASSO coefficient profiles of the 95 risk factors. Abbreviations: RVD, 
right ventricular diameter; DLCO, diffusing lung capacity for carbon 
monoxide; CRP, C-reactive protein

Table 2 Univariate and multivariate Cox analyses for overall mortality in CPFE

CPFE combined pulmonary fibrosis and emphysema; DLCO diffusing lung capacity for carbon monoxide; RVD right ventricular diameter; CRP C-reactive protein; ALB 
albumin

Variables Univariable COX regression analysis Multivariable COX regression analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age, years 1.053 (1.031–1.076)  < 0.001 1.040 (1.017–1.063)  < 0.001

DLCO, %Predicted 0.965 (0.952–0.978)  < 0.001 0.973 (0.958–0.989) 0.001

RVD, mm 1.115 (1.074–1.158)  < 0.001 1.111 (1.064–1.161)  < 0.001

CRP, mg/L 1.009 (1.005–1.013)  < 0.001 1.005 (1.001–1.010) 0.023

Globulin, g/L 1.066 (1.038–1.094)  < 0.001 1.038 (1.005–1.072) 0.023

ALB, g/L 0.906 (0.867–0.948)  < 0.001

ILD-GAP model 1.652 (1.391–1.962)  < 0.001
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CRP and globulin are the serological indicators com-
monly tested in clinic, and their levels are acceptably cor-
related with the severity of infection and immune status 
[34]. Our study demonstrated that serum CRP and glob-
ulin were significantly associated with increased CPFE 
mortality. CRP is synthesized in the liver as a result of 
several stimuli, e.g., interleukin (IL)-6, and is also con-
sidered to be a classic acute-phase protein [35, 36]. Sev-
eral studies have identified that airway damage and acute 

exacerbations of infection are the main reasons for the 
poor prognosis for CPFE [2, 27], which could lead to an 
increase in CRP, consistent with our results. In addition, 
CPFE could be involved in multiple systems and organs 
by self-directed inflammation, commonly leading to col-
lagen deposition and tissue damage [37, 38]. CRP is a pat-
tern-recognition molecule of the innate immune system, 
and its binding to ligands can mediate direct interactions 
with immunoglobulin receptors and trigger classic com-
plement activation, which is related to the pathogenesis 
and progression of CPFE [39, 40]. Immune dysregulation 
is a driver of both idiopathic CPFE and CTD-CPFE [38, 
41], and the increasing concentration of immunoglobulin 
is acceptably related to the active phase and poor prog-
nosis of CPFE [40]. The serum level of globulin could 
reflect the increase of immunoglobulin and some other 
abnormal circulating antibodies to some extent.

A nomogram can provide an individualized, evidence-
based and highly accurate risk estimation, thus facilitat-
ing decision-making by physicians and policy makers [42, 
43]. The nomogram we constructed demonstrated good 
discrimination as assessed by Harrell’s C index (0.757) 
and AUC value (0.800). The optimal calibration curves 
indicate good consistency between the predicted proba-
bilities and the actual observations, although the variance 
around the three points shown is high in Fig.  5, which 
may be due to the relatively small sample size. However, 

Points
0 10 20 30 40 50 60 70 80 90 100

Age 25 35 45 55 65 75 85 95

RVD 10 14 18 22 26 30 34 36

DLCO 140 120 100 80 60 40 20 0

CRP 0 40 80 120 180 240

Globulin 10 20 30 40 50

Total Points 0 20 40 60 80 100 120 140 160 180 200 220 240

1−year Mortality 0.05 0.2 0.4 0.6 0.8 0.95

2−year Mortality 0.05 0.2 0.4 0.6 0.8

3−year Mortality 0.05 0.2 0.4 0.6 0.8
Fig. 3 Nomogram for predicting the 1-, 2- and 3-year mortality of CPFE. The points of each feature were added to obtain the total points, and 
the corresponding 1-, 2- and 3-year mortality was obtained based on the total points. Abbreviations: CPFE, combined pulmonary fibrosis and 
emphysema; RVD, right ventricular diameter; DLCO, diffusing lung capacity for carbon monoxide; CRP, C-reactive protein
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Fig. 4 The ROC curves with AUCs of 0.800 and 0.701 to demonstrate 
the discriminatory ability of the two models. A The ROC curve with 
an AUC of 0.800 of the nomogram. The red line represents the 
discriminatory ability of the nomogram; the blue line represents the 
reference line. B The ROC curve with an AUC of 0.701 of the ILD-GAP 
model. The red line represents the discriminatory ability of the 
ILD-GAP model; the blue line represents the reference line
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to our knowledge, our sample size was the largest for the 
study of the prognosis of CPFE, and the visual representa-
tion of the relationship between predicted and observed 
prognoses was the best way to evaluate calibration [44]. 
The ILD-GAP model had a good predictive ability in 
chronic ILD subtypes, but the coexistence of CPFE in 
IPF/CTD-ILD may affect the existing assessment model 
[45]. In our cohort, the Harrell’s C index of the ILD-GAP 
model was only 0.657, which indicated poorer discrimi-
native ability than the nomogram (0.757). Moreover, 
although the combination of the nomogram and the ILD-
GAP model was superior to the ILD-GAP model alone, it 
was not superior to the nomogram alone. The nomogram 
also improved the discrimination ability compared to the 
ILD-GAP model substantiated by the NRI and IDI. DCA 

has been widely employed to substantiate the clinical util-
ity and benefit when the predictive model guides clinical 
practice [46]. The DCA proved that when the decision 
threshold was > 0%, using the nomogram in the current 
study showed a higher net benefit than using the ILD-
GAP model for clinical intervention. We believe this is 
because of comorbid emphysema, which may impact sur-
vival independent of ILD severity [10]. Previous research 
indicated that  FEV1 and  FEV1/FVC were mortality pre-
dictors of pulmonary emphysema [47], while there were 
no significant differences between the deceased and sur-
viving groups. The possible reason may be that we col-
lected the data at the initial diagnosis of CPFE. At the 
initial stage of the disease, the hyperinflation and high 
compliance of emphysema probably compensate for the 
volume loss, which presents relatively preserved lung vol-
ume, while even mild emphysema may have an additive 
effect with fibrosis on the progression of the disease and 
affect the prognosis of CPFE [3]. The other reason why 
the nomogram in the current study showed a higher net 
benefit than the ILD-GAP model may be that there were 
prognostically important variables for this population 
that were not captured in the ILD-GAP model. The vari-
ables in the nomogram are comprehensive and acquired 
easily, and can be widely applied to clinical practice 
after further validation and improvement. Although the 
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Fig. 5 Calibration plot of the nomogram showing predicted 1-year (A), 2-year (B) and 3-year (C) survival by stage against actual survival

Table 3 Likelihood ratio test between the nomogram and the 
ILD-GAP model

*Comparison of the performance of mortality by nomogram only with that of 
the combination of the nomogram and the ILD-GAP model
# Comparison of the performance of mortality by the LID-GAP model only with 
that of the combination of the nomogram and the ILD-GAP model

Nomogram ILD‑GAP model Nomogram + ILD‑
GAP model

Likelihood ratio 78.57 33.51 80.55

P value 0.160*  < 0.001#

Table 4 NRI and IDI of the nomogram and the ILD-GAP model in mortality prediction

NRI net reclassification improvement; IDI integrated discrimination improvement

NRI (95% CI) P value IDI (95% CI) P value

1-Year mortality 0.332 (0.086–0.476) 0.013 0.145 (0.054–0.213)  < 0.001

2-Year mortality 0.362 (0.087–0.511) 0.020 0.142 (0.057–0.230)  < 0.001

3-Year mortality 0.173 (− 0.069 to 0.381) 0.120 0.084 (− 0.030 to 0.175) 0.133
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predictive ability of the ILD-GAP model in CPFE was not 
superior, the model has been widely adopted to predict 
the mortality of chronic ILD due to its conciseness and 
established performance [10].

Although our study is based on real-world data and has 
relatively complete information of the patients, there are 
still some limitations. First, this retrospective cross-sec-
tional analysis was based on data from a single institution 
and therefore may suffer from selection bias. Therefore, 
more prospective and longitudinal studies are required to 
further validate the reliability of the nomogram. Second, 
the nomogram lacked specific genetic markers. However, 
our study screened 95 clinical characteristics and then 
selected the most significant variables associated with 
the prognosis of CPFE. These variables are comprehen-
sive and easily available, thus facilitating decision-making 
by physicians. Third, quantitative indicators of fibrosis 
or emphysema were not included in the study, but the 
more objective indicators, lung function parameters, 
were included because of the risk of collinearity [48, 49]. 
Fourth, the diagnosis of PH in the study was based on 
echocardiography instead of right heart catheterization 
(RHC). However, a previous study indicated that echo-
cardiography had a specificity of 100% to identify patients 
with PH and a negative predictive value of 84.72% to rule 
out PH [50]. Fifth, owing to their small sample sizes, 
other subtypes of CPFE, such as pneumoconiosis-associ-
ated CPFE, were not enrolled to maintain the consistency 
of baseline data as much as possible. To the best of our 
knowledge, this is the first model established for predict-
ing the overall mortality of CPFE based on a large sample, 
and we believe that an early report is urgent and crucial 
to provide a basis for further studies.

Conclusion
In this study, age, DLCO, RVD, CRP, and globulin were 
identified as significant predictive factors of prognosis for 
CPFE patients. Then, we established a nomogram incor-
porating the 5 variables to predict the mortality of CPFE, 
and the nomogram showed good performance. In addi-
tion, the nomogram was superior to the ILD-GAP model 
in terms of performance in the present cohort. Finally, 
although our nomogram can facilitate individualized 
therapy design, further validation is still needed to deter-
mine the clinical utility of the nomogram.
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Fig. 6 Decision curve analysis comparing the clinical performance of 
the nomogram and ILD-GAP model. For the risk of 1-year (A), 2-year 
(B) and 3-year (C) mortality, the nomogram showed the highest net 
benefit for all potential thresholds. The black dotted line represents 
the nomogram, and the red dotted line represents the ILD-GAP 
model. The blue line represents the assumption that all patients have 
been treated, and the black line represents the assumption that no 
patients have been treated



Page 10 of 11Liu et al. BMC Pulmonary Medicine          (2022) 22:327 

FEV1: Forced expiratory volume in the first second; FVC: Forced vital capacity; 
TLC: Total lung capacity; PEF: Peak expiratory flow; MMEF: Maximal midexpira-
tory flow rate; FEV1/FVC: The ratio of  FEV1 to FVC; RAA : Right atrial area; LVEF: 
Left ventricular ejection fraction; ALB: Albumin; KL-6: Klebs von den Lungen-6; 
CYFRA21-1: Cytokeratin-19-fragment; Mean ± SD: Mean ± standard deviation; 
IQR: Interquartile range (25–75th percentiles).

Acknowledgements
Not applicable.

Author contributions
QL, DS, YW, PF-L, TC-J, LL-D, MJ-D and RH-W selected the patients and acquired 
the data; QL designed the study, analyzed the data and completed the writ-
ing. DS and YW were substantially involved in revising the article. ZC had full 
access to all the data and taken responsibility for the integrity of the data and 
the accuracy of the data analysis in the study. All authors contributed to the 
article and approved the submitted version.

Funding
This study was supported by National Natural Science Foundation of China 
(U1904142, 82000015), Scientific and technological projects of Science and 
Technology Department of Henan Province (182102410010), Key Scientific 
Research Project of Colleges and Universities in Henan Province (18A320056).

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article. Besides, any additional data/files may be obtained from the corre-
sponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was performed in accordance with the principles of the Declaration 
of Helsinki and was approved by the Ethics Committee of Scientific Research 
and Clinical Trials of the First Affiliated Hospital of Zhengzhou University 
(approval number: 2019-KY-116). The Ethics Committee of Scientific Research 
and Clinical Trials of the First Affiliated Hospital of Zhengzhou University 
granted a waiver of informed consent due to the study’s retrospective nature.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 21 April 2022   Accepted: 22 August 2022

References
 1. Papaioannou AI, Kostikas K, Manali ED, Papadaki G, Roussou A, Kolilekas 

L, Borie R, Bouros D, Papiris SA. Combined pulmonary fibrosis and 
emphysema: the many aspects of a cohabitation contract. Respir Med. 
2016;117:14–26.

 2. Jankowich MD, Rounds SIS. Combined pulmonary fibrosis and emphy-
sema syndrome: a review. Chest. 2012;141(1):222–31.

 3. Cottin V, Nunes H, Brillet PY, Delaval P, Devouassoux G, Tillie-Leblond 
I, Israel-Biet D, Court-Fortune I, Valeyre D, Cordier JF, et al. Combined 
pulmonary fibrosis and emphysema: a distinct underrecognised entity. 
Eur Respir J. 2005;26(4):586–93.

 4. Lee CH, Kim HJ, Park CM, Lim KY, Lee JY, Kim DJ, Yeon JH, Hwang SS, 
Kim DK, Lee SM, et al. The impact of combined pulmonary fibrosis and 
emphysema on mortality. Int J Tuberc Lung Dis. 2011;15(8):1111–6.

 5. Jiang CG, Fu Q, Zheng CM. Prognosis of combined pulmonary fibrosis 
and emphysema: comparison with idiopathic pulmonary fibrosis alone. 
Ther Adv Respir Dis. 2019;13:1753466619888119.

 6. Ryerson CJ, Hartman T, Elicker BM, Ley B, Lee JS, Abbritti M, Jones KD, 
King TE Jr, Ryu J, Collard HR. Clinical features and outcomes in combined 

pulmonary fibrosis and emphysema in idiopathic pulmonary fibrosis. 
Chest. 2013;144(1):234–40.

 7. Cottin V. The impact of emphysema in pulmonary fibrosis. Eur Respir Rev. 
2013;22(128):153–7.

 8. Mitchell PD, Das JP, Murphy DJ, Keane MP, Donnelly SC, Dodd JD, Butler 
MW. Idiopathic pulmonary fibrosis with emphysema: evidence of synergy 
among emphysema and idiopathic pulmonary fibrosis in smokers. Respir 
Care. 2015;60(2):259–68.

 9. Jankowich MD, Polsky M, Klein M, Rounds S. Heterogeneity in combined 
pulmonary fibrosis and emphysema. Respiration. 2008;75(4):411–7.

 10. Ryerson CJ, Vittinghoff E, Ley B, Lee JS, Mooney JJ, Jones KD, Elicker BM, 
Wolters PJ, Koth LL, King TE Jr, et al. Predicting survival across chronic 
interstitial lung disease: the ILD-GAP model. Chest. 2014;145(4):723–8.

 11. Koo BS, Park KY, Lee HJ, Kim HJ, Ahn HS, Yim SY, Jun JB. Effect of combined 
pulmonary fibrosis and emphysema on patients with connective tissue 
diseases and systemic sclerosis: a systematic review and meta-analysis. 
Arthritis Res Ther. 2021;23(1):100.

 12. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, 
Matucci-Cerinic M, Naden RP, Medsger TA Jr, Carreira PE, et al. 2013 classi-
fication criteria for systemic sclerosis: an American College of Rheumatol-
ogy/European League Against Rheumatism collaborative initiative. Ann 
Rheum Dis. 2013;72(11):1747–55.

 13. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, 
Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, et al. 2010 rheumatoid 
arthritis classification criteria: an American College of Rheumatology/
European League Against Rheumatism collaborative initiative. Ann 
Rheum Dis. 2010;69(9):1580–8.

 14. Rider LG, Ruperto N, Pistorio A, Erman B, Bayat N, Lachenbruch PA, 
Rockette H, Feldman BM, Huber AM, Hansen P, et al. 2016 ACR-EULAR 
adult dermatomyositis and polymyositis and juvenile dermatomyositis 
response criteria-methodological aspects. Rheumatology (Oxford). 
2017;56(11):1884–93.

 15. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, 
Rasmussen A, Scofield H, Vitali C, Bowman SJ, et al. 2016 American Col-
lege of Rheumatology/European League Against Rheumatism classifica-
tion criteria for primary Sjogren’s syndrome: a consensus and data-driven 
methodology involving three international patient cohorts. Ann Rheum 
Dis. 2017;76(1):9–16.

 16. Calandrino RL, McAuliffe KJ, Dolmage LE, Trivedi ER. Synthesis of the 
C3 and C1 constitutional isomers of trifluorosubphthalocyanine and 
their fluorescence within MDA-MB-231 breast tumor cells. Molecules. 
2019;24(21):3832.

 17. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman 
R, Smolen JS, Wofsy D, Boumpas DT, Kamen DL, et al. 2019 European 
League Against Rheumatism/American College of Rheumatology 
classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 
2019;78(9):1151–9.

 18. Chung SA, Langford CA, Maz M, Abril A, Gorelik M, Guyatt G, Archer AM, 
Conn DL, Full KA, Grayson PC, et al. 2021 American College of Rheumatol-
ogy/Vasculitis Foundation guideline for the management of antineu-
trophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 
2021;73(8):1366–83.

 19. Mosca M, Tani C, Vagnani S, Carli L, Bombardieri S. The diagnosis and clas-
sification of undifferentiated connective tissue diseases. J Autoimmun. 
2014;48–49:50–2.

 20. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau 
G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al. 2015 ESC/ERS 
Guidelines for the diagnosis and treatment of pulmonary hypertension: 
the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hyper-
tension of the European Society of Cardiology (ESC) and the European 
Respiratory Society (ERS): endorsed by: Association for European Paediat-
ric and Congenital Cardiology (AEPC), International Society for Heart and 
Lung Transplantation (ISHLT). Eur Respir J. 2015;46(4):903–75.

 21. Douglas PS, Khandheria B, Stainback RF, Weissman NJ, Brindis RG, Patel 
MR, Alpert JS, Fitzgerald D, et al. ACCF/ASE/ACEP/ASNC/SCAI/SCCT/
SCMR 2007 appropriateness criteria for transthoracic and transesopha-
geal echocardiography: a report of the American College of Cardiology 
Foundation Quality Strategic Directions Committee Appropriateness 
Criteria Working Group, American Society of Echocardiography, American 



Page 11 of 11Liu et al. BMC Pulmonary Medicine          (2022) 22:327  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

College of Emergency Physicians, American Society of Nuclear Cardiol-
ogy, Society for Cardiovascular Angiography and Interventions, Society of 
Cardiovascular Computed Tomography, and the Society for Cardiovas-
cular Magnetic Resonance. Endorsed by the American College of Chest 
Physicians and the Society of Critical Care Medicine. J Am Soc Echocardi-
ogr. 2007;20(7):787–805.

 22. Malik N, Win S, James CA, Kutty S, Mukherjee M, Gilotra NA, Tichnell C, 
Murray B, Agafonova J, Tandri H, et al. Right ventricular strain predicts 
structural disease progression in patients with arrhythmogenic right 
ventricular cardiomyopathy. J Am Heart Assoc. 2020;9(7): e015016.

 23. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J. 
Fleischner Society: glossary of terms for thoracic imaging. Radiology. 
2008;246(3):697–722.

 24. Pugh SL, Torres-Saavedra PA. Fundamental statistical concepts in clinical 
trials and diagnostic testing. J Nucl Med. 2021;62(6):757–64.

 25. Jin C, Cao J, Cai Y, Wang L, Liu K, Shen W, Hu J. A nomogram for predicting 
the risk of invasive pulmonary adenocarcinoma for patients with solitary 
peripheral subsolid nodules. J Thorac Cardiovasc Surg. 2017;153(2):462–9.

 26. Kwiatkowska S. IPF and CPFE—the two different entities or two different 
presentations of the same disease? Adv Respir Med. 2018;86(1):23–6.

 27. Zantah M, Dotan Y, Dass C, Zhao H, Marchetti N, Criner GJ. Acute exacer-
bations of COPD versus IPF in patients with combined pulmonary fibrosis 
and emphysema. Respir Res. 2020;21(1):164.

 28. Tibshirani R. The lasso method for variable selection in the Cox model. 
Stat Med. 1997;16(4):385–95.

 29. Ajana S, Acar N, Bretillon L, Hejblum BP, Jacqmin-Gadda H, Delcourt C, for 
the BLISAR Study Group. Benefits of dimension reduction in penalized 
regression methods for high-dimensional grouped data: a case study in 
low sample size. Bioinformatics. 2019;35(19):3628–34.

 30. Kam MLW, Li HH, Tan YH, Low SY. Validation of the ILD-GAP model and a 
local nomogram in a Singaporean cohort. Respiration. 2019;98(5):383–90.

 31. Awano N, Inomata M, Ikushima S, Yamada D, Hotta M, Tsukuda S, Kuma-
saka T, Takemura T, Eishi Y. Histological analysis of vasculopathy associated 
with pulmonary hypertension in combined pulmonary fibrosis and 
emphysema: comparison with idiopathic pulmonary fibrosis or emphy-
sema alone. Histopathology. 2017;70(6):896–905.

 32. Seeger W, Adir Y, Barbera JA, Champion H, Coghlan JG, Cottin V, De Marco 
T, Galie N, Ghio S, Gibbs S, et al. Pulmonary hypertension in chronic lung 
diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D109-116.

 33. Cottin V, Le Pavec J, Prevot G, Mal H, Humbert M, Simonneau G, Cordier JF. 
Germ"O"P: pulmonary hypertension in patients with combined pulmo-
nary fibrosis and emphysema syndrome. Eur Respir J. 2010;35(1):105–11.

 34. Toubi E, Vadasz Z. Innate immune-responses and their role in driving 
autoimmunity. Autoimmun Rev. 2019;18(3):306–11.

 35. Gimeno D, Delclos GL, Ferrie JE, De Vogli R, Elovainio M, Marmot MG, 
Kivimaki M. Association of CRP and IL-6 with lung function in a middle-
aged population initially free from self-reported respiratory problems: the 
Whitehall II study. Eur J Epidemiol. 2011;26(2):135–44.

 36. Del Giudice M, Gangestad SW. Rethinking IL-6 and CRP: why they are 
more than inflammatory biomarkers, and why it matters. Brain Behav 
Immun. 2018;70:61–75.

 37. Spagnolo P, Distler O, Ryerson CJ, Tzouvelekis A, Lee JS, Bonella F, Bouros 
D, Hoffmann-Vold AM, Crestani B, Matteson EL. Mechanisms of progres-
sive fibrosis in connective tissue disease (CTD)-associated interstitial lung 
diseases (ILDs). Ann Rheum Dis. 2021;80(2):143–50.

 38. Shenderov K, Collins SL, Powell JD, Horton MR. Immune dysregula-
tion as a driver of idiopathic pulmonary fibrosis. J Clin Investig. 
2021;131(2):e143226.

 39. Enocsson H, Karlsson J, Li HY, Wu Y, Kushner I, Wettero J, Sjowall C. The 
complex role of C-reactive protein in systemic lupus erythematosus. J 
Clin Med. 2021;10(24):5837.

 40. Cai R, Wang Q, Zhu G, Zhu L, Tao Z. Increased expression of caspase 1 
during active phase of connective tissue disease. PeerJ. 2019;7: e7321.

 41. Cottin V, Nunes H, Mouthon L, Gamondes D, Lazor R, Hachulla E, Revel D, 
Valeyre D, Cordier JF. Groupe d’Etudes et de Recherche sur les Maladies 
"Orphelines P: combined pulmonary fibrosis and emphysema syndrome 
in connective tissue disease. Arthritis Rheum. 2011;63(1):295–304.

 42. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of 
a multivariable prediction model for individual prognosis or diagnosis 
(TRIPOD): the TRIPOD statement. BMJ. 2015;350: g7594.

 43. Park SY. Nomogram: an analogue tool to deliver digital knowledge. J 
Thorac Cardiovasc Surg. 2018;155(4):1793.

 44. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, McGinn T, 
Guyatt G. Discrimination and calibration of clinical prediction models: 
users’ guides to the medical literature. JAMA. 2017;318(14):1377–84.

 45. Lee SH, Park JS, Kim SY, Kim DS, Kim YW, Chung MP, Uh ST, Park CS, Park 
SW, Jeong SH, et al. Comparison of CPI and GAP models in patients 
with idiopathic pulmonary fibrosis: a nationwide cohort study. Sci Rep. 
2018;8(1):4784.

 46. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve 
analysis, a novel method for evaluating diagnostic tests, prediction mod-
els and molecular markers. BMC Med Inform Decis Mak. 2008;8:53.

 47. Timmins SC, Diba C, Farrow CE, Schoeffel RE, Berend N, Salome CM, King 
GG. The relationship between airflow obstruction, emphysema extent, 
and small airways function in COPD. Chest. 2012;142(2):312–9.

 48. Suzuki M, Kawata N, Abe M, Yokota H, Anazawa R, Matsuura Y, Ikari J, 
Matsuoka S, Tsushima K, Tatsumi K. Objective quantitative multidetector 
computed tomography assessments in patients with combined pulmo-
nary fibrosis with emphysema: relationship with pulmonary function and 
clinical events. PLoS ONE. 2020;15(9): e0239066.

 49. Feldhaus FW, Theilig DC, Hubner RH, Kuhnigk JM, Neumann K, Doellinger 
F. Quantitative CT analysis in patients with pulmonary emphysema: is 
lung function influenced by concomitant unspecific pulmonary fibrosis? 
Int J Chron Obstruct Pulmon Dis. 2019;14:1583–93.

 50. Hammerstingl C, Schueler R, Bors L, Momcilovic D, Pabst S, Nickenig G, 
Skowasch D. Diagnostic value of echocardiography in the diagnosis of 
pulmonary hypertension. PLoS ONE. 2012;7(6): e38519.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Use of machine learning models to predict prognosis of combined pulmonary fibrosis and emphysema in a Chinese population
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	Study population
	Ethics issue
	Data collection
	Follow-up and outcome assessment
	Statistical analysis

	Results
	Clinical characteristics
	Model establishment
	Performance of the model

	Discussion
	Conclusion
	Acknowledgements
	References


