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Abstract

Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for
quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple
phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer
imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a
microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm
software package. Currently, the software package contains one data acquisition module and four image analysis programs:
WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos.
The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion
software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg
software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software
with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a
genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code,
executable programs, and sample images are available at www.quantworm.org. Our software package has several
advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The
QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial
software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and
requirements.
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Introduction

Phenotypic assays are crucial in genetics. However, traditional

methods relying on manual analysis are a bottleneck in large-scale

quantitative experiments. As an alternative, automated high-

throughput imaging systems have emerged. Several research

groups have developed high-throughput imaging systems for

Caenorhabditis elegans phenotypic assays and have demonstrated

these systems to be highly successful in their applications

[1,2,3,4,5,6]. For example, various worm trackers [2,3,7,8] can

analyze worm locomotion; the Lifespan Machine [5] and

WormScan [1] measure worm lifespan; some systems count the

number of worm embryos [9] or focus on analyzing worm

phenotypes in liquid culture [4,10]. While these systems are useful

for their specific applications, they fall short in screens when

multiple phenotypes are analyzed. Further, most of these systems

require commercial software such as a LabView Runtime license,

MATLAB, or BioApplication [2,3,7,8,10]. Thus the goal of this

study was to develop an automatic phenotyping system that (1)

enables a comprehensive analysis of multiple phenotypes; (2)

allows full handling of hardware and software and its source code;

(3) has no dependency on commercial software; (4) runs on

multiple platforms; and (5) enables sustainable system develop-

ment to accommodate new analysis.

We developed the QuantWorm system that can analyze C.

elegans lifespan, locomotion, body size, and egg laying phenotypes.

The software was developed in Java, a free, cross-platform

programming language, and can be installed and run on both

Mac and Windows computers. The software can be used for free,

as it does not require any commercial software. The QuantWorm

source code is freely available at http://www.quantworm.org/,

making it easy to modify and customize the system for new

applications.

We demonstrated the utility of the QuantWorm system in two

case studies: a drug assay and a genetic assay. First, we used our

system to study the effect of celastrol on C. elegans lifespan.

Celastrol is a natural triterpenoid purified from the root extract of

the medicinal plant Tripterygium wilfordii. Celastrol has shown some

promising anti-oxidant, anti-inflammatory, and anti-cancer activ-

ities [11,12,13,14,15]. Consequently, we hypothesized that celas-

trol might increase lifespan.

In our second case study, we quantified multiple phenotypes of

C. elegans mutants in the Gaq/EGL-30 signaling pathway. The

Gaq/EGL-30 pathway is a signal transduction pathway that

influences lifespan, oxidative stress, immunity, locomotion, and

egg laying, as mutants in this pathway have shown phenotypes in

these processes [16,17,18,19,20,21]. We decided to systematically

quantify four phenotypes (lifespan, locomotion, body size, and egg
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laying rate) of mutants of five pathway components (TAX-6, EAT-

16, Gaq/EGL-30, PLCb/EGL-8, and UNC-73/Trio RhoGEF)

using the QuantWorm system.

Methods

Nematodes
Nematodes were cultured on NGM (Nematode Growth

Medium) agar according to standard protocols [22]. To obtain

synchronized populations of C. elegans worms, eggs were harvested

by bleaching gravid worms with a diluted alkaline hypochlorite

solution [23]. The solution contained 0.5 M NaOH and 1%

sodium hypochlorite from household bleach. The eggs were

incubated overnight in M9 buffer supplemented with cholesterol at

5 mg/L. Hatched L1 larvae were transferred to NGM plates

seeded with E. coli (OP50) and grown at 20uC. Assays were

conducted using wild-type (Bristol N2), PS2960 eat-16(sy438),

MT1083 egl-8(n488), PS3202 egl-30(ad809), PR675 tax-6(p675),

and KG1278 unc-73(ce362). PS2960 and PS3202 were obtained

from the Sternberg lab. All other strains were obtained from the

Caenorhabditis Genetics Center (CGC).

Microscopy
The microscopy configuration in the QuantWorm system

consists of a dissecting microscope (Unitron), a motorized stage

and stage controller (Prior), and a Firewire camera (Unibrain Fire-

i). The camera and stage controller are connected to the same

computer.

Phenotypic Assays
Lifespan assay. Six-well NGM plates were seeded with

70 mL of fresh overnight culture of the OP50 bacteria per well and

incubated overnight at room temperature before use. Approxi-

mately 70 hatched L1 larvae in solution were dropped onto each

well. At the L4 larval stage, the plates were dosed with FUdR at

25 mmol/L agar to prevent eggs from hatching. In lifespan assays

with celastrol, the worms were dosed with celastrol at 7 mmol/L

agar every other day from the L1 larval stage until all of the worms

were dead.

Wells were imaged daily with our WormScanner program until

all worms died. Two scans of twelve images (364 images of

6406480 pixels) per well were taken at two minute time intervals.

These tiled images were assembled into a single large image of the

entire well. We also conducted a traditional lifespan assay using a

basic light microscope. A worm was scored as dead if it failed to

respond to a touch with a platinum wire. Lifespan was scored with

the first day of adulthood as day 0.

Locomotion assay. Two locomotion assays were conducted

to compare the locomotion of different mutants with and without

food. The first, a locomotion assay with food, was conducted in

conjunction with the lifespan assay. 30-second videos (6406480

pixels) were collected for each well in the lifespan assay, when the

animals were first day adults. Worms captured on videos were

within the circular E. coli lawn. For the second assay, a locomotion

assay without food, ,100 worms were grown in seeded 6-well

plates until they were first day adults. The worms were rinsed with

cold S-basal solution three times and then transferred to unseeded

6-well NGM plates. Approximately 20 minutes after worms were

dropped onto each well, videos were recorded for 30 seconds for

each well.

Body size assay. Synchronized L1 larvae were dropped onto

seeded 6-well plates and grown at 20uC. One day after the L4

larval stage, worms were collected from each well with M9

solution and transferred to unseeded 6-well plates. The adult

worms were then killed by adding 20 mL of 1 M sodium azide into

each well. During each scan, 130 tiled images were taken of each

well.

Egg laying assay. Synchronized worms were grown in

seeded 6-well plates until 28 hours after the L4 stage. The plates

were washed with M9 buffer, and worm solution containing ,10

adult worms was dropped onto 24-well plates with NGM wells

seeded with 10 mL OP50 bacteria. The worms were incubated for

90 minutes at 20uC before 15 mL 1 M sodium azide was added

into each well to kill the worms and bacteria. The plates were then

scanned.

Data Analysis
In the lifespan assay, the number of detected living worms

should be equal to or greater than the number detected in later

days. However, our image analysis method does not always

guarantee this because more worms may be detected in later days.

Thus a step wise decrease filter was applied to the raw data where

if the number of living worms at day t-1 is smaller than that at day

t, we set the number of living worms at day t-1 to the same as the

number of living worms at day t. Unless otherwise specified, all

measurements of the mean lifespan, worm speed, body length, and

egg laying rate are given as the mean6 standard deviation from at

least two independent experiments conducted at different days. At

least triplicate wells were used within a given experiment.

Results

The QuantWorm Phenotyping System
The hardware of the QuantWorm system is composed of a

microscope equipped with a digital camera and motorized stage.

The software package in this system contains one image

acquisition software (WormScanner) and four image analysis

programs (WormLifespan, WormLocomotion, WormLength, and

WormEgg) for lifespan, locomotion, body size, and egg laying

assays (Figure 1). For image processing, the QuantWorm software

uses the ImageJ API/library together with our native image

processing libraries. Software source code, executable software

programs and sample images are available at http://www.

quantworm.org/. The image analysis software programs provide

a similar 3-step process. ‘Image Processing’ conducts batch

processing to automatically analyze multiple images/videos.

‘Manual Inspection’ enables a user to examine image analysis

and conduct manual correction if needed. ‘Print Report’ creates

text files detailing the phenotypic measurements.

WormScanner. The WormScanner is an automated image

and video acquisition software that controls a motorized stage

(Figure 1). In the image scanning mode, the software takes

multiple tiled images of a Petri dish or individual wells of a multi-

well plate. In the video recording mode, the WormScanner takes

videos with specified length at given locations. For the lifespan

assay, the software scans a plate twice to create time-lapse images.

WormLifespan. WormLifespan counts moving worms from

two consecutive images taken with a certain time interval (for

example 2 minutes). Since living worms move or change their

body shape, it is possible to detect such moving worms by

comparing time-lapse images (Figure 2A). WormLifespan auto-

matically identifies moving worms by analyzing the differential

image created by subtracting the first time-lapse image from the

second time-lapse image. The differential image is then binarized

so that pixels that changed values are highlighted as white. A

detected object in the second time-lapse image is a moving worm if

its size is within a limit and if a certain number of white pixels are

found in the binarized differential image. In addition, missing

Automatic Analysis of Multiple Worm Phenotypes
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moving worms bound to large dark objects are detected by region

labeling of the subtracted binary image. The software conducts

parameter-free binarization using adaptive local thresholding [24]

to analyze a wide range of plate images with different brightness/

contrast levels or uneven illumination across a plate. One of the

unique strengths of WormLifespan is that all detection algorithms

used in the software have been optimized to detect moving worms

even if an agar plate is shadowed or contains dark particles.

WormLocomotion. The WormLocomotion software con-

ducts fully automated video analysis to compute the velocity of

moving worms. Paths of moving worms are constructed by

tracking individual worms based on their centroid and size in the

region-labeled image (Figure 2B). Since flickering of the video

sequences can introduce random positional noise into the centroid,

all locomotion trails are smoothed by the Bezier path-fitting

algorithm. The software keeps track of every individual moving

worm until it collides with others or touches the boundary of

image. The mean velocity is computed by dividing the distance

traveled by the time elapsed. Any object whose trail is confined in

a tiny bounding box is detected as a non-moving object and

excluded from the locomotion analysis. The WormLocomotion

software outputs results in several formats: (1) a binary file

containing raw data of detected tracks; (2) two summary text files

containing data of the average velocity and individual velocities of

detected tracks; (3) two histograms showing distribution of worm

velocities and cumulative probability distribution of worm

velocities; and (4) an image file showing the last video frame with

detected tracks in color.

WormLength. WormLength is an image analysis software

that measures worm body size. For image processing, the source

image is converted into a region-labeled binary image by applying

adaptive thresholding and region labeling (Figure 2C). Any objects

that fall outside set parameters (area and bounding box size) are

excluded from further analysis. The software then computes a

skeleton curve running through the middle of each valid worm.

Only a worm having a single skeleton curve from head to tail

without any branches is considered as a valid finding for body size

measurement. The body length is calculated by summing up the

distance between pixels while tracing the skeleton curve in the

horizontal, vertical, or diagonal directions. The software removes

false positive detection by determining the size, length, and fatness

of detected objects. The presence of background particles or eggs

often distorts skeleton curves; however, distorted skeleton curves

are easily detected during manual inspection and removed from

the data set.

WormEgg. The software counts eggs from a single image.

Compared with the detection of adult worms, the detection of eggs

is more challenging since worm tracks interfere with the image

analysis. We thus developed a parameter-free detection algorithm,

which applies multiple thresholds that create multiple binary

images from a single source image (Figure 2D). We utilized the

facts that most eggs dominantly appeared in several binary images

and that obscured eggs could be detected in a certain subset of

binary images.

The egg detection algorithm consists of five major steps: (1)

identifying single egg objects; (2) determining valid egg detection

parameters; (3) applying multiple thresholds; (4) analyzing

morphology of detected objects; and (5) removing duplicate

findings. The purpose of the first step is to locate single egg objects

(not aggregated eggs) whose morphology parameters are used for

in-depth analysis in the following steps. Valid single egg objects

can be detected by applying Canny edge detection, gap filling,

region labeling, morphology analysis, and single egg object

detection. In the second step, the software determines proper

reference threshold values such as average gray value and size of

valid eggs. The next step detects every egg by applying multiple

thresholding. Multiple binary images (n $ 10) are created from a

single source image using different threshold values (for example,

from 30 to 230 gray value with a step of 10). Once binary images

are created, region labeling and morphology analysis are

conducted for every binary image. This multiple thresholding

approach helps find hidden eggs that might not be detected using a

typical single step binarization method. Since multiple threshold-

ing generates many replicate findings, a clustering process is

performed to identify unique eggs and eliminate replicates, based

Figure 1. The QuantWorm imaging system. Our imaging system consists of imaging hardware and the QuantWorm software package. The
hardware is composed of a microscope equipped with a digital camera and a motorized stage. The image acquisition software is used to control the
stage and take images and videos. Four image analysis software programs are used to analyze body size, lifespan, egg laying, and locomotion from
the images or videos. Once the software finishes the fully automated image analysis, a user can correct errors in the manual inspection window. Both
native image processing algorithms and ImageJ API/library are used to process images.
doi:10.1371/journal.pone.0084830.g001
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Figure 2. QuantWorm image processing algorithms. (A) WormLifespan. Two time-lapse images are obtained, and a differential image is
created by subtracting the second time-lapse image from the first time-lapse image. Independently, individual worms are detected in the second
image and are defined as region of interest (ROI). Worm movement is determined by counting the number of white pixels. (B) WormLocomotion.
Image frames from videos are binarized and region-extracted to detect objects. Worms are indentified by analyzing the morphology of detected
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on the location and size of eggs and the total number of

occurrences in binary images.

Software Accuracy
To evaluate the accuracy of WormLifespan, we compared the

result of image analysis using WormLifespan to the result of

manual counting of living worms. In the manual counting method,

the number of living worms was manually counted by aspirating

individual worms under a microscope. From the direct compar-

ison between the two methods, we found that the result of

WormLifespan was highly correlated with that of the correspond-

ing manual method with a correlation coefficient of R2 = 0.9954

(Figure 3A). The average difference in the worm count between

the two methods was 3.765.12 worms. For six-well plates, the

optimal condition is 0,100 worms per well for our system. In

populations greater than 100 worms, more worms crawled to the

sides of the wells where they were shadowed from view and could

not be detected by our software.

To test the accuracy of our locomotion software, worm

simulation videos (Movie S1) that mimic sinusoidal movement of

real worms were created using a simulation program and analyzed

by WormLocomotion. The reason for analyzing the worm

simulation videos was that manual measurement of the average

velocity from actual worm videos was inconvenient and inaccu-

rate. The simulation program, available at our QuantWorm

website (http://www.quantworm.org/), rendered a series of black

and white frame images containing multiple virtual worms. The

locations of the virtual worms were designed to move straight

forward to random directions at constant speeds (pixels/frame). A

sine function was used to create a sinusoidal worm shape, and its

amplitude and phase were modulated to simulate the worm shape.

To evaluate the accuracy of WormLocomotion, worm velocities in

the simulation videos were then compared with the average

velocities analyzed by WormLocomotion. From the analysis, the

average percent difference in the velocity between the two

methods was 1.161.46%, indicating a high degree of analysis

accuracy using WormLocomotion (Figure 3B).

objects. An individual worm track is constructed by connecting all centroid points of a moving worm. (C) WormLength. Source image is binarized,
and worms are detected by region extraction and shape analysis. Once a worm object is identified, a skeleton curve is created through the middle of
the worm. The length of the worm is calculated by measuring the length of the skeleton curve (D) WormEgg. Single eggs are detected by applying
edge detection, gap filling, flood filling, and morphology analysis. Egg detection parameters are determined by analyzing the detected single eggs.
Multi-thresholding binarization is applied to create multiple binary images from which eggs are detected. Results are compiled to conduct clustering
to identify highly probable eggs and remove duplicate findings.
doi:10.1371/journal.pone.0084830.g002

Figure 3. Performance of QuantWorm. (A) WormLifespan. Moving worms were manually counted by aspirating individual worms from a well
under a basic light microscope after images were captured (n=26 wells). (B) WormLocomotion. Worm simulation videos were created and then
analyzed by the WormLocomotion software (n= 11 videos). (C) WormLength. In the manual method, worm length was manually measured from
images using an Adobe Photoshop length measurement tool (n= 46 worms). (D) WormEgg. In the manual method, eggs were manually counted by
aspirating eggs from a well after images were taken (n= 42 wells). The diagonal line represents the ideal case where the computer measurements
equal the manual measurements.
doi:10.1371/journal.pone.0084830.g003
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To evaluate the accuracy of WormLength, we compared the

result of image analysis using WormLength to the result of a

manual method in which the body lengths of individual worms

were manually measured using a length measurement tool in

Adobe Photoshop. In the manual method, multiple straight lines

were used to measure the entire length of any curved worm shape.

The correlation coefficient and average percent difference in the

body length between the two methods were R2= 0.9937 and

1.360.93%, respectively (Figure 3C).

To evaluate the accuracy of WormEgg, we compared the result

of analysis using WormEgg to the result of manual egg counting

through a microscope. We found that the average difference in the

egg count between the two methods was 2.662.95 eggs

(Figure 3D). This result indicates that image analysis using

WormEgg allowed an accurate measurement of egg count. It is

worthy to mention that most eggs were found near and within the

OP50 bacterial lawn in the center of the well in an agar plate, and

eggs were hardly found in the dark side of the well near the wall.

Consequently, the number of undetected, eggs hidden in the dark

side of the well on the plate had a negligible effect on the result of

our egg-laying assay.

Case Study 1: Drug Assay
To assess the accuracy of WormLifespan software, we

compared the results of a lifespan assay conducted by manually

counting worms under a microscope with the results of an assay

using the QuantWorm system. The data obtained using these two

methods were highly consistent. In both methods, celastrol

significantly increased the mean lifespan (Figure 4). In both the

celastrol and the control groups, the mean lifespan measured by

QuantWorm was very similar to that measured by the manual

method with a percent difference less than 5%.

Case Study 2: Genetic Assay
We conducted four different phenotypic assays using five

different mutant strains involved in the Gaq signaling pathway

(Figure 5): egl-8, tax-6, eat-16, egl-30, and unc-73.

In the lifespan assay, we found that egl-8 and tax-6 lived longer

(Figure 5A and B), a finding consistent with previous reports

[16,25]. Both eat-16 and egl-30 mutants in our assay had shorter

lifespans than N2. The reduced lifespan of egl-30 under our

QuantWorm system was inconsistent with other reports [16,21,26]

and revealed the limitations of our system. Our system is

locomotion based, thus, paralyzed animals would be classified as

dead. Further, when worms move to the area near the wall on an

agar plate, our system would not detect them and would count

them as dead.

In the locomotion assay, egl-8, egl-30, unc-73 and tax-6 mutants

had a lower mean velocity than N2 in the presence and absence of

food while eat-16 mutants had a higher mean velocity than N2

(Figure 5C). Our findings are consistent with results from other

studies where egl-30, egl-8 and unc-73 mutants displayed lower

body bend rates than N2 [17,18,20,27] and eat-16 mutant showed

an increased number of body bends [18,19,28]. The result is also

consistent with our previous report using a different single-worm

tracking system [21]. Our measurement of N2 speed was within

the ranges reported by multiple labs (31,120 mm/s with food and

16,250 mm/s without food, summarized by Ramot et al. [7]).

Variation in N2 worm speed between papers is likely due to

different worm ages or experimental conditions. We also observed

different patterns in the speed probability distribution between

strains. For example, compared with N2 and egl-8, eat-16 had a

broad spectrum of worm speed through 0–250 mm/s, meaning

greater variance of worm speed (Figure 5D).

In the body size assay, we found that both eat-16 and tax-6

mutants had significantly shorter body length (t-test, p,0.001)

whereas the egl-30 mutant had a longer body size (Figure 5C). The

body length of the tax-6 mutant (795671 mm) was about 70% of

that of N2 (1126677 mm), which is similar to the 60% change

reported by Morck and Pilon [29], although their worm age (2

days after L4 larval stage) was different from ours (1 day after L4

larval stage).

We also assayed egg laying rate (Figure 5E). The measured egg

laying rate of N2 worms in our study (5.8561.33 eggs/worm/hr at

28 hr of adulthood) was similar to that reported by Daniels et al.

(,6 eggs/worm/hr) [30]. Compared with the egg laying rate of

N2 worms, egl-8, egl-30, unc-73, and tax-6 mutants had lower egg

laying rates at 28 hr of adulthood. However, the reduction in the

egg laying rate of egl-8, egl-30, unc-73, and tax-6 mutants was much

greater than that of eat-16.

Discussion

The QuantWorm hardware configuration uses a microscope

with a digital camera. While a flat-bed scanner could provide

faster and cheaper imaging systems [1,5], these systems have

relatively lower image resolution. A flat-bed scanner is also

incapable of creating high frame-rate video files, which are needed

for advanced locomotion analysis. For lifespan assays, the plates

are not accessible for manual observation if the system uses a flat-

bed scanner [1,5]. This limits its applications where the worms

need to be dosed with a chemical and observed every day as in our

first case study.

The QuantWorm software has adapted methods from several

popular systems, so that the developers familiar with these systems

easily modify QuantWorm. For example, while WormScanner

provides a completely different user interface and functionality, it

Figure 4. Celastrol increased lifespan. A lifespan assay was
conducted using the manual method (A) or using the QuantWorm
system (B). Worms were dosed every other day with 7 mmol/L agar
celastrol or the solvent DMSO as a control. n represents the number of
worms. **p,0.05; ***p,0.001; p-value by log rank test.
doi:10.1371/journal.pone.0084830.g004
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follows the same coding platform of Worm Tracker 2.0 (http://

www.mrc-lmb.cam.ac.uk/wormtracker/). The WormLocomotion

software uses an algorithm that is similar to the Parallel Worm

Tracker [7]. However, WormLocomotion does not rely on the

commercial software MATLAB. WormLocomotion also has

enhanced functions in noise removal so that it has lower

requirements for video quality. WormLocomotion only analyzes

moving worms to prevent faulty analysis of worm-like objects that

appear in video.

The QuantWorm system has several limitations in the lifespan

assay, as illustrated in the case of the egl-30 mutant lifespan. Our

system detects moving worms and, therefore, measures healthy

lifespan. If living worms remain stationary or move very slowly,

the software may not detect these worms. Consequently,

WormLifespan tends to count fewer worms than the traditional

counting method based on touch-provoked movement with a

platinum wire. Tapping the plate can agitate the animals and may

mitigate such a problem. Further, when worms moved into the

dark side of the well, they become no longer visible on the images.

This problem is more severe when the animals are younger.

Counting dead animals instead of live animals may alleviate the

problem.

Figure 5. Phenotypes of Gaq pathway mutants. (A) Survival curves. The results are from two independent experiments. At least triplicate wells
were used (n .180 worms for each strain). (B) Mean lifespan. (C) Worm speed measured as the sum of average worm velocities in individual videos
divided by the number of videos. With food: For each strain, videos (n $ 10 videos) collected from four independent experiments were analyzed.
Without food: For each strain, videos (n $ 5 videos) collected from three independent experiments were analyzed. (D) Distribution of individual
average speeds of detected tracks (n $ 487 tracks for each strain) with food (Day 1,3 of adulthood). (E) Body length. Worms at 1 day of adulthood
were used (n $ 113 for each strain). (F). Egg laying rate. Worms at 28 hr of adulthood were used. Shown is a combined result from two independent
experiments with,10 hermaphrodites per well (n $ 12 wells for each strain). *p,0.01; **p,0.05; ***p,0.001; p-value by log rank test (Figure B) and
t-test (Figure C, E, and F).
doi:10.1371/journal.pone.0084830.g005
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The accuracy of locomotion measurements by QuantWorm

depends on the hardware setup. For example, in our settings, one

pixel in video image corresponds to ,20 mm. Therefore, we

cannot accurately measure the speed of worms moving at a speed

below this detection limit. This problem is partly shown in

Figure 5C where egl-8, egl-30, unc-73, and tax-6 had a similar

saturated speed at ,23 mm/s with food. Using a high-resolution

camera or taking videos at a higher magnification can lower the

detection limit.

Despite these limitations, the QuantWorm system proved to be

a powerful tool as shown in our two case studies. In the first case

study, we demonstrated that celastrol can significantly increase the

lifespan. The time needed to analyze over 400 animals using the

QuantWorm system was less than the time needed to assay less

than 80 animals manually. Such throughput is highly desirable in

chemical screens.

In our case study 2, we obtained consistent results for lifespan,

locomotion, body length, and egg laying rate with those previously

reported. The only exception was the egl-30 mutant’s lifespan as

previously discussed. It has been proposed that EAT-16 inhibits

EGL-30 [19] and that EGL-30 activates both EGL-8 [27,31] and

UNC-73 [20] (for review, see [32,33]). Consistent with this model,

our data showed that the eat-16 mutant had phenotypes opposite

to that of EGL-8, EGL-30, and UNC-73 in lifespan, locomotion,

and body length. It has also been proposed that TAX-6 activates

EGL-30 [34]. Consistent with this model, we observed that TAX-

6 and EGL-30 showed similar phenotypes in locomotion and egg-

laying rates. However, TAX-6 and EGL-30 showed opposite

phenotype in body length suggesting that TAX-6 may have

different functions in body size regulation.

The QuantWorm system also enabled us to discover new

phenotypes of these mutants. For example, it was known that eat-

16 animals move at a higher speed than wild-type animals on

average, we also found that eat-16 animals showed a broader

variation in their speed distribution. It was reported that eat-16

mutants lay premature eggs, while egl-8 and egl-30mutants lay eggs

that are at a later developmental stage than wild-type [35]. The

QuantWorm system does not distinguish between the develop-

mental stage of eggs, however, we found that egl-8 and egl-30 also

lay eggs at a slower rate than wild-type.

The QuantWorm provides a powerful phenotyping tool that

can be used in large-scale, quantitative genetic or chemical screens

in C. elegans. As the functionality of the system is highly modular, it

can easily accommodate additional analysis of new phenotypes.

With additional image analysis tools, it can also be adapted to

analyze other organisms.

Supporting Information

Movie S1 Worm simulation video mimicking sinusoidal
movement of real worms moving forward. The simulation

video was computationally created to evaluate the accuracy of

WormLocomotion. The video (7 frames/sec) contains 10 virtual

worms moving at a velocity of 1 pixel/frame and 10 worms

moving at a velocity of 0.25 pixels/frame.

(AVI)
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4. Wählby C, Kamentsky L, Liu ZH, Riklin-Raviv T, Conery AL, et al. (2012) An

image analysis toolbox for high-throughput C. elegans assays. Nat Methods 9:

714–716.

5. Stroustrup N, Ulmschneider BE, Nash ZM, Lopez-Moyado IF, Apfeld J, et al.

(2013) The Caenorhabditis elegans Lifespan Machine. Nat Methods 10: 665–670.

6. Moore BT, Jordan JM, Baugh LR (2013) WormSizer: High-throughput analysis

of nematode size and shape. PLoS ONE 8: e57142.

7. Ramot D, Johnson BE, Berry Jr TL, Carnell L, Goodman MB (2008) The

Parallel Worm Tracker: A platform for measuring average speed and drug-

induced paralysis in nematodes. PLoS ONE 3: e2208.

8. Tsibidis G, Tavernarakis N (2007) Nemo: a computational tool for analyzing

nematode locomotion. BMC Neurosci 8: 86.

9. Mohamed M, Prasad B, Badawy W (2008) High throughput quantification

system for egg populations in Caenorhabditis elegans;. IEEE. 1072–1075.

10. Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, et al. (2010) Automated high-

content live animal drug screening using C. elegans expressing the aggregation

prone serpin a1-antitrypsin Z. PLoS ONE 5: e15460.

11. Allison AC, Cacabelos R, Lombardi VRM, Álvarez XA, Vigo C (2001)
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