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Impaired immune responses and increased susceptibility to infection characterize acute

inflammatory conditions such as pancreatitis and alcoholic hepatitis and aremajor causes

of morbidity and mortality. However, the mechanisms that drive this apparent immune

paresis remain poorly understood. Monocytes mediate host responses to damage

and pathogens in health and disease, and three subsets of monocytes have been

defined based on CD14 and CD16 expression. We sought to determine the changes in

monocyte subsets in acute pancreatitis (AP) and acute alcoholic hepatitis (AAH), together

with functional consequences and mechanisms that underlie this change. Peripheral

blood mononuclear cells (PBMCs) from patients with AP or AAH were compared

with healthy controls. Monocyte subsets were defined by HLA-DR, CD14, and CD16

expression. Changes in surface and intracellular protein expression and phosphorylation

were determined by flow cytometry. Phenotype and function were assessed following

stimulation with lipopolysaccharide (LPS) or other agonists in the presence of specific

inhibitors of TNFα and a disintegrin and metalloproteinase 17 (ADAM17). Patients

with AP and AAH had reduced CD14++CD16+ intermediate monocytes compared

to controls. Reduction of intermediate monocytes was recapitulated ex vivo by

stimulating healthy control PBMCs with Toll-like receptor (TLR) agonists LPS, flagellin

or polyinosilic:polycytidylic acid (poly I:C). Stimulation caused shedding of CD14 and

CD16, which could be reversed using the ADAM17 inhibitor, TMI005 but not direct

inhibitors of TNFα, a known ADAM17-target. Culturing PBMCs from healthy controls

resulted in expansion of intermediate monocytes, which did not occur when LPS was

in the culture medium. Cultured intermediate monocytes showed reduced expression of

CX3CR1, CCR2, TLR4, and TLR5. We found reduced migratory responses, intracellular

signaling and pro-inflammatory cytokine production, and increased expression of IL-10.

Stimulation with TLR agonists results in ADAM17-mediated shedding of phenotypic

markers from CD16+ monocytes, leading to apparent “loss” of intermediate monocytes.
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Reduction in CD14++CD16− monocytes and increased CD14++CD16+ is associated

with altered responses in functional assays ex vivo. Patients with AP and AAH had

reduced proportions of CD14++CD16+ monocytes and reduced phosphorylation of

NFκB and IL-6 production in response to bacterial LPS. Together, these processes may

contribute to the susceptibility to infection observed in AP and AAH.

Keywords: monocytes, inflammation, ADAM17, infection, acute pancreatitis, acute alcoholic hepatitis

INTRODUCTION

Impaired immune responses and increased susceptibility to
bacterial infection characterize acute inflammatory conditions
such as acute pancreatitis (AP) and alcoholic hepatitis (AAH)
and are major causes of morbidity and mortality (1–5). However
the mechanisms that drive this apparent immune paresis remain
poorly understood. Monocytes play a pivotal role in the innate

response to tissue damage and to pathogens, and studies have
shown impaired function of the total monocyte population
in patients with AP (6) and AAH (7). Monocytes are a
heterogenous group of cells and our current understanding is
that in humans, three subsets of monocytes can be distinguished
based on the expression of CD14 and CD16. Classical monocytes
(CD14++CD16−) are the most abundant in peripheral blood
and are able to differentiate into monocyte-derived macrophages
(8). Intermediate monocytes (CD14++CD16+) express high
levels of HLA-DR and Toll-like receptors (TLRs) and are
therefore considered to be an effector pro-inflammatory subset,
contributing to antigen presentation and inflammatory cytokine
production (8–10). The non-classical cells (CD14+CD16+) are
small in number and their predominant role is believed to be
patrol and surveillance of the vessel walls (11, 12). Plasticity
between different subsets has been demonstrated. Classical
monocytes have been shown to mature into intermediate and

then into non-classical monocytes (13–16). This maturation
sequence has been recapitulated in healthy volunteers following
treatment with macrophage colony-stimulating factor (17),
following LPS-induced monocytopenia with in vivo deuterium
labeling and by fate mapping human classical monocytes that
have been grafted into humanized mice (18).

Translational studies in humans show that systemic
inflammatory diseases such as sepsis (10, 19), rheumatoid
arthritis (20–22), Crohn’s disease (23), and systemic lupus
erythematosus (10, 24) are characterized by an increase in

the proportion of CD16+ monocytes. Conversely, CD16+

monocytes are reduced in patients diagnosed with acute

myocardial infarction at the time of admission although these
cells significantly expanded over a week later (25).

AP and AAH are characterized by marked tissue and systemic

inflammation that is believed to be a response to pathogen-

and damage-associated molecular patterns (PAMPs and DAMPs)

(26–29), some of which derive from the gut microbiome (30–

33). In AP and AAH, classical inflammatory pathways are

engaged, exemplified by PAMPS and DAMPs binding to pattern

recognition receptors (PRRs). This leads to transcription factor
activation and the expression of chemokines and cytokines.

Post-translational processing by enzymes such as ADAM17 leads
to cleavage and release of some of these mediators, such as
TNFα. However, the relationship between these inflammatory
phenomena and the relative proportions of monocyte subsets
has received little attention until now. We hypothesize that
exposure of monocytes to such inflammatory stimuli impacts
monocyte plasticity and alters function. Here we find a reduction
in intermediate monocytes in blood sampled from patients with
AP and AAH compared to healthy volunteer controls. We find
a similar reduction in intermediate monocytes when blood from
healthy volunteers was stimulated with lipopolysaccharide (LPS)
and other inflammatory agonists in an ADAM17-dependent
mechanism. Moreover, while classical monocytes acquire surface
markers of intermediate monocytes when cultured ex vivo, we
found that these cells appear to be impaired. This work has
implications for in vitromodeling of monocyte function andmay
contribute to the susceptibility to infection observed in patients
with AP and AAH.

MATERIALS AND METHODS

Patients
Patients and healthy control volunteers gave written informed
consent and were recruited from Royal London and Kings
College Hospitals, London UK. The study protocols were
approved by the local research ethics committees (reference
numbers 13/LO/0363, 15/LO/2127, and 15/SC/0224) and
performed in compliance with the Declaration of Helsinki. We
included patients with a clinical and biochemical or radiological
diagnosis of mild acute pancreatitis (defined according to
Atlanta criteria) (34) within 24 h of admission to the Royal
London Hospital or severe acute alcoholic hepatitis (defined
as Maddrey’s Discriminant function ≥32) (35) within 24 h
admission to Kings College Hospital. We excluded patients
under 18 years, or those taking immunosuppression including
methotrexate, biological therapy, ciclosporin, and tacrolimus.

Cell Separation
Peripheral blood mononuclear cells (PBMCs) were separated by
density gradient over Ficoll-Paque (GE Healthcare) as previously
described (36). PBMCs from patients with AP and AAH and
corresponding controls were cryopreserved in heat inactivated
fetal bovine serum (HI-FCS [ThermoFisher Scientific]), 10%
dimethyl sulfide (DMSO [Santa Cruz Biotechnology]). All
other experiments used freshly isolated PBMCs with no
cryopreservation. Viability of all PBMCs were assessed prior
to all experiments using trypan blue (Sigma Aldrich) and only
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those with viability over 70% for cryopreserved samples and
90% for fresh samples, were included. Cells were seeded at 1
million per mL in RPMI 1640 containing L-glutamine (Lonza),
penicillin/streptomycin (Sigma Aldrich), and 10% HI-FCS.
PBMCs were stimulated with 20 ng/mL lipopolysaccharide
from Escherichia coli O55:B5 (LPS [Sigma-Aldrich]), 10µg/mL
polyinosilic:polycytidylic acid (poly I:C [Sigma-Aldrich]),
100 ng/mL flagellin from Salmonella typhimurium (Source
BioScience), 1µg/mL high mobility group box 1 protein
(HMGB1 [Sigma-Aldrich]), 1,000 units/mL interferon alpha
(IFNα [Peprotech]) or 50 ng/mL interleukin 1 alpha (IL-1α
[R&D Systems]) for 3 or 24 h in 12 well plates, with 1mL
per well. Monocytes were magnetically isolated using the Pan
monocyte isolation kit (Miltenyi Biotec) according to the
manufacturer’s instructions.

Characterizing Monocytes by Flow
Cytometry
All fluorochrome-conjugated antibodies were purchased from
Biolegend, unless otherwise stated. PBMCs were stained with
antibodies including HLA-DR Phycoerythrin Cyanine 7 (PE-Cy7
[clone L243]), CD14 Pacific Blue (PB [cloneME52]), CD16 Alexa
Fluor 647 (AF647 [clone 3G8]) TLR5 Fluorescein isothiocyanate
(FITC [clone 85B152.5], Abcam), TLR4 Phycoerythrin (PE [clone
HTA125]), CX3CR1 PE (clone 2A9-1), CCR2 PE (clone K036C2),
CD80 PE (clone 2D10), CD86 FITC (clone BU63), CD115 Alexa
Fluor 488 (AF488 [clone 9-4-D2-1E4]), and CD163 PE (clone
GHI61). Viability of monocytes was assessed using Zombie
Near Infrared (NIR) fixable viability kit. All flow cytometry
experiments were acquired using a BD Canto II and analyzed
using FlowJo v10.4.

Tracking CD16+ Monocytes
Peripheral blood mononuclear cells were separated over
Ficoll-Paque as above and the CD16+ monocytes were then
magnetically isolated using a CD16+ monocyte isolation kit
(Miltenyi Biotec) according to manufacturer’s instructions.
CD16+ monocytes were then washed in phosphate buffered
solution (PBS) and incubated in PBS containing 2.5µM
Carboxyfluorescein succinimidyl ester (CFSE [Biolegend]) for
20min at 37◦C. Cells were then washed in RPMI 1640 containing
penicillin/streptomycin, L-glutamine and 10% HI-FCS and
added back into non-labeled PBMCs from the same donor.
PBMCs were then seeded in 12 well plates in complete RPMI
and incubated with or without 20 ng/mL LPS for 3 h prior to
identification by flow cytometry, as above.

Cell Viability
Viability of PBMCs was measured using a mammalian
LIVE/DEADTM viability/cytotoxicity kit (Invitrogen) as per
the manufacturer’s instructions. The plate-based assay measures
a combination of elastase and calcein AM using fluorescence,
detected by a spectrophotometer.

ELISA
IL-6 and soluble CD14 were measured in PBMC supernatants
using commercially available ELISA (R&D Systems). Soluble

CD16 was measured as previously described (37). 96 well
plates were pre-coated with 10µg/mL anti-CD16 (clone SG8
[Biolegend]), recombinant CD16 (R&D Systems) was used to
generate a standard curve and 0.5µg/mL biotinylated anti-CD16
(Bio-Rad) was used as a detection antibody.

Inhibitors
The small molecule TMI005 (Aprastat, Axon Medchem), a
potent and selective dual inhibitor of ADAM17 and matrix
metalloprotease was added to PBMCs (1µg/mL) 45min prior to
the addition of LPS. To inhibit TNFα, the monoclonal antibody
infliximab (gift from Dr Neil McCarthy, Blizard Institute,
London, UK) was added to PBMCs (50µg/mL) 45min prior
to the addition of LPS. The small molecule inhibitor of TNFα
trimerization, SPD304 (Sigma Aldrich) was added to PBMCs
(1µM) for 9 h prior to the addition of LPS.

Monocyte Function
Migration of monocytes was measured in response to MCP-1
(30 ng/mL [Sigma-Aldrich]) using transwell inserts (Corning).
Migrated monocytes were identified in the lower chamber
and counted by flow cytometry using flow-count fluorospheres
(Beckman Coulter). Ex vivo IL-6, TNFα, and IL-10 production
were measured by flow cytometry. Golgistop (BD Biosciences)
was added to PBMCs prior to LPS stimulation for 4 h for IL-
6 and TNFα measurements and overnight for IL-10. IL-6-PE
(clone MQ2-13A5), TNFα-FITC (clone MAb11), and IL-10-PE
(clone JES3-19F1) in permeabilization buffer (eBioscience) was
used to determine IL-6, TNFα, and IL-10 expression, respectively.
Phosphorylated NFκBp65 was measured by flow cytometry.
PBMCs were stimulated with LPS (10µg/mL) for 15min at 37◦C
and fixed in 2% PFA followed by 90% methanol prior to staining
with pS529 NFκBp65-PE (clone K10-895.12.50 BD Biosciences).

Statistics
Statistical analyses were performed using GraphPad Prism 7.02.
Normality was assessed using the Shapiro-Wilk normality test
(38). Normally distributed data were analyzed by 2-tailed t-
test. Mann-Whitney and Wilcoxon signed-rank tests were used
to evaluate non-normally distributed data. Error bars in the
figures indicate standard error of the mean. P < 0.05 was
considered significant.

RESULTS

Reduced Intermediate Monocytes in Acute
Inflammatory States
To determine the effect of acute inflammation on monocyte
phenotype, we studied blood sampled from patients with acute
pancreatitis (AP) and compared the proportions of monocyte
subsets with those from healthy controls. Eleven patients with
mild AP admitted to hospital with biochemical or radiological
evidence of AP were included (clinical details are shown
in Supplemental Table 1). The percentages of intermediate
(CD14++CD16+) and non-classical (CD14+CD16+) monocytes
were lower in peripheral blood sampled from patients compared
with controls (2.4 vs. 3.1% p = 0.008 and 3.4 vs. 6.3% p =
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FIGURE 1 | CD16+ monocytes are reduced in acute pancreatitits and in response to LPS. Representative flow cytometry plots showing monocyte subsets in (A)

healthy controls or (B) patients with acute pancreatitis (AP). Monocytes were identified by forward and side scatter, HLA-DR positivity and classified according to the

expression of CD14 and CD16. (C) Proportion of intermediate monocytes was significantly reduced in patients with AP compared with controls (p = 0.008). (D)

Proportion of non-classical monocytes was reduced in patients with AP compared to controls [3.4 vs. 6.3% (E)]. Patients with AP had reduced levels of NFκBp65

phosphorylation at S529 in monocytes stimulated with LPS compared with controls (p = 0.001, percentage increase over unstimulated baseline). (F) Patients with AP

had reduced LPS-induced IL-6 production from PBMCs compared to controls (p = 0.006).

0.14, Figures 1A–D) Supplemental Figure 1 for gating strategy).
There was evidence of altered immune function in peripheral
blood mononuclear cells (PBMCs) sampled from AP patients
with significantly lower levels of LPS-induced phosphorylated
NF-kBp65 and ex vivo IL-6 production in patients compared
to controls (Figures 1E,F). To determine whether the reduction
of intermediate monocytes was only seen in pancreatic
inflammation, we recruited eleven patients with severe acute
alcoholic hepatitis (AAH); a florid inflammatory disease of
the liver (clinical details are shown in Supplemental Table 2).
We found a similar reduction in CD14++CD16+ intermediate
and CD14+CD16+ non-classical monocytes in patients with
AAH, 1 vs. 3.1%, p = 0.008 and 3.4 vs. 6.3% p = 0.033,
Supplemental Figures 2A–C).

ADAM17 Mediates LPS-induced Shedding
of Intermediate Monocyte Phenotypic
Surface Markers
We sought to determine the underlying mechanism behind
reduced intermediate monocytes in inflammatory disease.
This unexpected inflammation-induced reduction in
intermediate monocytes could be recapitulated ex vivo by
stimulating PBMCs sampled from healthy controls with LPS
(Figures 2A–C) or other TLR agonists; poly I:C and flagellin,
but not IFNα, IL-1α, or HMGB1 (Supplemental Figure 3).
Intermediate monocyte numbers were reduced in response
to a range of lower concentrations of LPS down to 1 ng/mL

(Supplemental Figure 4). The observed reduction in detected
intermediate monocytes was not as a result of cell death
(Figure 2D) and use of ultra-low bind plates did not affect
this observation, excluding the possibility that activated
intermediate monocytes simply adhere to plastic (Figure 2E).
There was no increase in intracellular staining for CD14 or
CD16 (and a statistically non-significant trend toward reduction)
that might suggest internalization of the markers and hence
inability to detect the intermediate monocytes that express
them (Figures 2F,G). We also excluded the possibility that
apparent loss of intermediate monocytes may be a product of
the method used to isolate PBMCs (Figure 2H). Treating fresh
whole blood with LPS led to a similar reduction in intermediate
monocytes (Figure 2I). In order to track the fate of these cells
following LPS stimulation, we magnetically sorted CD16+

monocytes from healthy controls and labeled them with CFSE
(Figure 3A). Following stimulation with LPS, these CFSE+

cells that were previously in the intermediate monocyte gate
persisted (Figure 3B) but had reduced HLA-DR (Figure 3C),
CD14 (Figure 3D), and CD16 (Figure 3E) expression.

We therefore hypothesized that apparent “loss” of
intermediate monocytes is, in fact, a result of loss of the markers
used to detect them. ADAM17 (a metallopeptidase domain
17), also known as the tumor necrosis factor-alpha converting
enzyme (TACE) is involved in ecto-domain shedding of TNFα
in stimulated monocytes and CD16b shedding in activated NK
cells (39–41). We therefore hypothesized a role for ADAM17 in
LPS-induced apparent loss of intermediate monocyte and tested
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FIGURE 2 | Apparent loss of intermediate monocytes in response to LPS stimulation ex vivo. (A) Representative flow cytometry plots showing monocyte subsets in

healthy controls incubated for 3 h in medium (B) or LPS. (C) Intermediate monocytes as a proportion of all monocytes sampled from healthy controls were reduced

after 3 h incubation with LPS compared with medium alone (p < 0.0001). (D) Viability of healthy control PBMCs sampled following 24 h incubation with medium and

LPS by mammalian LIVE/DEADTM viability/cytotoxicity kit (InvitrogenTM ), showing no increase in cell death with LPS (ns = not statistically significant). (E) No

difference in proportion of intermediate monocytes from healthy controls following treatment with LPS when using standard tissue culture or ultra-low bind plates. (F)

Intracellular staining for CD14 and (G) CD16 in monocytes was not increased following stimulation with LPS for 3 h. (H) Stimulation of magnetically-isolated healthy

control monocytes with LPS for 3 h resulted in loss of cells from the intermediate monocyte gate (p = 0.031). (I) Intermediate monocytes were reduced in whole blood

sampled from healthy donors incubated with LPS-stimulated for 3 h compared to medium alone (p = 0.004).

the effect of ADAM17 inhibition in LPS-stimulated PBMCs.
Pre-treatment of PBMCs with TMI005 (a potent, selective
ADAM17 inhibitor) prevented this apparent loss of intermediate
monocyte in response to LPS (Figure 4A), poly I:C and a similar
trend for flagellin (Supplemental Figure 5) and prevented LPS-
induced shedding of CD14 (Figure 4B) and CD16 (Figure 4C).
Inhibition of ADAM17 with TMI005 also prevented LPS-
induced shedding of the colony stimulating factor 1 receptor
(CD115) but not the scavenger receptor CD163 from monocytes
(Supplemental Figure 6). We examined the possibility that
inhibition of ADAM17 preserved the intermediate population
through its known function in inhibiting TNFα release. Direct
inhibition of TNFα inhibition with infliximab (a monoclonal
antibody to TNFα) or SPD304 (a small molecule inhibitor of the
TNFα trimer) did not have any effect in LPS-induced reduction
in intermediate monocytes (Figures 4D,E).

Phenotypic Changes Over Time Leads to
Impaired Function of Monocytes ex vivo
The data so far show that stimulation of PBMCs ex vivo results
in a near total loss of cells from the intermediate monocyte

gate in an ADAM17-dependent manner. However, in patients
with AP and AAH, we saw a reduction, but not total loss,
of cells from that gate. Therefore, we hypothesized that in
vivo, apparent intermediate monocyte loss is concurrent with
maturation of classical monocytes into intermediate monocytes
as previously shown (18), and that this partially replenishes the
CD14++CD16+ population. To study this further, we increased
the incubation time from 3 to 24 h to study the effect of prolonged
exposure to LPS/PAMPs. This resulted in marked expansion
in CD14++CD16+ monocytes that did not occur when LPS
was present in the culture medium (Figures 5A–C). However,
prolonged incubation (for 48 or 72 h) overcomes this LPS-

mediated block (Figure 5D) even when the culture medium was

replenished with fresh medium containing LPS at 24 h and again
at 48 h, excluding the possibility that the LPS was losing its effect
through metabolism or degradation (Supplemental Figure 7).
LPS-mediated block of CD14++CD16+ monocyte expansion
over 24 h was not affected by ADAM17 inhibition with
TMI005 (Figure 5E). However, when LPS was added to
monocytes after they had been in culture for 24 h, there was
a partial reduction of the CD14++CD16+ monocytes that
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FIGURE 3 | LPS-induced a reduction of phenotypic surface marker expression on intermediate monocytes. (A,B) Representative bivariate plots showing magnetically

isolated, Carboxyfluorescein succinimidydl ester (CFSE) labeled, CD16+ monocytes incubated with or without LPS for 3 h. (A) Showing unchanged forward/side

scatter and (B) marked reduction in CD16 and CD14 expression. (C) LPS induced a reduction in median intensity of (C) HLA-DR (p = 0.016), (D) CD14 (p = 0.016),

and (E) CD16 (p = 0.016) on CFSE labeled CD16+ monocytes.

could be prevented by addition of TMI005 (Figure 5F). This
suggests that, at least with respect to ADAM17-dependent
loss of intermediate monocyte phenotypic markers, these 24
h-cultured CD14++CD16+ monocytes behave like bone fide
intermediate monocytes.

Intermediate Monocytes Are Functionally
Impaired Following Culture for 24 h
To determine whether 24 h-cultured CD14++CD16+ monocytes
behave like naturally-occurring intermediate monocytes
in other ways, we examined the expression of a panel
of cell surface markers known to distinguish monocyte
subsets (8, 10, 18, 42) before and after 24 h culture (Figure 6,
Supplemental Figure 8). Twenty-four hours culture resulted
in reduced expression of CD86 (p = 0.031) and a trend
toward reduction in expression of CD80, CX3CR1, CCR2,
TLR4, TLR5, and CD36 on CD14++CD16+ cells (Figure 6);
proteins involved in monocyte activation, survival, migration,
pathogen activated molecular pattern (PAMP) signaling and
scavenging, respectively. To determine whether this change
in monocyte phenotype also affected function, we assessed
cellular migration and cytokine production in response
to LPS. Monocyte chemoattractant protein-1 (MCP-1) is
potent chemoattractant (43, 44), and consistent with the
downregulation of CCR2 (receptor for MCP-1), there was
almost no migration of 24 h-cultured CD14++CD16+

monocytes in response to MCP-1 in a transwell migration
assay (Figure 7A). Culture for 24 h also led to a reduction in

IFNα-induced STAT1 phosphorylation (Figure 7B), a strong
trend toward a reduction in LPS-induced TNFα, significantly
reduced IL-6 production (Figures 7C,D), and increased
LPS-induced expression of the anti-inflammatory cytokine
IL-10 (Figure 7E).

DISCUSSION

Contrary to current dogma, we found a reduction in the
proportion of intermediate monocytes in peripheral blood
sampled from patients with two different acute inflammatory
conditions, namely AP and AAH. While some have reported
an increase in intermediate monocytes in sepsis (10, 19), others
(18) demonstrate a reduction of CD14+CD16++ intermediate
cells immediately following intravenous infusion of LPS in
healthy volunteers. This discrepancy may be related to kinetics.
Our blood samples were taken within 24 h of admission to
hospital, albeit we cannot quantify the extent and duration of
inflammation prior to hospitalization. Nevertheless, it is possible
that sampling at a later stage of the illness may demonstrate
recovery of intermediate monocytes as seen in the week
following acute myocardial infarction (25). An early reduction
in intermediate monocytes may be followed by expansion of
cells bearing intermediate cell markers from the classical pool
as we have described in the current study, albeit these cells
that were grown in culture for 24 h appear to be functionally
altered. In these cells, we showed reduced expression of TLR4
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FIGURE 4 | LPS-induced ADAM17-mediated CD14 and CD16 shedding from monocytes (A) Pre-treatment of PBMCs sampled from healthy controls with the

ADAM17 inhibitor TMI005 (1µg/mL) 45min prior to incubation with LPS for 3 h prevented LPS-induced reduction of intermediate monocytes (p = 0.001). (B)

Concentration of CD14 in supernatants from PBMCs increased following incubation with LPS for 3 h (p = 0.003) and was prevented by TMI005 (p = 0.004). (C)

Concentration of CD16 in supernatants from PBMCs increased following incubation with LPS for 3 h (p = 0.0001) and was prevented by TMI005 (p = 0.016). Inhibition

of TNFα with (D) Infliximab (50µg/mL) or (E) SPD304 (1µM) had no effect on LPS-induced apparent intermediate monocyte loss (ns = not statistically significant).

FIGURE 5 | Ex vivo culture of monocytes leads to an altered phenotype. (A) Representative flow cytometry plots showing proportions of monocyte subsets from

healthy controls (B) following incubation in culture for 24 h and (C) following incubation in culture in the presence of LPS for 24 h. (D) 24 h culture with LPS results in a

smaller proportion of CD14++CD16+ monocytes (p = 0.003) but this population is restored with prolonged incubation in culture (ns = not statistically significant). (E)

Addition of TMI005 (1µg/mL) had no effect on LPS-mediated inhibition of monocyte maturation ex vivo, however (F) addition of LPS to PBMCs following 24 h

incubation in unstimulated medium led to a reduction of intermediate monocytes in an ADAM17-dependent manner.
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FIGURE 6 | Intermediate monocytes have an altered phenotype after 24 h culture ex vivo. Representative viSNE plots (Cytobank, Santa Clara, USA) showing

monocyte subsets illustrating expression of CD14 (X axis) and CD16 (Y axis). Median fluorescence intensity for each fluorochrome-conjugated antibody is represented

according to the color bar shown. PBMCs sampled from healthy controls were incubated for 0 and 24 h in culture medium. (A) 24 h culture did not reduce intermediate

monocytes HLA-DR expression but resulted in a reduced trend of (B) CX3CR1, (C) CCR2, (D) TLR4, (E) TLR5, and (F) CD36. Twenty-four hours culture increased

intermediate monocyte expression of (G) CD11c, had no effect on (H) CD80 and a marginal reduction of (I) CD86. PBMCs sampled from 5 healthy controls were

incubated for 0 and 24 h in culture medium and the expression for each fluorochrome-conjugated antibody on intermediate monocytes was illustrated in a dot plot.
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FIGURE 7 | Cultured monocytes have reduced function. (A) Migration toward MCP-1 is impaired when PBMCs sampled from healthy controls were first incubated in

medium for 24 h (p = 0.002). Monocytes retrieved from the lower chamber expressed as a percentage of the total added to the upper chamber of a transwell plate.

Culture of PBMCs ex vivo impairs (B) IFNα-mediated STAT1 phosphorylation (p = 0.016), (C) LPS-induced TNFα (p = 0.056) and (D) LPS-induced IL-6 production (p

= 0.032) (E) but increases LPS-induced IL-10 production (p = 0.004) as determined by flow cytometry.

and TLR5 that are involved in sensing pathogen- and damage-
associated molecular patterns as well as reduction in CX3CR1
that is involved in monocyte adhesion, survival, and recruitment
(45, 46), CCR2 that mediates chemotaxis toward bacteria and
necrotic cells, CD36, a receptor involved in scavenging debris and
a reduction in the co-stimulatory molecule CD86 that mediates
lymphocyte activation. Upregulation of IL-10 is further evidence
of an immunosuppressive phenotype, and importantly also
shows that this is an active process, or reflective of a physiological
process of immune shut-down, rather than functional anergy.
Indeed, LPS induces an anti-inflammatory state in monocytes
from patients with acute alcoholic hepatitis, including increased
IL-10 production, induction of PD1 and TIM3 and suppression
of T cell responses (47). We hypothesize that this, together with
the early loss of cells of CD14++CD16+ cells, may contribute
to the increased susceptibility to infection which can complicate
both AAH and AP (48–50). However, we acknowledge that ex
vivo assays may not necessarily reflect the in vivo environment,
and further whole animal or human studies are needed. We
do not know whether the higher numbers of intermediate
monocytes seen in chronic conditions (or that may be detectable
later in the course of AAH or AP) are pro-inflammatory or
whether they demonstrate the same altered function and non-
response that we see ex vivo. Neonates and young children with
sepsis following trauma have been shown to have increased
proportions of CD16+ monocytes, and these monocytes also

had reduced pro-inflammatory function; they were less able to
phagocytose E. coli, produced less IFN gamma and had reduced
expression of the activation marker CD86 (19).

While timing is undoubtedly important in this highly dynamic
compartment of cells, the nature of the stimulus also plays a role.
We found that stimulation for 3 h with each of LPS, poly I:C
and flagellin, but not HMGB1, IFNα, or IL-1β caused reduction
in intermediate monocytes. The mechanisms that underlie this
agonist selectivity remain unclear, although TMI005 did reverse
the reduction where it was observed, irrespective of the agonist.
LPS, poly I:C and flagellin mainly activate TLR4, TLR3, and
TLR5, respectively; whereas HMGB1 (which did not induce
the same phenotypic changes in intermediate monocytes) can
activate both TLR4 (51–54) and TLR5 (55), suggesting that
signaling factors downstream of the TLR determine ADAM17
activation. Our results suggest that CD14 and CD16 are not
internalized and also indicate a reduction of intracellular staining
for these markers, although not statistically significant. One
explanation is that permeabilisation of the cells does not preclude
binding of antibodies to cell surface markers. Therefore, the
reduction observed, if real, may simply reflect reduction in total
intracellular and surface staining. An alternative explanation is
that there is a reduction in the total pool of CD14 and CD16
across all cellular compartments, hence the reduction observed.
The key conclusion, however, is that intracellular levels do
not increase following stimulation. Other possibilities that may
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explain the apparent loss of intermediate monocytes include
sequestration in the vasculature or inflamed tissues or cell death.

We find parallels between reduced numbers of
CD14++CD16+ intermediate monocytes in patients with AP
and AAH, and reduced numbers CD14++CD16+ cells following
ex vivo treatment of PBMCs with different inflammatory
mediators. It has previously been shown that ADAM17 mRNA is
upregulated in the pancreas from patients with pancreatitis (56)
and in PBMCs and liver tissue from patients with chronically
inflamed hepatic iron-overload compared to patients without
iron-overload (57). Patients with AP (58) and AAH (59) have
elevated plasma levels of CD14. LPS levels are elevated in both
AAH (206.9 pg/mL ± 174.9 pg/mL) (60) and animal models of
AP (61, 62). However, given that reduction of CD14++CD16+

cells also follows flagellin and poly I:C stimulation, LPS is
unlikely to be the only mediator of such a process in patients
with complex inflammatory disease. We were unable to measure
levels of ADAM17, LPS, CD14, or CD16 in patient plasma, due
to lack of residual material. Nevertheless, neither these published
observations nor further similar measurement in our patients
would be sufficient to prove that the samemechanism we observe
ex vivo is responsible for reduction of intermediate monocytes in
vivo. Due to a lack of residual samples these experiments were
not completed. However, this hypothesis does warrant further
examination in the form of a human intervention study.

It might even be attractive to consider inhibition of ADAM17
as a therapeutic approach in patients with these conditions.
However, while our data raise the possibility that ADAM17
may mediate part of the increased susceptibility to infection in
patients with AP and AAH, they cannot be taken to imply a role
for ADAM17 in the primary pathogenesis of these conditions.
ADAM17 knockout mice are not viable, but a genetically
engineered mouse that expresses very low levels of ADAM17
in all tissues does exist and shows increased susceptibility to
dextran sulfate sodium-induced colitis (63). Conversely, mice
with leucocyte-specific deficiency in ADAM17 are viable and
are less susceptible to E. coli-mediated peritoneal sepsis (64).
The specific small molecule ADAM17 inhibitor that we used
in the current study, TMI005 did not show any efficacy in a
phase II trial of rheumatoid arthritis but was well-tolerated (65).
To our knowledge, there have been no studies of ADAM17
inhibition as a strategy to reduce the risk of infection in patients
with acute inflammatory conditions such as AP or AAH. The
variability in responses to ADAM17-inhibition is due, at least
in part, to the multiple downstream targets of ADAM17 (66).
The best-known of these targets is TNFα, but we did not see an
effect on intermediate monocyte proportions with inhibition of
TNFα. Nevertheless, infliximab, a monoclonal antibody targeted
against TNFα, has shown improvements in rats with AP (67)
and a clinical trial of infliximab in AP is due to start recruiting
soon (https://clinicaltrials.gov/ct2/show/NCT03684278).

Our data offer new insight into the plasticity and function
of monocyte subsets. Phenotypic classification based on CD14
and CD16 expression alone appears insufficient to describe the
maturation process nor to define functional status. The markers
and functions we have studied here identify functional differences
between native and 24 h-cultured intermediate monocytes,
and the true extent of these differences are likely to extend

much further into processes we have not assessed, for example
phagocytosis or antigen presentation.

There is a major unmet clinical need for therapies that target
the acute inflammatory response in important inflammatory
diseases such as AP and AAH and the resultant susceptibility to
infection seen in these patients. Understanding processes such
as reduction in effector intermediate monocytes and expansion
of functionally inert CD14++CD16+ monocytes will advance the
development of such therapeutics.
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Supplemental Figure 1 | Flow cytometry gating strategy. (A) Monocytes were

first identified by forward and side scatter, (B) doublets were then discriminated

using forward scatter height and area. (C) dead cells were discriminated using

Near-Infrared (NIR) zombie viability dye and (D) finally HLA-DR positive cells were

selected. (E–G) Monocyte subsets were characterized by CD14 and CD16

expression which was determined using concentration-matched isotype controls

for Pacific Blue and Alexa Fluor 647, respectively.
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Supplemental Figure 2 | CD16+ monocytes are reduced in acute alcoholic

hepatitis. (A) Representative FACS plots showing monocyte subsets in healthy

controls or patients with AAH. Monocytes were identified by forward and side

scatter, HLA-DR positivity and classified according to the expression of CD14 and

CD16. (B) Proportion of intermediate monocytes were significantly reduced in

AAH patients compared with controls (p = 0.008; controls are the same as in

Figure 1). (C) Proportion of non-classical monocytes were significantly reduced in

AAH patients compared with controls (p = 0.033).

Supplemental Figure 3 | Proportions of intermediate monocytes are reduced in

response to LPS, poly I:C and flagellin. PBMCs sampled from healthy controls (n

= 9; n = 7 for flagellin) were stimulated for 3 h with LPS (20 ng/mL), poly I:C

(10µg/mL), flagellin (100 ng/mL), IFNα (1,000 U/mL), IL-1α (50 ng/ml), and

HMGB1 (1µg/mL) and intermediate monocytes were determined using flow

cytometry. Cells in the intermediate monocyte gate were reduced when stimulated

with LPS (p = 0.004), poly I:C (p = 0.027), and flagellin (p = 0.016).

Supplemental Figure 4 | LPS induces a reduction of CD14+ and CD16+

monocytes in a concentration-dependent manner.Representative flow cytometry

plots showing monocyte subsets from healthy controls, following incubation with

1, 10, 20, and 100 ng/mL LPS for 3 h.

Supplemental Figure 5 | Inhibiting ADAM17 prevents stimulation-induced loss of

cells with intermediate monocyte phenotype. PBMCs sampled from healthy

controls (n = 5) were cultured with 1µg/mL TMI005 for 45min prior to stimulation

with LPS (20 ng/mL), poly I:C (10µg/mL) or flagellin (100 ng/mL) for 3 h.

Incubation with TMI005 prevented LPS and poly I:C induced reduction of cells in

the intermediate monocyte gate, with a similar trend toward significance for

flagellin (ns = not statistically significant).

Supplemental Figure 6 | CD115 and CD163 surface expression are

ADAM17-mediated on monocytes. (A) Treatment of PBMCs sampled from healthy

controls with LPS for 3 h induced a reduction in surface expression of CD115 on

monocytes (p = 0.003) which was prevented by pre-treatment with the ADAM17

inhibitor TMI005 (1µg/mL) 45min prior to incubation with LPS. ADAM17 inhibition

prevented LPS-induced reduction in surface expression of CD115 (p = 0.008) but

not (B) CD163 (ns = not statistically significant).

Supplemental Figure 7 | Intermediate monocytes recover with prolonged

stimulation with replenished LPS. PBMCs sampled from 8 healthy controls were

incubated in medium and medium containing LPS for 24, 48, or 72 h and

intermediate monocytes were determined using flow cytometry. PBMCs that were

incubated for over 24 h had media and LPS replenished every 24 h. Replenishment

with fresh medium, with or without LPS, did not prevent the recovery of cells in the

intermediate monocyte gate after 72 h (ns = not statistically significant).

Supplemental Figure 8 | Monocyte subsets have an altered phenotype after

24 h culture. PBMCs sampled from healthy controls (n = 5) were incubated for 0

and 24 h in culture medium and the median fluorescence intensities of (A)

HLA-DR, (B) CX3CR1, (C) CCR2, (D) TLR4, (E) TLR5, (F) CD36, (G) CD11c, (H)

CD80, and (I) CD86 on monocyte subsets were evaluated using flow cytometry.

Supplemental Table 1 | Clinical characteristics of patients with acute

pancreatitis. Patients 2 and 8 were diagnosed radiologically. WCC, white cell

count; Alc, alcohol; Tr, Trauma; Ga, gallstones; U, unknown.

Supplemental Table 2 | Clinical characteristics of patients with acute alcoholic

hepatitis. WCC, white cell count; AST, aspartate aminotransferase; INR,

international normalized ratio; DF, discriminant function; MELD, Model for

end-stage liver disease; CP, Child-Pugh.
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