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Abstract

Aims: To verify the effects of several 5,8-dimethoxy-1,4-naphthoquinone

(DMNQ) derivatives on LPS-induced NO production, cellular ROS levels and

cytokine expression in BV-2 microglial cells.

Main methods: An MTT assay and FACS flow cytometry were performed to

assess the cellular viability and apoptosis and cellular ROS levels, respectively. To

examine the expression of pro-inflammatory cytokines and cellular signaling

pathways, semi-quantitative RT-PCR and Western blotting were also used in this

study.
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Key findings: Among the six newly synthesized DMNQ derivatives, 2-

cyclohexylamino-5,8-dimethoxy-1,4-naphthoquinone (R6) significantly inhibited

the NO production, cellular ROS levels and the cytokines expression in BV-2

microglial cells, which stimulated by LPS. Signaling study showed that compound

R6 treatment also significantly down-regulated the LPS-induced phosphorylation

of MAPKs (ERK, JNK and p38) and decreased the degradation of IκB-α in BV2

microglial cells.

Significance: Our findings demonstrate that our newly synthesized compound

derived from DMNQ, 2-cyclohexylamino-5,8-dimethoxy-1,4-naphthoquinone

(R6), might be a therapeutic agent for the treatment of glia-mediated

neuroinflammatory diseases.

Keywords: Neuroscience, Immunology, Cell biology, Medicine, Biochemistry

1. Introduction

Inflammation plays an important role in the pathology of neurodegenerative

disorders in the brain. Microglia are glial cells that function as the prime effector

cells in immune defense and inflammatory responses in the central nervous system

(CNS) [1, 2, 3]. Increased evidences showed, activated microglia was involved in

pathological processes for diseases such as Alzheimer’s disease [4], Parkinson’s
disease [5], and multiple sclerosis [6], through producing the cytokines and

superoxides. In response to pro-inflammatory triggers, microglia exhibited active

phenotype, resulting in a shift of cellular function and subsequent release of

cytotoxic factors (e.g., tumor necrosis factor-alpha [TNF-α], nitric oxide [NO], and
reactive oxygen species [ROS]) aimed at destroying the invading pathogens. All of

these evidences suggest that microglia can become a major source of cytokines and

ROS production to drive progressive neuronal damages, and these damages are

implicated in the chronic nature of neurodegenerative diseases.

In response to environmental changes, such as neuronal damage, microglial cells

proliferate and become phagocytic, and up-regulate the expression of various

molecules (cytokines, adhesion molecules, and transcription factors) [7, 8, 9, 10].

Inflammatory agonists, such as bacterial lipopolysaccharides (LPS), the β-amyloid-

related peptides, and human immunodeficiency virus (HIV) coat protein gp120,

could induce the microglial cells activation by producing many inflammatory

factors, such as TNF-α, interleukin-1betaβ (IL-1β) and NO, which involves in glia-

mediated neurotoxicity [11, 12].

Thus, finding new compounds to control the activity of microglial cells may be

critical to limiting glia-mediated neurotoxicity and its consequences and delaying

the progression of neurodegenerative diseases and neuroinflammation in the CNS.
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Naphthoquinones are widely distributed in nature and play important physiological

roles in animals and plants. Their derivatives have exhibited a variety of biological

responses, which include anti-allergic, anti-bacterial, anti-fungal, anti-inflammato-

ry, anti-thrombotic, anti-platelet, anti-viral, apoptosis, lipoxygenase, radical

scavenging, and anti-ringworm activities [13, 14]. As a consequence, the molecular

framework of many pharmaceuticals and biologically important compounds

contain a quinine moiety. The 5,8-dimethoxy-1,4-naphthoquinone (DMNQ) used

as common start compound to synthesize Naphthoquinone derivatives, and it was

reported that DMNQ derivatives exhibit the anti-tumor activity in breast cancers

[15, 16], and could also prevent cell proliferations through regulating the cellular

MAPK and PI3 K signaling pathways [17, 18]. But the inhibitory effect of

naphthoquinone derivatives on the LPS-induced activation of microglial cells is not

yet understood.

In the present studies, we investigated the potency of serial derivatives synthesized

from DMNQ as inhibitors of BV2 microglia activation by probing NO production,

the expression of cytokines (e.g., IL-6, TNF-α and IL-1β), and cellular ROS levels

and their mechanism of action including MAPK and NF-kB signaling pathways.

2. Materials and methods

2.1. Reagents

Lipopolysaccharides (LPS, from Escherichia coli serotype 0111:B4) were

purchased from Sigma (St. Louis, MO, USA), and the iNOS inhibitor S-

methylisothiourea sulfate (SMT) was obtained from Calbiochem (San Diego, CA,

USA). A classical Michael addition reaction was used to synthesize 5,8-

dimethoxy-1,4-naphthoquinone (DMNQ) derivatives.

2.2. Synthesis of 5,8-dimethoxy-1,4-naphthoquinone (DMNQ)
derivatives

The synthetic schemes for 2-substituted amino-DMNQ derivatives are summarized

in Suppl. 1. The starting material was 5-dihydroxynaphthalene (Fig. 1A), and it

was reacted with sodium hydroxide and dimethyl sulfate under nitrogen to produce

5,8-dimethoxynaphthalene (Fig. 1B). This compound was then brominated with N-

bromosuccinimide (NBS) at room temperature for 3 h to yield 1,5-dibromo-4,8-

dimethoxynaphthalene (Fig. 1C). After methoxylation with sodium methoxide and

copper (I) iodide in a N,N-dimethyl formamide/methanol solution, oxidative

demethylation of the 1,4,5,8-tetramethoxynaphthalene (Fig. 1D) was performed

with cerium (IV) ammonium nitrate (CAN) to produce the key intermediate,

DMNQ (Fig. 1E). The direct 1,4- addition of various alkylamines to the quinone

moiety of DMNQ (Fig. 1F) synthesized the appropriated 2-alkylamino-DMNQs,
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with yields varying from 23.6 to 55.5%. The compounds used in this study are

marked as R1 to R6, and their full names are summarized in Table 1.

2.3. Cell culture

BV2 microglial cells were cultured in Dulbucco’s modified Eagle medium

(DMEM) supplemented with 10% fetal bovine serum (FBS, Hyclone, Logan, UT,

USA) and penicillin-streptomycin (100 U/ml, 100 μg/ml). The BV2 microglial

cells were pre-treated with 30 μM of the DMNQ derivatives, followed by treatment

with 1 μg/mL of LPS.

2.4. Cell viability assay

Cell viability was quantitatively determined using a 3-[4][4,5-dimethylthiazol-2-

yl]-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. Briefly, BV2

microglial cells were grown in 96-multi-well plates in DMEM in the presence of

only the R6 compound at the indicated concentration ranges (0 μM to 30 μM) for

24 h. The produced formazan was quantified by measuring the absorbance of the

[(Fig._1)TD$FIG]

Fig. 1. Simplified diagram for synthesis of the DMNQ derivatives.

Table 1. The full name of DMNQ derivatives used in the experiments.

R No Full Name

Propene- R1 2-Vinylamino-5,8-dimethoxy-1,4-naphthoquinone

i-propyl- R2 2-i-Propylamino-5,8-dimethoxy-1,4-naphthoquinone

Cyclopropyl- R3 2-Cylopropylamino-5,8dimethoxy-1,4-naphthoquinone

i-Butyl- R4 2-i-Butylamino-5,8-dimethoxy-1,4-naphthoquinone

l-methylpropyl- R5 2-(1-Methylpropylamino-5,8-dimethoxy-1,4-naphthoquinone

Cyclohexyl- R6 2-cyclohexylamino-5,8-dimethoxy-1,4-naphthoquinone

R: substituent group; No: Number.
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dye solution at 490 nm using a microtiter plate reader (Molecular Devices, Menlo

Park, CA).

2.5. Biochemical assay for the production of NO

NO production was assessed based on the accumulation of nitrite in the medium

using a colorimetric reaction with Griess reagent (0.1% N-[1][1-naphthyl]

ethylenediamine dihydrochloride, 0.1% sulfanilamide, and 2.5% H3PO4). Briefly,

the culture supernatants were collected and mixed with an equal volume of Griess

reagent for 10 min and by measuring absorbance at 540 nm with a UV MAX

kinetic microtiter plate reader.

2.6. Western blotting analysis

Protein lysates (30 μg) were separated on 12% sodium dodecyl sulfate-

polyacrylamide gels and transferred onto nitrocellulose membranes (Millipore,

Bedford, MA, USA). The membranes were blotted with antibodies against IκB-α
(Santa Cruz Biotechnology, USA), iNOS (Upstate Biotech, Charlottesville, VA,

USA), pERK, pJNK (Santa Cruz Biotechnology, USA), and NAPDH (Sigma, St.

Louis, MO, USA) at 4 °C overnight and then incubated with horseradish

peroxidase-conjugated goat anti-rabbit IgG (Sigma) or anti-mouse IgG (Sigma) for

1 h at room temperature (RT). The specific binding was detected using a

chemiluminescence detection system (Amersham, Berkshire, UK) according to the

manufacturer's instructions.

2.7. RNA isolation and semi-quantitative RT-PCR analysis

To isolate the total RNA, the cells were lysed with Trizol (Invitrogen). After

chloroform was added at 1/5 volume of Trizol used, the cell lysates were mixed

thoroughly by vortexing and centrifuged at 15,000 g for 15 min at 4 °C. Upper

phase solution was harvested and mixed by equal volume of isopropanol. After

centrifugation at 12,000 g for 8 min at RT, the precipitated RNA was washed with

75% EtOH and melted with DDW. The first-strand cDNA was synthesized from

0.5 μg of DNase-treated total RNA using 0.5 μg random hexamers (Invitrogen),

and 200 U Moloney murine leukemia virus reverse transcriptase (Invitrogen) in a

volume of 20 μl at 37 °C for 60 min. The first strand cDNA (1 μl) was used for

PCR amplification in a 25 μl reaction mixture. PCR was performed under the

following conditions: 94 °C for 30 sec, 55–60 °C for 30 sec, and 72 °C for 30 sec,

with additional incubation for 10 min at 72 °C after cycle completion. Primers for

iNOS forward:5'-CCC TTC CGA AGT TTC TGG CAG CAG C-3'; reverse:5'-

GGC TGT CAG AGC CTC GTG GCT TTG G −3'; for IL-1β forward 5'-ATG

GCA ACT GTT CCT GAA CTC AAC T-3'; reverse 5'-CAG GAC AGG TAT

AGA TTC TTT CCT TT-3'; for TNF-α forward 5'-CTC AAA TGG GCT TTC
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CGA ATT-3'; reverse 5'-TCC AGC CTC ATT CTG AGA CAG A-3'; for IL-6

forward 5'-AGA AGG AGT GGC TAA GGA CCA A-3'; reverse 5'-AAC GCA

CTA GGT TTG CCG AGT A-3'; for GAPDH Forward 5'-TTC ACC ACC ATG

GAG AAG GC-3'; Reverse: 5'-GGC ATG GAC TGT GGT CAT GA-3'. The

amplified DNA fragments were quantified by densitometry using the MULTI-

ANALYST program of Model GS-700 Imaging Densitometer (Bio-Rad, Hercules,

CA, USA).

2.8. Measurement of ROS by flow cytometry

BV-2 cells were incubated with 10 mM CM-H2DCFDA (Invitrogen), a

fluorescence-based ROS indicator, at 37 °C for 15 min at the end of the different

treatments. The DCF fluorescence intensities of 10,000 cells were analyzed by

FACScan (BD FACSCalibur).

2.9. Statistical analysis

Data are expressed as mean ± SD. Differences between groups were tested for

statistical significance using the Student’s t test, and p values of < 0.05 were

considered significant.

3. Results

3.1. Compound R6 inhibits NO production in BV2 microglial
cells

To examine the inhibitory effects of the DMNQ derivatives on the NO production

of BV2 microglia, the BV2 cells were pre-treated with 30 μM of the compounds

for 30 min and were then treated with LPS (1 μg/ml) for 24 h. As shown in Fig. 2,

the compounds R1, R2, R4, R5 and R6 significantly inhibited the production of

NO, whereas compound R3 had no inhibitory effect. Moreover, compound R6

exhibited a greater inhibitory effect on the LPS-induced production of NO than the

other compounds. Thus, our following research focused on the functional studies of

compound R6. To investigate whether compound R6 could affect the cell viability,

BV-2 microglial cells were treated with compound R6 without LPS stimulation,

and the cell viability was measured by an MTT assay (Fig. 3). The results showed

that compound R6 did not affect the cell viability.

3.2 Compound R6 inhibits LPS-induced NO production and iNOS expression
in BV2 microglial cells

To examine the concentration dependence and time course of the inhibitory activity

of compound R6 on NO production and the iNOS protein expression, the BV-2

microglial cells were pre-treated with compound R6 at various concentrations and

then subsequently treated with LPS (1 μg/ml) for 24 h. As shown in Fig. 4 (A and
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C), that compound R6 dose-dependently inhibited the LPS-induced NO production

(approximately 35% at 30 μM) and iNOS expression (almost basal levels at 30

μM). Followed experiments were performed to understand of the inhibitory effect

of compound R6 on NO secretion. The BV-2 microglial cells were pre-treated with

compound R6 (30 μM), followed by LPS (1 μg/ml) stimulation for indicated times.

As shown in Fig. 4 (B and D), that compound R6 time-dependently inhibited NO

production and iNOS expression. To evaluate the inhibitory efficiency of

compound R6 on the LPS-induced NO production, we compared its inhibitory

[(Fig._2)TD$FIG]

Fig. 2. New compounds inhibit the LPS-induced production of NO in BV2 microglial cells. BV2

microglial cells were pre-treated with the indicated compounds for 30 min followed by treatment with

LPS (1 μg/mL) for 24 h. Then, the NO production was analyzed in the medium using Griess reagent.

Three independent replicates were performed for all the experiments. The data are presented as the

mean ± SD. *p ≤ 0.05; ** p ≤ 0.01, *** p ≤ 0.001.

[(Fig._3)TD$FIG]

Fig. 3. Effect of compound R6 on cell viabilities. The BV2 microglial cells were treated with

compound R6 at different concentrations for 24 h without LPS treatment. Cell viabilities were probed

using an MTT assay. Three independent replicates were performed for all the experiments. The data are

presented as the mean ± SD. *p ≤ 0.05; ** p ≤ 0.01, *** p ≤ 0.001.
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[(Fig._4)TD$FIG]

Fig. 4. Compound R6 inhibits the LPS-induced production of NO and expression of iNOS in BV2 microglial cells. BV-2 microglial cells were pre-treated with

various concentrations of compound R6 (1 μM, 10 μM, 20 μM and 30 μM) for 30 min, followed by LPS (1 μg/mL) stimulation for 24 h, and the NO production (A)

and iNOS expression (C) were detected using Griess reagent and Western blotting, respectively. BV-2 microglial cells were pre-treated with compound R6 (30 μM)

for 30 min, followed by LPS (1 μg/mL) stimulation for the indicated times. NO production (B) was detected in the medium using Griess reagent, and the cellular

iNOS expression was examined by Western blotting (D). BV-2 microglial cells were pre-treated with compound R6 (30 μM) and SMT (a selective inhibitor of iNOS,

1 mM) for 30 min, followed by LPS (1 μg/mL) stimulation for the indicated times. NO production (E) was detected in the medium using Griess reagent, and the

cellular iNOS expression was examined by Western blotting (F). Three independent replicates were performed for all the experiments. The data are presented as the

mean ± SD. *p ≤ 0.05; ** p ≤ 0.01, *** p ≤ 0.001. Full, unmodified images of this figure are available as Supplementary Material. A
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activity with SMT, a selective inhibitor of iNOS (Figs. 4 E and F). The results

showed that compound R6 inhibitory efficiency on LPS-induced microglial NO

production and iNOS expression were similar to that of SMT, suggesting that

compound R6 may be a good inhibitor candidate for NO production.

3.3 Compound R6 decreases LPS-induced cellular ROS levels and the
expression of cytokines in BV2 microglial cells

LPS stimulation triggers the production of inflammatory mediators, the

expression of cytokines and an increase in cellular ROS levels. To investigate

the effect of compound R6 on the LPS-induced microglial ROS levels and the

expression of pro-inflammatory cytokines, BV-2 microglial cells were pre-treated

with compound R6 for 30 min, followed by LPS (1 μg/ml) stimulation for the

indicated times. As shown in Fig. 5C, the LPS-induced mRNA expression of pro-

inflammatory cytokines, such as TNF-α, iNOS, IL-6 and IL-1β, and the cellular

ROS levels were significantly down-regulated by treatment with compound R6

(Figs. 5 A and B).

[(Fig._5)TD$FIG]

Fig. 5. Compound R6 decreases LPS-induced cellular ROS levels and the expression of cytokines in

BV2 microglial cells. BV-2 microglial cells were pre-treated with compound R6 (30 μM) for 30 min,

followed by LPS stimulation. Then, the intracellular ROS levels were analyzed by FACS. (A) The

increased fold of ROS levels are presented by the mean ± SD (n = 3). (B) The mRNA expression of

iNOS, TNF-α, IL-6 and IL-1β were examined by semi-quantitative RT-PCR (C). Three independent

replicates were performed for all the experiments. **p < 0.01, ***p < 0.001. Full, unmodified images

of this figure are available as Supplementary Material.
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3.4 Compound R6 down-regulates the LPS-induced phosphorylation of
MAPKs and IκB-α degradation

To understand the mechanism of action for the inhibition of the LPS-induced NO

production and the expression of cytokines by compound R6, we examined the

effect of compound R6 on the phosphorylation of MAPKs (JNK, p38, ERK,) and

IκB-α degradation stimulated by LPS. BV2 microglial cells were pre-treated with

30 μM of compound R6 for 30 min, followed by LPS (1 μg/ml) treatments for

indicated times. As shown in Fig. 6, that compound R6 significantly down-

regulated the LPS-induced phosphorylation of MAPKs (JNK, ERK and p38)

(Figs. 6 A–C) as well as IκB-α degradation (Fig. 6 D).

[(Fig._6)TD$FIG]

Fig. 6. Compound R6 down-regulates the phosphorylation of MAPKs and IκB-α degradation. BV2

microglial cells were pre-treated with compound R6 (30 μM) for 30 min, followed by LPS (1 μg/ml)

treatment for the indicated times. The Western blot was performed to examine the phosphorylation

levels for the MAPKs, including ERK (A), JNK (B) and p38 (C). The effect of compound R6 on the

NF-κB pathway was also examined by detecting the degradation of IκB-α (D). Three independent

replicates were performed for all the experiments. Full, unmodified images of this figure are available as

Supplementary Material.
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4. Discussion

Microglia play a crucial roles in neurodegenerative disease by either single or

chronic exposure to environmental toxins, neuronal damage, cytokines, and disease

proteins [19]. Increasing evidence has shown that many inflammatory mediators,

such as TNF-α, IL-1β, and IL-6, have been found in the striatum in human

Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) postmortem brains [20,

21, 22, 23], and an up-regulation of iNOS and cyclooxygenase 2 in amoeboid

microglia are located in the substantia nigra of PD patients [24]. Thus, controlling

the activation of the brain microglia may be an important approach to delay the

progress of neuron degenerative diseases.

1,4-naphthoquinone derivatives have powerful pharmacological effects of

antimicrobial and antitumor activities [25, 26], and these derivatives may be toxic

to cells through a number of mechanisms, including intercalation, arylation, redox

cycling, induction DNA strand breaks, and the generation of free radicals [27]. In

this study, we examined the effect of six newly synthesized DMNQ derivatives on

the LPS-induced production of NO in BV2 microglial cells. The results showed

that among the six newly synthesized DMNQ derivatives, compound R6 exhibited

the good inhibitory effect on the LPS-induced production of NO in BV2 microglial

cells (Fig. 2) and did not affect the cell viability (Fig. 3). When examining the

dose- and time-dependent inhibitory effect of compound R6 on the LPS-induced

production of NO in BV2 microglial and the expression of iNOS protein (Figs. 4

A–D), it was found that compound R6 exhibited a significant inhibitory effect on

NO production through decreasing the expression of the iNOS protein in BV2

microglial cells.

LPS stimulation triggers diverse microglial responses, including phagocytosis,

ROS production, and inflammatory mediator production through MAPKs signaling

cascades in microglial cells [28, 29]. ROS play a essential role in microglial

activation and in the progression of neurodegenerative diseases, such as

Alzhiemer’s disease and Parkinson's disease [30]. Compound R6 significantly

attenuated cellular ROS levels stimulated by LPS in BV2 microglial cells (Fig. 5 A

and B). Furthermore, LPS stimulation could also increase the expression of

cytokines in microglial cells [25, 26]. Thus, the effects of compound R6 on the

LPS-induced gene expression of cytokines were also determined (Fig. 5C). The

results showed that compound R6 significantly inhibited the mRNA expression of

iNOS, TNF-α, IL-6 and IL-1β, suggesting that compound R6 has a potency to

inhibit the LPS-induced activation of BV2 microglial cells. All these phenomena

suggest that ROS-dependent signaling pathways are most likely responsible for the

inhibitory effects described above.

MAPK family plays crucial roles in the LPS-induced pro-inflammatory products

and neuroinflammation [31, 32, 33]. It was reported that DMNQ derivatives
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exhibit anti-tumor activity by inducing apoptosis via caspases and mitogen

activated protein (MAP) kinase-dependent pathways [34, 35, 36]. Our previous

study showed that JNK signaling plays a important role in the regulation of the

LPS-stimulated production of NO and the expression of iNOS, and the regulatory

effect of the JNK signaling pathway on NO production was dependent on cellular

ROS [37]. Additionally, increasing evidence suggests that the ROS-dependent NF-

κB signaling pathway also participates in the LPS-induced expression of cytokines

and activation of microglial cells [38, 39, 40, 41, 42, 43]. Our results showed that

treatment with compound R6 significantly down-regulated the LPS-induced

phosphorylation of MAPKs (ERK, JNK and p38) and the degradation of IκB-α
(NF-κB inhibitor) (Fig. 6) in an early time course, suggesting that compound R6

exhibits its inhibitory effect on the LPS-induced activation of BV2 microglial cells

through blocking the primary signaling pathways that are ROS-dependent.

5. Conclusion

Taken together, our results showed that compound R6, synthesized from DMNQ,

significantly inhibited NO production, the expression of cytokines and decreased

the cellular ROS levels in LPS-stimulated BV-2 microglial cells by down-

regulating the ROS-dependent MAPK/NF-κB signaling pathways. Our findings

provide a new approach to therapeutic targets for glia-mediated neuroinflammatory

diseases.
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