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Abstract

Background: Two-stage least square [2SLS] and two-stage residual inclusion [2SRI] are popularly used instrumental
variable (IV) methods to address medication nonadherence in pragmatic trials with point treatment settings. These
methods require assumptions, e.g., exclusion restriction, although they are known to handle unmeasured
confounding. The newer IV-method, nonparametric causal bound [NPCB], showed promise in reducing uncertainty
compared to usual IV-methods. The inverse probability-weighted per-protocol [IP-weighted PP] method is useful in
the same setting but requires different assumptions, e.g., no unmeasured confounding. Although all of these
methods are aimed to address the same nonadherence problem, comprehensive simulations to compare
performances of them are absent in the literature.

Methods: We performed extensive simulations to compare the performances of the above methods in addressing
nonadherence when: (1) exclusion restriction satisfied and no unmeasured confounding, (2) exclusion restriction is
met but unmeasured confounding present, and (3) exclusion restriction is violated. Our simulations varied parameters
such as, levels of adherence rates, unmeasured confounding, and exclusion restriction violations. Risk differences were
estimated, and we compared performances in terms of bias, standard error (SE), mean squared error (MSE), and 95%
confidence interval coverage probability.

Results: For setting (1), 2SLS and 2SRI have small bias and nominal coverage. IP-weighted PP outperforms these
IV-methods in terms of smaller MSE but produces high MSE when nonadherence is very high. For setting (2),
IP-weighted-PP generally performs poorly compared to 2SLS and 2SRI in term of bias, and both-stages adjusted
IV-methods improve precision than naive IV-methods. For setting (3), IV-methods perform worst in all scenarios, and
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(Continued from previous page) IP-weighted-PP produces unbiased estimates and small MSE when confounders are
adjusted. NPCB produces larger uncertainty bound width in almost all scenarios. We also analyze a two-arm trial to
estimate vitamin-A supplementation effect on childhood mortality after addressing nonadherence.

Conclusions: Understanding finite sample characteristics of these methods will guide future researchers in
determining suitable analysis strategies. Since assumptions are different and often untestable for IP-weighted PP and
IV methods, we suggest analyzing data using both IP-weighted PP and IV approaches in search of a robust conclusion.

Keywords: Pragmatic trials, Nonadherence, Simulation, Unmeasured confounding

Background
Randomization is the core principle of clinical trials,
that protects against noncomparability between treatment
groups at baseline. Pragmatic trials are getting popular for
exploring the effectiveness of treatments in settings that
mimic real-world clinical practice [1]. In this manuscript,
we focus on nonadherence in a point-treatment set-
ting, where treatment is assigned at baseline shortly after
randomization. Although the treatments are randomly
assigned at baseline for pragmatic trials, it is possible
that some subjects may deviate from the protocol because
of switching to other treatments, loss to follow-up due
to side-effects, etc. In the presence of treatment nonad-
herence, a treatment effect estimate that is agnostic to
the adherence pattern, is less useful for the patients and
caregivers to make a decision about the treatment. More-
over, pragmatic trials are often unblinded [2], which often
introduces selection bias [3]. Typically, those adherent and
nonadherent subjects are different in terms of prognos-
tic factors [4], and it is necessary to take into account
those factors while estimating the treatment effect. An
additional challenge arises when adherence depends on
subject’s charmeasured during baseline. Inability to adjust
for the unmeasured confounding could bias the treatment
effect, depending on the method of estimation [4, 5].
An intention-to-treat (ITT) analysis is treated as a

default analytic technique to address nonadherence in
randomized and pragmatic trial settings [6]. The baseline
randomization preserved by this analysis, and hence base-
line confounding is not a concern [7, 8]. The per-protocol
(PP) and as-treated (AT) are two other common meth-
ods that are popularly used to address nonadherence [9,
10]. In practice, all these naive methods usually produce
biased estimates if the nonadherence occurs in a nonran-
dom fashion [4]. Typically that is the case, if some of the
characteristics of the patient act as a confounder, e.g., are
predictive of the nonadherence pattern as well as the out-
come of interest. Particularly for PP approaches, when
subjects who deviate from protocol are removed from
the analysis, comparability of the subjects in both arms
ensured by the process of randomization is violated. In
that case, baseline confounder adjusted-PP methods are
utilized to address the nonadherence in pragmatic trials, if
the baseline measurements of the necessary confounders

are available [7, 11–13]. As an alternative, inverse proba-
bility (IP)-weighted PP is also used to produce marginal
estimates, and that can adjust for the measured con-
founders. However, if some of the necessary confounders
are not measured, the PP based methods usually pro-
vide biased estimates [14]. In that case, the instrumental
variable (IV)-based methods can still be used to get the
unbiased estimate of the treatment effect [15], which is
a known strength of these IV methods. Previous stud-
ies used various versions of IV-based methods to address
the nonadherence in the pragmatic trial settings [10, 16,
17]. Two-Stage least squares (2SLS), two-stage residual
inclusion (2SRI) are well-known IV-based methods, with
a known limitation that they are usually inefficient. Newer
IV-based method, nonparametric causal bound (NPCB),
is proposed in the literature which uses a partial identifica-
tion approach, but provides only bounds rather than point
estimates [18]. This method was touted as a promising
method in terms of reducing the levels of uncertainty, but
the original method can not adjust for any confounders.
Two previous studies analyzed data from a two-arm ran-
domized control trial in northern Sumatra using this
NPCB method [19, 20]. They reported very wide bounds
from NPCB method. As a motivating example, we used
the same dataset to explore the performance of two other
IV methods in the same scenario, and from the simula-
tions under various parameter spaces, we investigated the
possible reasons of why the NPCB may have produced
wide bounds in this study.
Both the adjusted PP methods (baseline adjusted and

IP-weighted) and IV-based methods (2SLS, 2SRI, and
NPCB) aim to deal with adherence adjustment but
require different assumptions. For example, adjusted PP
approaches assume there is no unmeasured confounding,
while the IV-based methods assume the exclusion restric-
tion (the IV is associated with the outcome only through
the treatment) [21–23]. These two assumptions cannot
be empirically verified given the observed data, but the
violation of the assumptions can lead to biased estimates
[14, 24]. Let we are interested in estimating the effect
of a heart transplant on one-year mortality. No unmea-
sured confounding implies that all necessary confounders
(e.g., variables causally associated with both heart trans-
plant and mortality) are measured. If randomization is
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the instrument, the exclusion restriction assumption sug-
gests that randomization should not directly influence
any variable other than whether patients did the heart
transplant versus standard care. Despite the different sta-
tistical assumptions required by these two classes of meth-
ods dealing with the same nonadherence problem, the
comprehensive comparison of these adherence-adjusted
methods remains largely absent in the literature. More-
over, there are two definitions of PP methods, such as (a)
censoring those patients if and when deviating from the
protocol and (b) excluding those patients entirely from the
analysis [25]. There exist some recent simulations in the
literature for the first definition [26, 27] but we could not
find much explorations for the second definition. Besides,
NPCB being a relatively newly proposed method, finite
sample characteristics of its estimates under the above
settings should be explored.
In the present study, we aimed to compare two adjusted

PP approaches and three versions of the IV-based meth-
ods in the presence of nonadherence. To explore the bene-
fits and limitations of the applications of these approaches
(along with the naive approaches), and to evaluate how
robust these methods are if the respective assumptions
are violated, we propose comprehensive simulation stud-
ies to compare these methods under different settings,
such as when (1) exclusion restriction satisfied and no
unmeasured confounding, (2) exclusion restriction satis-
fied but unmeasured confounding present, and (3) exclu-
sion restriction violated. Under these scenarios, we try to
identify which methods are more appropriate to use.

Methods
Estimation methods
Methods
We compared the estimates of the following methods for
a binary outcome of interest: naive methods (ITT, naive
PP, and naive AT), two PP methods (baseline adjusted PP
and IP-weighted PP), and three classes of IV-based meth-
ods (2SLS, 2SRI, and NPCB). Some earlier studies [28, 29]
used the 2SLS method where confounders are adjusted
only in the first stage of the model. Wang et al. [29] used
the 2SRI method with confounders adjusted only in the
first stage of the model. To compare whether there are any
effects of considering different versions of these IV meth-
ods, we have added some variations of all these methods,
such as the naive, first-stage adjusted, and both-stages
adjusted of 2SLS and 2SRI approaches. A brief descrip-
tion of these models is provided in Table 1, and the full
description can be found in Appendix A.

Assumptions
The key assumption for the PP methods and IV-based
methods is the no unmeasured confounding and exclusion
restriction, respectively [21–23]. The other assumptions

of all the methods are provided in Table 2 and are summa-
rized in Appendix A.
Confounders, confounding, and exclusion restriction

are the three important concepts to understand the sim-
ulation settings we describe below. The traditional defini-
tion of a “confounder" is that it meets all three conditions:
the variable is (i) causally associated with the outcome,
(ii) non-causally or causally associated with the treatment,
and (iii) not in the causal pathway between the treatment
and outcome [32]. Consider the causal diagram is shown
in Fig. 1(A), where Z is the randomization, A is the treat-
ment, and Y is the outcome. Consider two variables in the
figure: L (measured) and U (unmeasured). Both L and U
are (i) causally associated with Y, (ii) causally associated
with A, and (iii) not in the causal pathway between A and
Y (i.e., not mediators). L and U are also not colliders (i.e.,
not common effect of A and Y ) [33], but confounders in
this example. On the other hand, “confounding" is a fun-
damental concept in epidemiological studies to estimate
causal effects. No unmeasured confounding implies that
the distribution of Y would be the same for the treated and
untreated subjects if both received the same treatment.
That means, the treated and untreated subjects are com-
parable in terms of any measured and unmeasured factors
if both had been treated [33]. To address confounding,
in the causal diagram terminology, we must close all
open “backdoor paths" between A and Y (e.g., adjust for
those variables in the regression model that block the
open backdoor paths) [33, 34]. There could be scenar-
ios where more than one variable lies along a backdoor
path. In such a scenario, adjusting for a single confounder
on the path can be sufficient to block the backdoor path
[33, 34]. For example, in Fig. 1(B), although we have two
“confounders" (L and U) by the conventional confounder
definition (A ← L → Y , and A ← L ← U → Y ), adjust-
ing only for L is sufficient to close all open backdoor paths
between A and Y. That means, L constitutes the minimal
sufficient adjustment set [35]. In such a case, adjusting
only for L can address “confounding" (even though there
remained U unadjusted, which is a confounder by con-
ventional definition), and it is certainly possible to get an
unbiased effect of A on Y [33], irrespective of whether we
can measure or adjust U. But in Fig. 1(C), adjusting only
for L is not sufficient to close all open backdoor paths
betweenA and Y (since a path is open throughU), indicat-
ing the presence of confounding in the A-Y relationship.
For more discussion on confounders and confounding,
please see [32, 33].
The exclusion restriction assumption says the instru-

ment is associated with the outcome only through the
treatment. For example, in Figs. 1(B)-(C), the instrument
Z is associated with Y only through its effect on A, mean-
ing that the exclusion restriction is met [36]. As shown in
Fig. 1(D), if the instrument influences Y through a path-
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Table 1 Description of the estimation methods used for dealing with treatment nonadherence in pragmatic trials with
point-treatment settings

Name of the method Description

Naïve methods

ITT It models the randomization variable (Z) on the outcome (Y) without adjustment for measured confounders L. This
method does not consider whether individuals adhered to the treatment [6].

Naïve PP It models Z on Y among those subjects who receive the treatment according to the protocol but without adjustment
for L. This method excludes those subjects who deviated from the protocol.

Naïve AT It models the treatment actually received (A) on Y without adjustment for L. This method does not consider whether
individuals randomized to the treatment groups.

Adjusted methods

Baseline-adjusted ITT The same as ITT but it adjusts for L.

Baseline-adjusted PP The same as naïve PP but it adjusts for L.

IP-weighted PP This method creates inverse probability adherence weights to generate a pseudo population to estimate the treat-
ment effect by removing the effect of nonadherence [25]. We used a logistic model that adjusts for L to estimate
the probabilities, and then used the marginal structural model to estimate the parameters of interest. The stabilized
weights were used to prevent from extreme weights [7, 30].

IV-methods

Naïve 2SLS The instrument (Z) is modelled to the treatment (A) in the first stage, and then the predicted treatment is modelled
to the outcome (Y) in the second stage [31]. There was no adjustment for L in either stage of the model.

First-stage adjusted 2SLS The same as naive 2SLS except it adjusts for L in the first stage of the model [28, 29].

Both-stages adjusted 2SLS The same as naive 2SLS except it adjusts for L in both stages of the model.

Naïve 2SRI The instrument (Z) is modelled to the treatment variable (A) in the first stage, and then the residuals from the first
stage and the treatment variable are modelled to the outcome (Y) in the second stage [22]. There was no adjustment
for L in either stage of the model.

First-stage adjusted 2SRI The same as naive 2SRI except it adjusts for L in the first stage of the model [29].

Both-stages adjusted 2SRI The same as naive 2SRI except it adjusts for L in both stages of the model [22].

NPCB This nonparametric method uses a constrained probability statement to provide bounds on the estimated treatment
effect rather than a point estimate [18, 19].

Note: The 2SLS, 2SRI, and NPCB are IV-based methods. Whether there is any adjustment for covariates, the 2SLS/2SRI are not termed as the naive, first-stage adjusted, or
both-stages adjusted 2SLS/2SRI in the literature. For comparison purposes, we termed these methods as the naive, first-stage adjusted, or both-stages adjusted 2SLS/2SRI;
Abbreviations: ITT: intention-to-treat; PP: per-protocol; AT: as-treated; IP-weighted PP: inverse probability weighted per-protocol; 2SLS: two-stage least square; 2SRI: two-stage
residual inclusion model; NPCB: non-parametric causal bound.

Table 2 Assumptions of the estimation methods described in Table 1 that are used for addressing treatment nonadherence in
pragmatic trials with point-treatment settings

Name of the method Key assumption Other assumptions

ITT, baseline-adjusted ITT, naïve PP, naïve AT No unmeasured confounding Consistency, no interference, posi-
tivity, nonadherence occurred com-
pletely at random

Baseline-adjusted PP, IP-weighted PP No unmeasured confounding Consistency, no interference, posi-
tivity, correct model specification

Naïve 2SLS, first-stage adjusted 2SLS, both-stages adjusted 2SLS Exclusion restriction Consistency, no interference, pos-
itivity, correct model specification,
relevance, monotonicity

Naïve 2SRI, first-stage adjusted 2SRI, both-stages adjusted 2SRI Exclusion restriction Consistency, no interference, pos-
itivity, correct model specification,
relevance, monotonicity, linearity of
residuals

NPCB Exclusion restriction Consistency, no interference, posi-
tivity, relevance, monotonicity

Abbreviations: ITT: intention-to-treat; PP: per-protocol; AT: as-treated; IP-weighted PP: inverse probability weighted per-protocol; 2SLS: two-stage least square; 2SRI: two-stage
residual inclusion model; NPCB: non-parametric causal bound.
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Fig. 1 The causal diagrams representing the simulation mechanisms considered in this study. DAGs 1-3 are subsets of the main DAG and represent
the simulation settings 1-3, respectively. Here, Z is the randomization variable, A is the treatment, L is a vector of measured confounders, U is
unmeasured confounders, and Y is the outcome. Abbreviations: DAG: directed acyclic graph

way other than A, the exclusion restriction assumption is
violated [37].

Target parameter
The risk difference (RD) was calculated as the target
parameter of interest. The odds ratio is a widely used asso-
ciation measure for a binary outcome. However, since the
odds ratio is a non-collapsible measure, we chose not to
use this measure [38]. Our effect estimates are marginal
for some methods and conditional over covariates for
other methods. For example, the outcome model for the
naive methods, naive and first-stage adjusted 2SLS, and
IP-weighted PP do not include any covariates, and the
resulting effect estimates are marginal. On the other hand,
the baseline-adjusted methods, both-stages adjusted 2SLS
and 2SRI, include measured covariates in the outcome
model, and the resulting effect estimates are conditional
on covariates. Therefore, we chose to use RD, which is
a collapsible effect measure that gives equivalent and
comparable marginal or conditional estimates [39].
To estimate RD, we can use the binomial regression with

an identity link function as the outcome model. How-
ever, the binomial model fitting frequently shows conver-
gence issues with adjusting for covariates in the model
and requires guessing reasonable starting values which is
almost impossible in the simulation settings. Naimi and

Whitcomb [40] suggested to use the generalized linear
model (GLM)with a Gaussian (i.e., normal) distribution in
such scenarios as an alternative to the binomial regression
even if the outcome variable is binary. The authors sug-
gested using the robust sandwich standard error for valid
standard errors in this setting. In our study, we followed
the GLM method described by Naimi and Whitcomb as
the outcome model for all the estimators other than the
IP-weighted PP [40]. For the IP-weighted PP estimator,
since we have to incorporate IP weights in the outcome
model, we used the weighted GLM for the Gaussian family
with an identity link function and robust standard error.

Simulation setup
We followed two established simulation structures
described by Young et al. [26], and by Palmer et al. [19]
with modifications. Under both structures, we consider
point-treatment settings (treatment is administered only
once) and each individual is assigned to the treatment
(Z = 1) or to standard care (Z = 0). We considered three
data generating mechanisms, where A is the treatment, Y
is the binary outcome of interest, L = (L1, L2) is a vector
of measured baseline confounders, and U is unmeasured
confounders.We considered one set of variables in the fol-
lowing causal order for all three settings: Z,U , L1, L2,A,Y .
One such example of a real-world scenario could be



Hossain et al. BMCMedical ResearchMethodology           (2022) 22:46 Page 6 of 46

estimating the effect of the seasonal influenza vaccine on
flu in 6 months among adults. The three data-generating
mechanisms considered in this study are different than
each other in terms of the underlying assumption of mea-
sured and unmeasured confounding and exclusion restric-
tion. Figure 1(A) shows the overall directed acyclic graph
(DAG) of the data generating process. For simulation set-
tings 1-3 described below, we simulated data from the
following algorithms (Eqn. (1)):

Z ∼ Bernoulli(0.5)
U ∼ fU

L1 ∼ Normal(λ0 + λ1U , σ)

L2 ∼ Bernoulli(pL2)
A ∼ Bernoulli(pA)

Y ∼ Bernoulli(pY ).

(1)

The description of each three generating processes with
parameterization is described below in detail.

Setting 1: exclusion restriction satisfied and no unmeasured
confounding
Young et al. [26] described the simulation structure for
longitudinal setting, whereas we used a simplified ver-
sion of this simulation by considering the point treatment
setting and having only baseline covariate measurements.
Data for setting 1 are generated from our example of the
influenza vaccine effect on flu. Z and A are the random-
ization and influenza vaccine status, receptively. In this
example, physical activity (L1) and illness (L2) are two
measured confounders, and smoking is an unmeasured
confounder (U). Less physical activity can cause chronic
illness, and thus, an arrow from L1 to L2 in our example
could be justified [41]. Besides, smoking typically reduces
the level of physical activity (U → L1) [42], increases ill-
ness (U → L2) [43], and increases the risk of flu (U → Y )
[44]. In addition, people with less physical activity and
having chronic illness could have influenza vaccine hes-
itancy and are less likely to take the vaccine (L → A)
[45]. DAG 1 in Fig. 1(B) is a subset of Fig. 1(A), that
shows the data generating process for setting 1. The exclu-
sion restriction assumption is satisfied for this simulation
framework. To get an unbiased effect of the influenza
vaccine on flu, we must block all open backdoor paths
between the vaccine and flu. As shown in Fig. 1(B), even
though we have an unmeasured confounder (e.g., smok-
ing), adjusting for measured confounders can be sufficient
to block the backdoor path between vaccine status and flu
status. Whether or not we measure or adjust for smoking
does not impact our ability to obtain unbiased treatment
effect estimates of the influenza vaccine on flu. In other
words, adjusting only for measured confounders using
an appropriate method (e.g., IP-weighted PP, 2SLS, 2SRI)
should give us an unbiased effect estimate of the vaccine

on flu. Hence, this Setting 1 is a fair scenario for both PP
and IV-based methods where PP methods that adjust for
L and the IV-based methods should all be unbiased.
Using the Eqn. (1), the following are considered to sim-

ulate the data for settings 1: fU = Uniform(0,1), λ0 =
0, λ1 = 6, σ = 2, pL2 = logit(−5 + 3U + 1.25L1), pA =
logit(α0 +α1Z+α2L1 +α3L2 +α4U), and pY = logit(θ0 +
θ1A + θ2L1 + θ3L2 + θ4U + θ5Z). Here, α0 is associated
with the nonadherence rate; α1 = 0.6 is the coefficient
associated with randomization; α2 = 0.4 and α3 = 0.35
are coefficients associated with the measured covariates;
α4 = 0. Also, θ0 is associated with the event rate; θ1 = 0 is
the null treatment effect (and thus no arrow from A to Y
in DAG 1); θ2 = 0; θ3 = 0; θ4 determines the magnitudes
of unmeasured confounders, and θ5 = 0 indicates the
exclusion restriction is satisfied in this setting. Under dif-
ferent choices of α0, we considered six levels of deviations
from adherence in each arm: 10, 20, 40, 60, 80, and 90%.
The parameter choices are summarized in Table 3(A). For
each of the nonadherence scenarios, we considered two
sets of θ4 values, making a total of 12 scenarios. We set θ4
= 8 and 0.5 for strong and weak unmeasured confounders,
respectively. The full list of parameters considered for all
12 scenarios for setting 1 is shown in Appendix D Table 5.

Setting 2: exclusion restriction satisfied, unmeasured
confounding present
Palmer et al. [19] described the simulation structure for
point-treatment settings where the exclusion restriction
assumption of the IV assumption is violated. We slightly
modified the structure and considered two versions of
this simulation: the exclusion restriction of IV assumption
is not violated but there exists unmeasured confounding
(Fig. 1(C); DAG 2), and the exclusion restriction assump-
tion is violated (Setting 3; described later). Recall our
example on estimating the influenza vaccine effect on flu
where information on smoking is unmeasured. As shown
in DAG 2, smoking status is a barrier to receive the
influenza vaccine (U → A) [45], but it increases the risk
of flu (U → Y ) [44]. Given that the study is a randomized
trial, the exclusion restriction could be satisfied in this set-
ting, but there could be unmeasured confounding. Unlike
setting 1, adjusting only for measured confounders (e.g.,
physical activity and illness) may not be sufficient to get
an unbiased effect estimate of the vaccine on flu using the
PP methods [14].
Using the Eqn. (1), the following are considered to sim-

ulate the data for settings 2: fU = Bernoulli(0.5), λ0 =
3, λ1 = 0, σ = 0.5, pL2 = logit(−3.5 + 0.6L1), pA =
α0+α1Z+α2L1+α3L2+α4U , and pY = θ0+θ1A+θ2L1+
θ3L2 + θ4U + θ5Z. We considered α1 = 0.25, α2 = 0.02,
α3 = 0.04, and α4 = 0.05. Under different choices of α0,
we considered six levels of nonadherence: 10, 20, 40, 60,
80, and 90%. The parameter choices are summarized in
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Table 3 The nonadherence rates per arm for different choices of α0 for simulation settings 1-3 with (α1,α2,α3,α4) = (0.6, 0.4, 0.35, 0)
for setting 1, (0.25, 0.02, 0.04, 0.05) for setting 2, and (0, 0.01, 0.04, 0) for setting 3

Scenario Arm
A. Setting 1 B. Setting 2 C. Setting 3

α0 Nonadherence α0 Nonadherence α0 Nonadherence

1
Z = 1 0.72 10 0.55 11 0.86 10

Z = 0 -4.06 10 0.02 11 0.06 10

2
Z = 1 -0.23 20 0.46 20 0.76 20

Z = 0 -3.14 20 0.12 21 0.16 20

3
Z = 1 -1.47 40 0.25 41 0.56 41

Z = 0 -1.92 40 0.32 41 0.36 40

4
Z = 1 -2.52 60 0.05 61 0.36 60

Z = 0 -0.85 60 0.52 61 0.57 60

5
Z = 1 -3.76 80 -0.15 81 0.16 80

Z = 0 0.39 80 0.70 80 0.77 80

6
Z = 1 -4.72 90 -0.25 91 0.06 90

Z = 0 1.35 90 0.80 89 0.86 90

Table 3(B). For each of the six nonadherence scenarios, we
considered five scenarios of the treatment effect of interest
(θ1) and two versions of confounding (θ4), making a total
of 60 scenarios. We set the treatment effect of interest as
θ1 = {−0.2,−0.05, 0, 0.05, 0.2} and confounding as θ4 =
0.05 and 0.4 respectively for weak and strong confound-
ing. In this setting, the exclusion restriction is satisfied so
that θ5 = 0. The complete list of parameters considered
for all 60 scenarios for setting 2 is shown in Appendix D
Table 6.

Setting 3: exclusion restriction violated
If the exclusion restriction is met, Z affects the outcome
Y only through the treatment A [36]. For example, if
Z represents randomization in a double-blind random-
ized controlled trial, Z → A → Y is expected and the
exclusion restriction assumption usually met. However,
as discussed by Brookhart et al. [37], if the instrument Z
represents physician’s prescribing preference, there could
be a direct effect of Z on Y because physicians tend to
prescribe selective drugs based on their experience about
safety and efficacy of drugs. Recall our motivating exam-
ple of exploring the effect of the seasonal influenza vaccine
on flu. Let Z be the physician’s prescribing preference
on whether an individual is recommended the seasonal
influenza vaccine. Based on the experience, the physicians
could prescribe the vaccine only to subjects with a higher
risk of the flu [46]. Therefore, in addition to the influence
of Z on Y through A, Z could directly influence Y. The
data generating mechanism for this setting is shown in
Fig. 1(D; DAG 3). Since the exclusion restriction assump-
tion is violated in this setting, the IV methods (e.g., 2SLS
and 2SRI) are expected to produce biased estimates no
matter whether we adjust for measured confounders (e.g.,
physical activity and illness) [24].

Using the Eqn. (1), the following are considered to sim-
ulate the data for settings 3: fU = Bernoulli(0.5), λ0 =
3, λ1 = 0.05, σ = 0.5, pL2 = logit(−3.5 + 0.6L1 +
0.1U), pA = α0 + α1Z + α2L1 + α3L1 + α4U , and pY =
θ0 + θ1A + θ2L1 + θ3L2 + θ4U + θ5Z. We considered
α1 = 0, α2 = 0.01, α3 = 0.04, and α4 = 0. The
same as before, there are six levels of nonadherence for
different choices of α0: 10, 20, 40, 60, 80, and 90%. The
parameter choices are summarized in Table 3(C). For each
nonadherence scenario, we set two versions of θ1 and two
versions of θ5, making a total of 24 scenarios. We set θ1
= 0 for the null treatment effect and 0.2 for the non-null
effect. θ5 determines the severity of the exclusion restric-
tion assumption violation. A small θ5 value indicates a
minor violation of the exclusion restriction, and a large
value indicates a severe violation. We set these θ5 val-
ues as 0.05 and 0.2 in this study. The complete list of
parameters for these 24 scenarios is shown in Appendix D
Table 7.

Simulation
Sample size and iterations
To assess the performance of the estimation methods, we
generated 2,000 samples (approximately 1,000 per arm)
with 1000 iterations for each scenario based on the above
DAGs. R version 4.1.0 was used to perform the analysis.

Performancemetrics
We assessed the performance of the models through sev-
eral measures, such as bias, standard error (SE), mean
squared error (MSE), and 95% confidence interval (CI)
coverage probability. This allows us to compare the per-
formance of different methods in terms of accuracy, pre-
cision, and coverage. The following definitions are used to
define these measures [47]:
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Bias = 1
nsim

nsim∑

i=1
β̂i − β = ˆ̄β − β

SE =
√√√√ 1

nsim − 1

nsim∑

i=1
(β̂i − ˆ̄β)2

MSE = 1
nsim

nsim∑

i=1

(
β̂i − β

)2

Coverage = 1
nsim

nsim∑

i=1
1(β̂lower,i ≤ β ≤ β̂upper,i),

where β (i.e., RD) is the true treatment effect of interest,
nsim is number of iterations (1000 in our case), β̂i is the
estimated RD in the ith iteration, and β̂lower,i and β̂upper,i
are the lower and upper 95% bound of the RD in the ith
iteration, respectively.

Results
We presented the results for the baseline-adjusted PP, IP-
weighted PP, naive 2SLS, both-stages adjusted 2SLS, naive
2SRI, and both-stages adjusted 2SRI methods in the main
text, as they are the main focus of the study. The results
for all 14 methods described in Table 1 can be found in
Appendix C.

Setting 1: exclusion restriction satisfied and no
unmeasured confounding
Bias
Figure 2 shows the bias versus an incremental rate of

nonadherence using DAG 1 (null treatment effect) for
baseline-adjusted PP, IP-weighted PP, naive and both-
stages adjusted 2SLS and 2SRI methods. Under the sce-
nario of weak unmeasured confounders, all methods pro-
duce small bias. In the presence of strong unmeasured
confounders, the 2SLS and 2SRI estimates have nominal
biases (range 0 to 0.02). The baseline-adjusted PP and
IP-weighted PP estimates are approximately unbiased,
but these estimates are biased (the bias is approximately
0.025) beyond 80% of nonadherence. The bias versus non-
adherence comparison for all methods considered in this
study is shown in Appendix C Fig. 6.

SE, MSE, coverage, and bounds of NPCB
The 2SLS and 2SRI methods produce higher SE than PP
methods (Appendix C Fig. 7). The baseline-adjusted PP
and IP-weighted PP also produce high SE beyond 40%
nonadherence. Also, the IP-weighted PP performs the
worst beyond 60% nonadherence, producing very high SE
(e.g., approximately twice than both-stages adjusted 2SLS
and 2SRI methods). The pattern and amount of SE are
the same for weak and strong unmeasured confounders
scenarios.
Under the null scenario with weak unmeasured con-

founders, all methods produce small MSE and some share
approximately the same line (Appendix C Fig. 8). The
naive and both-stages adjusted 2SLS and 2SRI meth-
ods have slightly higher MSE compared to the baseline-
adjusted PP and IP-weighted PP when the nonadherence

Fig. 2 Bias versus the nonadherence rate for simulation setting 1. The 2SLS and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI
share the same line as they produce the same amount of bias. Abbreviations: PP: per-protocol, IP-weighted PP: inverse probability-weighted
per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion



Hossain et al. BMCMedical ResearchMethodology           (2022) 22:46 Page 9 of 46

rate is ≤ 60%. For example, MSEs are close to zero for the
baseline-adjusted PP and IP-weighted PP methods, but
about 0.015 for naive and both-stages adjusted 2SLS and
2SRI methods. On the other hand, the baseline-adjusted
PP and IP-weighted PP have more than twice MSE than
naive and both-stages adjusted 2SLS and 2SRI methods
beyond 60% nonadherence. Also, the both-stages adjusted
2SLS and 2SRI produce comparatively smaller MSE than
the naive 2SLS and 2SRI methods.
The IP-weighted PP produces nominal 95% coverage

for less than 80% nonadherence, but this method pro-
duces low coverage for≥ 80% nonadherence (Appendix C
Fig. 9). On the other hand, the naive and both-stages
adjusted 2SLS and 2SRI produce nominal 95% coverage
regardless of weak or strong unmeasured confounders.
The bounds of the NPCB method using DAG 1 are

shown in Appendix C Fig. 10. The NPCB method pro-
duces very wide bounds regardless of weak or strong
unmeasured confounders. In contrast, the width of
bounds is small for 10% and 90% nonadherence, and high
for 20% to 80% nonadherence.

Setting 2: exclusion restriction satisfied, unmeasured
confounding present
Varying the effect of nonadherence
Wepresented bias, SE,MSE, and 95% coverage probability
for different nonadherence rates.We presented the results

for a null (RD = 0) and non-null (RD = 0.2) treatment
effect scenarios.

Bias Under the scenario of weak unmeasured confound-
ing, all methods produce small bias (Fig. 3). In the pres-
ence of strong unmeasured confounding, the baseline-
adjusted PP and IP-weighted PP produce biased estimates.
The amount of bias (range from 0.02 to 0.10) is approx-
imately the same for the null and non-null treatment
effect scenario. In contrast, the naive 2SLS and 2SRI, and
both-stage adjusted 2SLS and 2SRI methods consistently
produce unbiased estimates under the null or non-null
and weak or strong confounding scenarios. The bias ver-
sus nonadherence rate for all methods using DAG 2 is
shown in Appendix C Fig. 11.

SE, MSE, coverage, and bounds of NPCB Appendix C
Figs. 12 and 13 show the SE and MSE versus nonad-
herence using DAG 2, respectively. The baseline-adjusted
PP and IP-weighted PP produce low coverage for strong
confounding scenarios, and these two methods per-
form poorly beyond 60% nonadherence (Appendix C
Fig. 14). On the other hand, the naive and both-stages
adjusted 2SLS and 2SRI consistently have nominal cover-
age under both null or non-null effects and weak or strong
unmeasured confounding scenarios. The NPCB method

Fig. 3 Bias versus the nonadherence rate for the null and non-null effect for simulation setting 2. The naïve and both-stages adjusted 2SLS and 2SRI
share the same line as they produce the same amount of bias. The baseline-adjusted PP and IP-weighted PP also share the same line. Abbreviations:
RD: risk difference, PP: per-protocol, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage
residual inclusion
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produces a wide bound for both the null and the non-
null effect, regardless of the weak or strong confounding
(Appendix C Fig. 15). The width of bounds is very wide for
20% to 80% nonadherence.

Varying the effect of the treatment
Wepresented bias, SE,MSE, and 95% coverage probability
for different treatment effects. We showed the results for
10% and 40% nonadherence rates.

Bias Figure 4 shows the bias versus treatment effect for
10% and 40% nonadherence using DAG 2. All methods
produce approximately an unbiased estimate under the
weak confounding scenario with 10% nonadherence. The
bias is increased to about 0.015 for baseline-adjusted PP
and IP-weighted PP methods under the strong confound-
ing scenario. The bias is more pronounced (about 0.02) for
40% nonadherence. However, the naive and both-stages
adjusted 2SLS and 2SRI methods produce approximately
unbiased estimates for any treatment effects under weak
or strong confounding. The bias versus treatment effect
for all methods using DAG 2 is shown in Appendix C
Fig. 16.

SE, MSE, and coverage SE and MSE versus treatment
effect for 10% and 40% nonadherence using DAG 2 are
presented in Appendix C Figs. 17 and 18. The baseline-
adjusted PP and IP-weighted PP methods produce small

coverage under the strong unmeasured confounding sce-
nario (Fig. 19). On the other hand, the naive and both-
stages adjusted 2SLS and 2SRI consistently have nominal
coverage regardless of the treatment effect and weak or
strong unmeasured confounding.

Setting 3: exclusion restriction assumption violated
Bias
Figure 5 shows the bias versus nonadherence rate using
DAG 3.We observed that the 2SLS and 2SRImethods pro-
duce high biases when the exclusion restriction assump-
tion is violated. The biases are between -0.3 and 0.3 for
a minor violation of the exclusion restriction but beyond
the range of [-0.3,0.3] when the violation is severe. The
baseline-adjusted PP and IP-weighted PP estimates are
also biased for minor or severe violations of the exclusion
restriction. However, the bias is slightly smaller (range
0.05 to 0.25) compared to 2SLS and 2SRI methods. The
bias versus nonadherence rate for all methods using DAG
3 is shown in Appendix C Fig. 20.

SE, MSE, coverage, and bounds of NPCB
The SE and MSE versus nonadherence can be found in
Appendix C Figs. 21 and 22. In terms of 95% coverage
probability, both PP and IV methods produce low cover-
age for either minor or severe violations of the exclusion
restriction assumption (Appendix C Fig. 23). The NPCB

Fig. 4 Bias versus treatment effect in risk difference for 10 and 40% nonadherence for simulation setting 2. The naive and both-stages adjusted 2SLS
and 2SRI share the same line as they produce the same amount of bias. The baseline-adjusted PP and IP-weighted PP also share the same line.
Abbreviations: PP: per-protocol, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual
inclusion



Hossain et al. BMCMedical ResearchMethodology           (2022) 22:46 Page 11 of 46

Fig. 5 Bias versus the nonadherence rate for the null and non-null effect for simulation setting 3. The 2SLS and 2SRI methods share the same line,
and the baseline-adjusted PP and IP-weighted PP share the same line. The bias is out of the bound [-0.6,0.6] for the 2SLS and 2SRI methods for
severe violation of the exclusion restriction. Abbreviations: PP: per-protocol, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS:
two-stage least square, 2SRI: two-stage residual inclusion

produces wide bounds for all scenarios, regardless of
the minor or severe violation of the exclusion restriction
assumption (Appendix C Fig. 24).

Sensitivity analysis
Exclusion restriction satisfied, unmeasured confounding
present
We produced results for a simplified version of DAG 2 to
mimic the possible set of variables as in our case study.
The DAG is shown in Appendix C Fig. 25(A) and details
are described in Appendix B. The results are shown in
Appendix C Figs. 26–29. As expected, the ITT, PP, and AT
methods have biased estimates, while the 2SLS and 2SRI
methods produce unbiased estimates.

Exclusion restriction violated
We produced results when the exclusion restriction
assumption is violated, where the setting mimics the pos-
sible set of variables as in our case study. The DAG is
shown in Appendix C Fig. 25(B) and details are described
in Appendix B. The results for bias versus nonadherence
are shown in Appendix C Fig. 30. We observed that the
2SLS and 2SRI methods perform worse than even naive
methods, no matter whether there is a minor or severe
violation of the exclusion restriction assumption.

Sensitivity analyses with a smaller sample size
We also simulated data for simulation settings 1-3 by con-
sidering 500 samples (approximately 250 per arm). The
results are shown in Appendix C Figs. 31–45. The patterns
of bias remain the same for all scenarios. As expected,
the SEs are higher for the scenarios with 500 samples
than those with 2000 samples. Consequently, the MSEs
are higher for the scenarios with 500 samples than those
with 2000 samples. Also, the IP-weighted PP estimates
suffer from non-convergence issues when the nonadher-
ence rate is very high (e.g., 90%). Overall, the conclusions
remain the same for the scenarios with a smaller sam-
ple size (500) compared to those from a relatively larger
sample size (2000). We further attempted generating data
by considering 100 samples (approximately 50 per arm),
but faced non-convergence issues due to the low sample
size, impacting the stability of the estimates; and hence the
results are not shown here.
We have added a flow chart showing the present study’s

recommendations in Appendix C Fig. 46.

Case study: vitamin A supplementation on
childhoodmortality
We used a dataset from a two-arm randomized control
trial with 450 villages in northern Sumatra, exploring
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the effect of vitamin A supplementation on childhood
(1-year) mortality [48, 49]. The villages were random-
ized to either receive vitamin A supplementation or act
as a control group for a year. A total of 23,682 chil-
dren aged 12-71 months from these villages received
a large oral dose of vitamin A supplementation (n =
12,094) or no treatment (n = 11,588). Not every child
took the assigned vitamin A supplementation in the treat-
ment group, and the nonadherence rate was 20% in the
group receiving vitamin A supplements. Vitamin A sup-
plements were not available to children in the control
group. This was a randomized trial, and extraneous fac-
tors should not influence the instrument Z (the random-
ization variable) [48]. Therefore, there should not be any
direct arrow from Z to Y , or Z to Y through another
pathway other than A, meaning that the exclusion restric-
tion assumption for this trial should be reasonably met.
Previous studies reported very wide bounds from the
same dataset when analyzed by the NPCB method [19,
20]. In the present study, we also assessed the perfor-
mances of two other IV methods (2SLS and 2SRI) in the
same data. Since there was no measured confounder in
the dataset, we did not apply baseline covariate-adjusted
methods. Instead, we reported the results for the ITT,
naive PP, naïve AT, naïve 2SLS, naïve 2SRI, and NPCB
methods.
The event rate was 5.1 per 1,000. Table 4 shows the

risk difference per 1,000 in the treatment group than the
control, standard error, and associated 95% CI. Accord-
ing to the ITT estimate, 2.6 fewer deaths (95% CI: 0.8-4.4)
were associated with vitamin A supplementation. How-
ever, the ITT estimate do not take into account that a
large proportion of children failed to receive vitamin A as
prescribed. The PP and AT analyses estimate how effica-
cious was vitamin A supplementation among those chil-
dren who actually took the treatment. According to the
naive PP, approximately 5.2 less deaths (95% CI: 3.5-6.8)
were associated with vitamin A supplementation among
those children who actually took the treatment, while it

was 6.5 fewer deaths (95% CI: 4.9-8.1) as per naive AT.
The 2SLS and 2SRI produce identical results; approxi-
mately 3.2 less deaths (95% CI: 1.0-5.5) among the com-
pliers. In contrast, the SE was slightly higher for 2SLS
and 2SRI compared to other methods. The bound for
the NPCB was reported to be very wide (-5.4 to 194.6)
[19, 20].

Discussion
Summary of the findings
We used three data-generating mechanisms to study the
performance of various statistical methods to deal with
nonadherence in pragmatic trial settings with a binary
point treatment and a binary outcome. We considered
three settings such as (1) exclusion restriction is satisfied
and there is no unmeasured confounding; (2) the exclu-
sion restriction assumption is satisfied but there is unmea-
sured confounding present; (3) the exclusion restriction
assumption is violated. No single method is the best in
all situations. For setting 1, it is expected that baseline
adjusted and IP-weighted PP, and 2SLS and 2SRI estimates
are unbiased. We observed that the naive and both-stages
adjusted 2SLS and 2SRI methods perform very well in
terms of bias and coverage for any nonadherence rate. The
baseline-adjusted PP and IP-weighted PP methods out-
perform the 2SLS and 2SRI methods for below a certain
nonadherence rate but show very high bias beyond that
point. For our simulation settings, 80% was that cut-point.
As expected, the baseline-adjusted PP and IP-weighted PP
also have high SE beyond that point. For setting 2, the
baseline-adjusted PP and IP-weighted PP perform well in
terms of bias, SE, and coverage compared to the 2SLS and
2SRI methods when there is weak unmeasured confound-
ing. However, these PP methods perform poorly under
the strong unmeasured confounding. Only naive 2SLS and
2SRI methods and both-stages adjusted 2SLS and 2SRI
methods produce approximately unbiased estimates irre-
spective of weak or strong unmeasured confounding. As
expected, these IV methods have high SEs in almost all

Table 4 Estimated effect of vitamin A supplementation on childhood mortality in a two-arm randomized control trial with 450 villages
in northern Sumatra

Method RD SE 95% CI

ITT -2.58 0.93 -4.40, -0.76

Naïve PP -5.15 0.82 -6.76, -3.53

Naïve AT -6.47 0.82 -8.08, -4.86

Naïve 2SLS -3.23 1.16 -5.50, -0.95

Naïve 2SRI -3.23 1.16 -5.50, -0.96

NPCB 1 - - -5.39, 194.62

Abbreviations: RD: risk difference per 1,000 in the treatment group than the control; SE: standard error, CI: confidence interval; ITT: intention-to-treat; PP: per-protocol; AT:
as-treated; 2SLS: two-stage least square; 2SRI: two-stage residual inclusion; NPCB: nonparametric causal bound;
1The interval estimate from the NPCB is the bound for the average causal estimate per 1,000 than a 95% CI.
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scenarios. For setting 3, all methods (PP and IV) per-
form poorly in terms of bias, SE, MSE, and coverage. As
expected, the 2SLS and 2SRI methods perform poorly due
to the exclusion restriction assumption violation. On the
other hand, the baseline-adjusted PP and IP-weighted PP
methods also suffer in terms of bias and coverage, but
for a different reason: the instrument acts as an unad-
justed confounder so that there exists an open backdoor
path between the treatment variable and the outcome.
For all situations, the first stage adjusted 2SLS and 2SRI
have high biases and small coverage probabilities. The
NPCB method produces very wide bounds in almost all
scenarios, including not capturing the true value in the
presence of a severe violation of the exclusion restriction
assumption.

Context in the literature
It is expected from the theory that the ITT, naive PP,
and naive AT methods usually produce biased estimates
when there is nonadherence [14, 50–52]. TheNICE guide-
line also recommended avoiding these methods in the
presence of treatment nonadherence [53].
The adjusted PP methods offer consistently excellent

performance under the scenarios without unmeasured
confounding [14]. However, it is expected from the liter-
ature that the baseline adjusted PP and IP-weighted PP
methods produce biased estimates when there is unmea-
sured confounding [14]. Notably, the presence of unmea-
sured confounding means the violation of the exchange-
ability assumption [54]. Using the second definition of the
PP methods (i.e., excluding those patients entirely from
the analysis), we observed that the adjusted PP meth-
ods, such as baseline adjusted PP and IP-weighted PP,
have high biases in the presence of strong unmeasured
confounding. Therefore, we should not use these meth-
ods when it is believed that there is strong unmeasured
confounding. On the other hand, the IV-based methods
can be used to get the unbiased treatment effect estimate
even if some of the necessary confounders are unmea-
sured [15, 55]. However, the IVmethods typically produce
a higher SE, which is in-line with the theory [14]. Since
the first-stage of the 2SLS and 2SRI is used to predict
the treatment, researchers may include covariates only in
the first-stage but not in the second stage [28, 29]. Our
study showed that adding the covariate only in the first
stage of the model but not in the second stage leads to
bias estimates. Also, covariates adjustment in IV methods
could reduce the SE, which is consistent with the theory
[14]. Therefore, we recommend against using first-stage
adjusted 2SLS and 2SRI methods, and prefer both-stages
adjusted 2SLS or 2SRI methods.
The newer IV-based method, the NPCB, is used by

many researchers with the understanding that it can pro-

duce a more precise causal bound [20]. The causal bound
is a different metric compared to a 95% confidence inter-
val, and hence coverage cannot be calculated directly. Our
simulations, however, showed that this method included
the true parameter 100% of the time in almost all sce-
narios, except for a severe violation of the exclusion
restriction assumption. Although high SE in 2SLS and
2SRI methods motivate using the NPCB method, this
method does not adjust for confounders directly and often
produces wide bounds [18–20].
It is also expected from the theory that the IV-methods

perform poorly when the key assumption of an IV, such
as the exclusion restriction, is violated [24]. The exclu-
sion restriction is untestable using the observed data.
Usually, the randomization variable in a trial is an ideal
instrument. But a weak instrument can lead to biased
and imprecise estimates [56, 57]. Therefore, the 2SLS
and 2SRI methods should only be used when this IV
assumption is plausible. Subject-matter knowledge should
be applied to rule out the possibility of violation of the
IV assumption. Besides, the no unmeasured confound-
ing assumption is also untestable from the observed
data [58]. As expected, the baseline-adjusted PP and IP-
weighted PP perform poorly and producing high bias
when there is unmeasured confounding [14]. However,
these PP methods outperform the 2SLS and 2SRI meth-
ods in terms of bias, MSE, and coverage if there is no
or weak unmeasured confounding. Therefore, we suggest
collecting information on covariates, when possible, that
could influence the treatment nonadherence to rule out
the possibility of having strong unmeasured confound-
ing. Based on empirical observations, previous studies
proposed using the IV-methods in the presence of unmea-
sured confounding, while IP-weighted PP can be used to
address nonadherence with no unmeasured confounding
[4, 59]. In the current work, we applied both of these
types of methods under a series of data generating mech-
anisms and compared the results. We additionally suggest
using the both-stages adjusted 2SLS or 2SRI, but not the
baseline-adjusted PP or IP-weighted PP method when
nonadherence is very high (e.g., ≥ 80% in our case). The
IV-based methods can also be used as complementary
analysis because the assumptions of these IV methods
are different from the non-IV-based methods. If the pri-
mary and the complementary analyses result in a similar
conclusion, we can have more confidence in the overall
conclusion.

Case study
Using the ITT analysis, 2.6 fewer deaths per 1,000 were
associated with vitamin A supplementation was previ-
ously reported in the literature [20]. The naive PP and
naive AT found 5.2 and 6.5 fewer deaths among those
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children who actually took the treatment than the con-
trol group, respectively. Both naive 2SLS and 2SRI found
fewer deaths (RD 3.2) among the compliers. The high esti-
mate by the naive AT is not surprising as this method
mostly gives a biased treatment effect when we have treat-
ment nonadherence. The PP estimate is relatively different
from the results from 2SLS and 2SRI, might be indicative
of the presence of unmeasured confounding. Our sec-
ond simulation setting shows that the PP methods have a
high bias when there is strong unmeasured confounding,
but the 2SLS and 2SRI methods still perform very well.
Consistent with the literature [19, 20], NPCBmethod pro-
duces a very wide bound, which might be due to the high
nonadherence rate, as we observed in our simulation.

Strengths
The present study has several strengths. We considered
three comprehensive simulation settings to explore the
performance of different methods to deal with treatment
nonadherence. We considered both the null and non-null
treatment effect scenarios and low to high nonadher-
ence (e.g., 10% to 90%), which enabled us to compare
the methods rigorously. For more than 90% nonadher-
ence, however, most of the algorithms do not converge or
produce a very high effect estimate. Moreover, we consid-
ered an approximately equal nonadherence rate per arm
so that the result has not influenced by the unequal non-
adherence rate. We also considered a collapsible effect
measure to estimate the treatment effect to ensure that the
marginal and conditional treatment effects for any level
of the measured confounders are equal and comparable
[39]. Utility of our simulation study is that this peda-
gogic work confirmed theoretical results and helped make
the theoretical ideas more accessible to the practitioners
and applied researchers. Additionally, we observed similar
findings from sensitivity analyses for unmeasured con-
founding, violation of the exclusion restriction assump-
tion, and small sample size, meaning that our study results
are robust.

Limitations and future direction
Despite its strengths, the study has a few limitations. First,
to clearly identify the effect of each factor, we started
from a simplistic scenario, but this is easily extendable.
Future studies can consider more complex DAGs and add
more confounders with both linear and non-linear forms.
Second, we did not consider any loss to follow-up, while
the differential loss to follow-up can bias the results [5].
The oversimplified point treatment settings and no loss to
follow-up also limit guiding about decisions about bias-
variance trade-off. Third, our simulation settings have
equal nonadherence rates per arm versus one-sided differ-
ential nonadherence in our case study. The pattern of bias,
SE, MSE, and coverage of all methods under equal versus

differential nonadherence are expected to be in the same
direction. Our team is exploring this issue in more detail
to verify whether differential nonadherence could lead
to different conclusions. Fourth, the results in this paper
may not be generalizable to other types of outcomes.
Some previous studies compared different methods to
address treatment nonadherence when the outcome is
continuous [60, 61] and time-to-event [26, 62–64]. How-
ever, these studies mostly focused on comparing either
IV or PP methods with the naive methods, or considered
different data structures or treatment strategies (e.g., sus-
tained treatment strategies in longitudinal studies) [26,
64]. Future studies should explore the performance of
both IV and PPmethods in the point-treatment setting for
continuous and time-to-event outcomes, multiple treat-
ment arms, and when effect modifiers are present. In
addition to the 2SLS, 2SRI, and NPCB methods, some
other IV methods can be used in the same setting to deal
with treatment nonadherence. For example, the two-stage
predictor substitution (2SPS) can handle non-linearity in
the first stage of the 2SLS model and the three-stage least
squares method (3SLS) methods can correct the correla-
tion between error terms in the first and second stages of
the 2SLS models [65, 66]. The IV-based structural mean
model (SMM) is another method that can address treat-
ment nonadherence [67]. This semi-parametric method
uses g-estimation for identification and estimation of the
treatment effect after addressing the nonadherence issue.
Future studies can explore the performance of these IV
methods in contrast to the other IV methods and non-IV
methods when dealing with the treatment nonadherence
in pragmatic trials.
It is also worth mentioning that the 2SRI estimates can

be biased even without violating the exclusion restriction
assumption [65], and the level of bias may increase as the
severity of confounding increases. Cai et al. [65] reported
analytic estimates of such bias in terms of log-odds ratios
for a variety of situations. In our study, we observed min-
imal or no increase in bias as the confounding severity
increases. This observation might be due to the fact that
we were using RD as effect measure, and the impact was
less noticeable compared to that when effect measure was
odds ratio. Further studies could assess the bias in the
2SRI method when the effect measure is collapsible.
We require the positivity assumption, i.e., non-zero

probability of being exposed or unexposed at every com-
bination of the values of the observed confounders [68].
For randomized trials (e.g., as our case study), that prob-
ability of being exposed or unexposed is usually known,
and so is belonging to one particular confounder cate-
gory [68]. However, theoretical violations of positivitymay
arise when patients with certain characteristics may be
ineligible to receive a treatment (e.g., absolute contraindi-
cation for a given treatment) [69]. If this is the case, the
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weights from the IP-weighted PP methods can be infinite
or very large, and the estimates can be biased and unstable
[69]. The high nonadherence rate or small sample sizemay
lead to near positivity violations, which is also responsi-
ble for large IP weights. Therefore, even when there is no
unmeasured confounding but high nonadherence rates,
the biased and large SE in our simulation results could
be due to the near positivity violations. Methods such as
truncation and overlap weights have been proposed in the
literature to deal with the large IP weight problem [70,
71]. On the other hand, a modified causal estimator has
been proposed to deal with the positivity issue in the IV
estimation [72, 73].
When the treatment is sustained but time-varying, the

same methods that we considered in this study are not
generally adequate, and methods have been extended to
address those scenarios [26, 27]. Naïve methods such
as ITT, naïve PP, or naïve AT ignore time-varying con-
founding and can produce biased estimates [9]. There
exists some new literature exploring nonadherence in
a sustained treatment strategy when longitudinal post-
baseline prognostic variable measures are available, which
is beyond the scope of our point-treatment study.

Conclusion
Besides the research question, the choice of the meth-
ods should come from researcher’s understanding of the
underlying data generating mechanism and available data
(e.g., extent of unmeasured confounding and a potential
violation of exclusion restriction). An additional consid-
eration includes the nonadherence rate (e.g., high vs.
low). Under nearly an ideal situation where there are
unmeasured confounders but adjusting for measured con-
founders can give an unbiased effect estimate, the naive
and both-stages adjusted but not first-stage adjusted 2SLS
and 2SRI methods perform very well in terms of bias
and coverage for any nonadherence rate. Although the
naive and both-stages adjusted 2SLS and 2SRI methods
give almost identical bias, both-stages adjusted 2SLS and
2SRI methods improve the precision and reduce overall
MSE. In the same setting, the baseline-adjusted PP and
IP-weighted PP outperform these 2SLS and 2SRI methods
in terms of bias, SE, and MSE for <80% nonadherence,
but these PP methods show very high bias and MSE for
≥ 80% nonadherence rate. If there is no unmeasured con-
founding, the baseline-adjusted PP and IP-weighted PP
consistently outperform the 2SLS and 2SRI methods in
terms of bias, SE, MSE, and coverage. However, these
two PP methods perform poorly when some necessary
confounders are unmeasured and measured confounders
cannot sufficiently block the backdoor paths between the
treatment and the outcome. On the other hand, the 2SLS
and 2SRI produce high biases and low coverage probabili-
ties when there exists violation of the exclusion restriction

assumption. The baseline-adjusted PP and IP-weighted PP
can also have biased estimates when the exclusion restric-
tion is violated. However, the baseline-adjusted PP and
IP-weighted PP can produce unbiased estimates if all open
backdoor paths between the treatment variable and the
outcome can be blocked so that the association between
the instrument and outcome is nullified. Therefore, when
possible, we recommend collecting information on nec-
essary covariates that predict adherence and addressing
them appropriately in the analyses. Collecting information
on those covariates or augmentation of external data
sources from electronic health records could reduce the
impact of having strong unmeasured confounding. Since
assumptions of PP methods and IV methods are different
and often untestable, we suggest analyzing the data using
both PP methods (baseline-adjusted PP or IP-weighted
PP) and IV-methods (both-stages adjusted 2SLS or 2SRI)
and reporting both results. Analysts are more likely to
come up with a robust conclusion of the real-world effect
of a treatment if they have similar findings from different
analyses requiring different assumptions.

Appendix A
This section describes the estimation methods consid-
ered in this study and the assumptions of these estimation
methods.

Description of the estimation methods
Let Z is the two-arm randomization variable, A is the
binary treatment variable, L = (L1, L2) is a vector of
measured confounders, and Y is the binary outcome.
The risk difference (RD) is our target parameter of inter-
est. The binomial model with an identity link function
can be used to estimate RD. Since the binomial model
fitting frequently shows convergence issues with adjust-
ing for covariates in the model, the Poisson or Gaussian
regression with an identity link function and robust sand-
wich standard error can be used as an alternative [40]. In
the present study, we considered intention-to-treat (ITT),
naive per-protocol (PP), naive as-treated (AT), baseline
adjusted ITT, baseline adjusted PP, IP-weighted PP, two-
stage least square (2SLS), two-stage residual inclusion
(2SRI), and non-parametric causal bound (NPCB) meth-
ods to estimate RD and associated parameters for a two-
arm pragmatic trial. The description of calculating RD
using these methods is given below.

ITT
The ITT models Z on Y without adjustment for L. The
model can be written as

Pr(Y = 1) = β0 + βITTZ.

Then β̂ITT is the maximum likelihood estimate (MLE) of
βITT and is the estimated RD.
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Naive PP
The naive PP models Z on Y among those subjects who
receive the treatment according to the protocol (Z = A)

but without adjustment for L. The model can be written
as:

Pr(Y = 1) = β0 + βNaive-PPZ for Z=A.

Then β̂Naive-PP is the estimated RD.

Naive AT
The naive AT models A on Y, but does not consider
whether individuals randomized to the treatment groups.
The model cannot adjust for L and can be written as:

Pr(Y = 1) = β0 + βNaive-ATA.

Then β̂Naive-AT is the estimated RD.

Baseline-adjusted ITT
The baseline-adjusted ITT is the same as ITT but it
adjusts for L:

Pr(Y = 1) = β0 + βB-ITTZ + β2L1 + β3L2.

Then β̂B-ITT is the estimated RD.

Baseline-adjusted PP
The baseline-adjusted PP is the same as naive PP but it
adjusts for L:

Pr(Y = 1) = β0 + βB-PPZ + β2L1 + β3L2 for Z=A.

Then β̂B-PP is the estimated RD.

IP-weighted PP
Themethod creates inverse probability adherence weights
to generate a pseudo population to estimate the treatment
effect by removing the effect of nonadherence [25]. We
used a logistic regression to estimate the adherence prob-
abilities among those subjects who receive the treatment
according to the protocol (Z = A) as follows

logit(Pr(A = 1)) = γ0 + γ1L1 + γ2L2.

The predicted probability from the above model is the
probability of adherence PA. We calculated the stabilized
weights to prevent from extreme weights [7, 30]. The sta-
bilized inverse probability of adherence weights can be
calculated as

Wstabilized = Pr(A = 1)
A
PA

+ Pr(A = 0)
1 − A
1 − PA

.

To estimate the RD, the weighted outcome model is used,
which can be written as

Pr(Y = 1) = β0+βIPW-PPZ with weight = Wstabilized.

Then β̂IPW-PP is the estimated RD.

Naïve 2SLS
There are two stages in the 2SLS method. The instru-
ment (Z) is modelled to A in the first stage, and then the
predicted treatment is modelled to Y in the second stage
[31]. There is no adjustment for L in either stage of the
model. We used a logistic regression in the first stage of
the model, which can be written as

logit(Pr(A = 1)) = γ0 + γ1Z.

Then the second stage model can be written as follows

Pr(Y = 1) = β0 + βNaive-2SLSÂ,

where Â is the predicted treatment from the first stage,
and then β̂Naive-2SLS is the estimated RD.

First-stage adjusted 2SLS
The first-stage adjusted 2SLS is the same as naive 2SLS
except it adjusts for L in the first stage of the model [28,
29]. The same as naive 2SLS, we used a logistic regression
in the first stage of the model

logit(Pr(A = 1)) = γ0 + γ1Z + γ2L1 + γ3L2.

Then the second stage model can be written as follows

Pr(Y = 1) = β0 + β1Stage-2SLSÂ,

where Â is the predicted probabilities for A from the first
stage, and then β̂1Stage-2SLS is the estimated RD.

Both-stages adjusted 2SLS
The both-stages adjusted 2SLS is the same as naive 2SLS
except it adjusts for L in both stages of the model. The
same as naive and first-stage adjusted 2SLS, we used a
logistic regression in the first stage of the model

logit(Pr(A = 1)) = γ0 + γ1Z + γ2L1 + γ3L2.

Then the second stage model can be written as follows

Pr(Y = 1) = β0 + βBStage-2SLSÂ + β2L1 + β3L2,

where Â is the predicted probabilities for A from the first
stage, and then β̂BStage-2SLS is the estimated RD.

Naïve 2SRI
Similar to the 2SLS, there are two stages in the 2SRI
method. But the instrument (Z) is modelled to A in the
first stage, and then the residuals from the first stage and
A are modelled to Y in the second stage [22]. There was
no adjustment for L in either stage of the model. We used
a logistic regression in the first stage of the model, which
can be written as

logit(Pr(A = 1)) = γ0 + γ1Z.

The residuals from the first stage can be extracted as
follows:

r = A − Â,
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where Â is the predicted probability for A from the first
stage. Then the second stage model can be written as
follows

Pr(Y = 1) = β0 + βNaive-2SRIA + β2r,

and then β̂Naive-2SRI is the estimated RD.

First-stage adjusted 2SRI
The first-stage adjusted 2SRI is the same as naive 2SRI
except it adjusts for L in the first stage of the model [29].
The same as naive 2SRI, we used a logistic regression in
the first stage of the model

logit(Pr(A = 1)) = γ0 + γ1Z + γ2L1 + γ3L2.

The same as before, the residuals from the first stage can
be extracted as follows:

r = A − Â,

where Â is the predicted probability for A from the first
stage. Then the second stage model can be written as
follows

Pr(Y = 1) = β0 + β1Stage-2SRIA + β2r,

and then β̂1Stage-2SRI is the estimated RD.

Both-stages adjusted 2SRI
The both-stages adjusted 2SRI is the same as naive 2SRI
except it adjusts for L in both stages of the model [22].
The same as naive and first-stage adjusted 2SRI, we used
a logistic regression in the first stage of the model

logit(Pr(A = 1)) = γ0 + γ1Z + γ2L1 + γ3L2.

Then the second stage model can be written as follows

Pr(Y = 1) = β0 + β1Stage-2SRIA + β2r + β2L1 + β3L2,

where r = A − Â is the residuals from the first stage with
Â is the predicted probability for A from the first stage.
Then β̂1Stage-2SRI is the estimated RD.

NPCB
This nonparametric method estimates the bounds for
the effect of interest rather than a point estimate and is
restricted to a binary outcome (Y ) with a binary or tri-
nary instrument [18, 19]. This method uses a constrained
probability statement to provide bounds on the estimated
treatment effect. But these bounds are the range of the

true causal effect of interest, not the confidence interval
[18, 19]. The bounds for the RD can be written as

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p00.0 + p11.1 − 1
p00.1 + p11.1 − 1
p11.0 + p00.1 − 1
p00.0 + p11.0 − 1

2p00.0 + p11.0 + p11.0 + p11.1 − 2
p00.0 + 2p11.0 + p00.1 + p01.1 − 2
p10.0 + p11.0 + 2p00.1 + p11.1 − 2
p00.0 + p01.0 + p00.1 + 2p11.1 − 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ RD

≤ min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − p10.0 − p01.1
1 − p01.0 − p10.1
1 − p01.0 − p10.0
1 − p01.1 − p10.1

2 − 2p01.1 − p10.0 − p10.1 − p11.1
2 − p01.0 − 2p10.0 − p00.1 − p01.1
2 − p10.0 − p11.0 − 2p01.1 − p10.1
2 − p00.0 − p01.0 − p01.1 − 2p10.1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where pya.z = Pr(Y = y, A = a|Z = z) with 0 ≤ pya.z ≤ 1
and

∑
y,a pya.z = 1 [19].

Assumptions of the estimation methods
To estimate a causal effect, all models described in the
Methods section assume consistency (i.e., the potential
outcome under the observed treatment is the observed
outcome), no interference (i.e., potential outcome for
a subject does not depend on the treatment status of
another subject), exchangeability (i.e., no unmeasured
confounding), positivity (i.e., probability of receiving
either treatment is greater than zero), and well-defined
interventions (e.g., taking 5mg aspirin) [74, 75]. All para-
metric methods (all methods except the NPCB) further
assume correct model specification [76]. The naive meth-
ods assume a random pattern of nonadherence [4]. The
IV-based methods assume the IV is associated with the
treatment (relevance assumption), there are no defiers
(monotonicity assumption), and the IV affects the out-
come only through its effect on treatment [77]. The third
assumption is also known as the exclusion restriction.
Additionally, the 2SRI assumes the linearity of residu-
als, i.e., residuals are linearly associated with the outcome
of interest [10, 77]. Furthermore, all methods assume
missing at random and no measurement error [78].

Appendix B
This section is for the results of sensitivity analyses. The
DAGs are shown in Appendix C Fig. 25. Compared to the
main text DAG, there is nomeasured confounder for these
appendix DAGs. We consider these simplified scenarios
to replicate the scenario for our case study.
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Sensitivity analysis: exclusion restriction satisfied,
unmeasured confounding present
Setup
This sensitivity analysis was done for a simplified version
of DAG 2 in the main text, where the exclusion restriction
is satisfied but unmeasured confounding is present. The
DAG is shown in Appendix C Fig. 25(A). For this scenario,
we simulated data from the following algorithms, where
A is the treatment, Y is the outcome of interest, Z is the
randomization, and U is unmeasured confounding.

Z ∼ Bernoulli(0.5)
U ∼ Bernoulli(0.5)

A ∼ Bernoulli (pA) with pA = α0 + α1Z + α4U
Y ∼ Bernoulli (pY ) with pY = θ0 + θ1A + θ4U + θ5Z.

(2)

In Eqn. (2), α0 is associated with the nonadherence rate,
α1 = 0.1 is the coefficient associated with Z, α4 = 0.1
is the coefficient associated with U ; θ0 is associated with
the event rate, θ1 is the treatment effect of interest, and
θ4 determines the strength of confounding, and θ5 deter-
mines the strength of the direct effect of IV assumption of
exclusion restriction violation. Under different choices of
α0, we considered six levels of nonadherence: 10, 20, 40,
60, 80, and 90%.
We set θ0 = 0.2, and θ5 = 0 (i.e., no violation of

exclusion restriction assumption). For each of the six
nonadherence scenarios (α0), we considered five sce-
narios of the treatment effect of interest (θ1) and two
versions of confounding (θ4), making a total of 60 sce-
narios. We set the treatment effect of interest as θ1 =
{−0.2,−0.05, 0, 0.05, 0.2} and confounding as θ4 = 0.1 and
0.5 respectively for weak and strong confounding.

Results
Since there was no measured confounder (L) associated
with our data generating mechanism here, there are no
baseline adjustedmethods as well as first-stage adjusted or
both-stages adjusted 2SLS and 2SRI methods. Instead, we
reported the results for the ITT, naive PP, naive AT, naive
2SLS, naive 2SRI, and NPCB methods.
Under the null treatment effect scenario with weak con-

founding, all methods produce small bias (Appendix C
Fig. 26). In the presence of strong confounding, the naive
PP and AT produce slightly large bias. The amount of bias
remains approximately the same for the non-null treat-
ment effect. The ITT method produces a very small bias
for the null effect, while it performs the worst when the
treatment effect is non-null. In contrast, the 2SLS and
2SRI produce unbiased estimates in all scenarios.
Under the null treatment effect scenario, all methods

produce small MSE in the presence of weak confounding,

while naive PP shows higher MSE beyond 60% of nonad-
herence (Appendix C Fig. 27). Under the non-null effect,
we observed a similar pattern of MSE except for the ITT.
The ITT method produces very high MSE regardless of
weak or strong confounding.
Appendix C Fig. 28 shows the 95% coverage probabil-

ity for different nonadherence rates using Appendix DAG
1. As expected, the ITT method has the highest cover-
age for the null treatment effect scenario, while it has
minimal coverage for the non-null effect. The naive PP
and AT methods also produce noticeable small coverage
when there is weak confounding, but these methods pro-
duce very small coverage under the strong confounding
scenarios. On the other hand, naive 2SLS and 2SRI con-
sistently have very high coverage under both null or non-
null effects and weak or strong unmeasured confounding
scenarios.
The NPCB method produces a wider bound for both

the null and the non-null effect, regardless of the weak
or strong confounding (Appendix C Fig. 29). However,
the width of bounds is only smaller for 10% and 90%
nonadherence.

Sensitivity analysis: violation of the exclusion restriction
Setup
In this example, the exclusion restriction is violated (Z
directly affects Y ) and there exists an unmeasured con-
founder U. The DAG is shown in Appendix C Fig. 25(B).
We used Eqn. (2) to generate the data for Appendix DAG
2. We set θ0 = 0.2, θ1 = 0.05, two versions of θ4,
and two versions of θ5 with 10, 20, 40, 60, 80, and 90%
nonadherence, making a total of 24 scenarios. We set θ5
= 0.2 meaning that the exclusion restriction of the IV
assumption violation is larger and θ5 = 0.05 indicating the
violation is smaller. The same as Appendix DAG 1, we
set θ4 = 0.1 and 0.5 for weak and strong confounding,
respectively.

Results
Since there was no measured confounder (L) associated
with our data generating mechanism here, there are no
baseline adjustedmethods as well as first-stage adjusted or
both-stages adjusted 2SLS and 2SRI methods. Instead, we
reported the results for the ITT, naive PP, naive AT, naive
2SLS, naive 2SRI, and NPCB methods.
Appendix C Fig. 30 shows the bias versus nonadher-

ence rate using Appendix DAG 2. Appendix C Fig. 30(A)
and (B) show the results when the violation of the exclu-
sion restriction assumption is minor, and Appendix C
Fig. 30(C) and (D) show the results when violation is
severe. We observed that the 2SLS and 2SRI methods pro-
duce a greater bias when the exclusion restriction assump-
tion is violated. The bias is more pronounced when the
violation of exclusion restriction assumption is severe.
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Appendix C
This section contains all the supplementary figures considered in this study.

Supplementary figures for simulation setting 1

Fig. 6 Bias versus the nonadherence rate using DAG 1. The naive 2SLS and 2SRI share the same line, the first stage adjusted 2SLS and 2SRI share the
same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce the same amount of bias. The first stage adjusted 2SLS and
2SRI, and naive PP produce larger than 0.20 bias for strong unmeasured confounders so that the bias is out of the bound [0, 0.20]. Abbreviations: ITT:
intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion
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Fig. 7 Standard error (SE) versus the nonadherence rate using DAG 1. The naïve 2SLS and 2SRI share the same line, the first stage adjusted 2SLS and
2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce approximately the same SE. Abbreviations:
ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion

Fig. 8Mean squared error (MSE) versus the nonadherence rate for the null effect using DAG 1. The naïve 2SLS and 2SRI share the same line, the first
stage adjusted 2SLS and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce approximately the
same MSE. The first stage adjusted 2SLS and 2SRI, and naïve PP produce MSEs larger than 0.10 for strong unmeasured confounders so that the MSE
is out of the bound [0, 0.1]. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted
per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Fig. 9 95% coverage probability versus the nonadherence rate using DAG 1. The naïve 2SLS and 2SRI share the same line, the first-stage adjusted
2SLS and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce approximately the same coverage
probability. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS:
two-stage least square, 2SRI: two-stage residual inclusion

Fig. 10Mean risk difference (RD) versus the nonadherence rate for the null effect using DAG 1. The grey lines are the lower and upper bound of the
NPCB method. The naïve 2SLS and 2SRI share the same line, the first stage adjusted 2SLS and 2SRI share the same line, and both-stages adjusted
2SLS and 2SRI share the same line as they produce the same RD estimate. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated,
IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion, NPCB: nonparametric
causal bound
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Supplementary figures for simulation setting 2

Fig. 11 Bias versus the nonadherence rate for the null and non-null effect using DAG 2. The naïve 2SLS and 2SRI share the same line, the first stage
adjusted 2SLS and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce the same amount of bias.
The bias for the ITT and baseline-adjusted ITT are out of the bound [-0.1,0.1] for the non-null effect. Abbreviations: RD: risk difference, ITT:
intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion

Fig. 12 Standard error (SE) versus the nonadherence rate for null and non-null effect using DAG 2. All 2SLS and 2SRI methods share the same line as
they produce approximately the same SE. The PP methods also share approximately the same line. Abbreviations: RD: risk difference, ITT:
intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion
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Fig. 13Mean squared error (MSE) versus the nonadherence rate for null and non-null effect using DAG 2. The 2SLS and 2SRI share the same line as
they produce approximately the same amount of MSE. The ITT and baseline-adjusted ITT produce MSEs larger than 0.03 for the non-null effect
scenario so that the MSE is out of the bound [0, 0.03]. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated,
IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 14 95 percentage coverage probability versus the nonadherence rate for the null and non-null effect using DAG 2. The naive and both-stages
adjusted 2SLS and 2SRI share the same line as they produce approximately the same coverage probability. Abbreviations: RD: risk difference, ITT:
intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion
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Fig. 15Mean risk difference (RD) versus the nonadherence rate for DAG 2. The grey lines are the lower and upper bound of the NPCB method. The
ITT and baseline-adjusted ITT superimposed on each other. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated,
IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion, NPCB: nonparametric
causal bound

Fig. 16 Bias versus treatment effect in risk difference for 10 percent and 40 percent nonadherence using DAG 2. The naive and both-stages adjusted
2SLS and 2SRI share the same line as they produce the same amount of bias. The first-stage adjusted 2SLS and 2SRI methods also share the same
line. The ITT and baseline-adjusted ITT produce high bias for 40 percent nonadherence so that the bias is out of the bound [-0.05, 0.05].
Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage
least square, 2SRI: two-stage residual inclusion
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Fig. 17 Standard error (SE) versus treatment effect in risk difference for 10 percent and 40 percent nonadherence using DAG 2. All 2SLS and 2SRI
methods share the same line as they produce approximately the same SE. The PP methods also superimposed on each other. Abbreviations: ITT:
intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion

Fig. 18Mean squared error (MSE) versus treatment effect in risk difference for 10 percent and 40 percent nonadherence using DAG 2.
Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage
least square, 2SRI: two-stage residual inclusion
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Fig. 19 95 percentage coverage probability versus treatment effect in risk difference for 10 percent and 40 percent nonadherence using DAG 2. The
coverage probability for the ITT and baseline-adjusted ITT is less than 0.5 for some scenarios and out of the bound [0.5, 1]. Abbreviations: ITT:
intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion

Supplementary figures for simulation setting 3

Fig. 20 Bias versus the nonadherence rate for the null and non-null effect using DAG 3. Here, violation indicates the violation of the exclusion
restriction assumption. The naive and both-stages adjusted 2SLS and 2SRI, and the first-stage adjusted 2SLS and 2SRI methods share the same line
as they produce the same amount of bias. The ITT, 2SLS, and 2SRI methods have high bias in some scenarios and thus out of the bound [-0.6,0.6].
Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage
least square, 2SRI: two-stage residual inclusion
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Fig. 21 Standard error (SE) versus the nonadherence rate for the null and non-null effect using DAG 3. Here, violation indicates the violation of the
exclusion restriction assumption. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted
per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 22Mean squared error (MSE) versus the nonadherence rate for the null and non-null effect using DAG 3. Here, violation indicates the violation
of the exclusion restriction assumption. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse
probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Fig. 23 95 percentage coverage probability versus the nonadherence rate for the null and non-null effect using DAG 3. Here, violation indicates the
violation of the exclusion restriction assumption. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse
probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 24Mean risk difference (RD) versus the nonadherence rate for DAG 3. Here, violation indicates the violation of the exclusion restriction
assumption. The grey lines are the lower and upper bound of the NPCB method. The ITT and baseline-adjusted ITT; naive and both-stages adjusted
2SLS and 2SRI superimposed on each other. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP:
inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion, NPCB: nonparametric causal bound
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Appendix DAGs for sensitivity analysis

Fig. 25 Two simplified versions of causal diagrams representing the simulation mechanisms considered in this study. Appendix DAG 1 is simplified
versions of DAG 2 in the main text (unmeasured confounding), and Appendix DAG 2 is the simplified versions of DAG 3 in the main text (exclusion
restriction violated). Here, Z is the randomization variable, A is the treatment, U is unmeasured confounders, and Y is the outcome

Results for sensitivity analyses when exclusion restriction satisfied but unmeasured confounding present (Appendix DAG 1)

Fig. 26 Bias versus the nonadherence rate for the null and non-null effect using Appendix DAG 1. The 2SLS and 2SRI share the same line as they
produce the same amount of bias. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated, 2SLS: two-stage least
square, 2SRI: two-stage residual inclusion
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Fig. 27Mean squared error (MSE) versus the nonadherence rate for null and non-null effect using Appendix DAG 1. The 2SLS and 2SRI share the
same line as they produce approximately the same amount of MSE. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT:
as-treated, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 28 95 percentage coverage probability versus the nonadherence rate for the null and non-null effect using Appendix DAG 1. The 2SLS and 2SRI
share the same line as they produce approximately the same coverage probability. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP:
per-protocol, AT: as-treated, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Fig. 29Mean risk difference (RD) versus the nonadherence rate for Appendix DAG 1. The grey lines are the lower and upper bound of the NPCB
method. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion, NPCB:
nonparametric causal bound

Results for sensitivity analyses when exclusion restriction violated (Appendix DAG 2)

Fig. 30 Bias versus the nonadherence rate using Appendix DAG 2. In both scenarios (small/large violation), the target treatment effect is assumed to
be 0.05. The 2SLS and 2SRI share the same line as they produce the same amount of bias. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT:
as-treated, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Results for sensitivity analyses with 500 sample size

Fig. 31 Bias versus the nonadherence rate using DAG 1 for 500 samples. The naive 2SLS and 2SRI share the same line, the first stage adjusted 2SLS
and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce the same amount of bias. The first stage
adjusted 2SLS and 2SRI, and naive PP produce larger than 0.20 bias for strong unmeasured confounders so that the bias is out of the bound.
Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage
least square, 2SRI: two-stage residual inclusion

Fig. 32 Standard error (SE) versus the nonadherence rate using DAG 1 for 500 samples. The naïve 2SLS and 2SRI share the same line, the first stage
adjusted 2SLS and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce approximately the same
SE. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage
least square, 2SRI: two-stage residual inclusion
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Fig. 33Mean squared error (MSE) versus the nonadherence rate using DAG 1 for 500 samples. The naïve 2SLS and 2SRI share the same line, the first
stage adjusted 2SLS and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce approximately the
same MSE. The first stage adjusted 2SLS and 2SRI, and naïve PP produce MSEs larger than 0.15 for strong unmeasured confounders so that the MSE
is out of the bound [0, 0.15]. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted
per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 34 95 percentage coverage probability versus the nonadherence rate using DAG 1 for 500 samples. The naïve 2SLS and 2SRI share the same
line, the first-stage adjusted 2SLS and 2SRI share the same line, and both-stages adjusted 2SLS and 2SRI share the same line as they produce
approximately the same coverage probability. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse
probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Fig. 35Mean risk difference (RD) versus the nonadherence rate using DAG 1 for 500 samples. The grey lines are the lower and upper bound of the
NPCB method. The naïve 2SLS and 2SRI share the same line, the first stage adjusted 2SLS and 2SRI share the same line, and both-stages adjusted
2SLS and 2SRI share the same line as they produce the same RD estimate. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated,
IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion, NPCB: nonparametric
causal bound

Fig. 36 Bias versus the nonadherence rate using DAG 2 for 500 samples. The naïve and both-stages adjusted 2SLS and 2SRI share the same line, and
the first stage adjusted 2SLS and 2SRI share the same line as they produce the same amount of bias. Abbreviations: RD: risk difference, ITT:
intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI:
two-stage residual inclusion
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Fig. 37 Standard error (SE) versus the nonadherence rate using DAG 2 for 500 samples. The naïve and both-stages adjusted 2SLS and 2SRI share the
same line, and the first stage adjusted 2SLS and 2SRI share the same line as they produce approximately the same SE. The PP methods also share
approximately the same line. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse
probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 38Mean squared error (MSE) versus the nonadherence rate using DAG 2 for 500 samples. The 2SLS and 2SRI share the same line as they
produce approximately the same amount of MSE. The ITT and baseline-adjusted ITT produce MSEs larger than 0.10 for the non-null effect scenario
so that the MSE is out of the bound [0, 0.10]. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP:
inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Fig. 39 95 percentage coverage probability versus the nonadherence rate for using DAG 2 for 500 samples. The naive and both-stages adjusted
2SLS and 2SRI share the same line as they produce approximately the same coverage probability. The coverage probability is out of bound for the
ITT methods with the non-null effect. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP:
inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 40Mean risk difference (RD) versus the nonadherence rate for using DAG 2 for 500 samples. The grey lines are the lower and upper bound of
the NPCB method. The ITT and baseline-adjusted ITT superimposed on each other. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP:
per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual
inclusion, NPCB: nonparametric causal bound
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Fig. 41 Bias versus the nonadherence rate using DAG 3 for 500 samples. Here, violation indicates the violation of the exclusion restriction
assumption. The both-stages adjusted 2SLS and 2SRI methods share approximately the same line. These methods have high biases when the
exclusion restriction violation is severe and thus out of the bound. The biases for ITT methods are also out of the bound for the non-null effect.
Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage
least square, 2SRI: two-stage residual inclusion

Fig. 42 Standard error (SE) versus the nonadherence rate using DAG 3 for 500 samples. Here, violation indicates the violation of the exclusion
restriction assumption. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted
per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Fig. 43Mean squared error (MSE) versus the nonadherence rate using DAG 3 for 500 samples. Here, violation indicates the violation of the exclusion
restriction assumption. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted
per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion

Fig. 44 95 percentage coverage probability versus the nonadherence rate using DAG 3 for 500 samples. Here, violation indicates the violation of the
exclusion restriction assumption. Abbreviations: ITT: intention-to-treat, PP: per-protocol, AT: as-treated, IP-weighted PP: inverse probability-weighted
per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion



Hossain et al. BMCMedical ResearchMethodology           (2022) 22:46 Page 39 of 46

Fig. 45Mean risk difference (RD) versus the nonadherence rate using DAG 3 for 500 samples. Here, violation indicates the violation of the exclusion
restriction assumption. The grey lines are the lower and upper bound of the NPCB method. The ITT and baseline-adjusted ITT; naive and both-stages
adjusted 2SLS and 2SRI superimposed on each other. Abbreviations: RD: risk difference, ITT: intention-to-treat, PP: per-protocol, AT: as-treated,
IP-weighted PP: inverse probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion, NPCB: nonparametric
causal bound

Present study’s recommendation

Fig. 46 Flow chart showing the conclusion or recommendation from the present study. Abbreviations: PP: per-protocol, IP-weighted PP: inverse
probability-weighted per-protocol, 2SLS: two-stage least square, 2SRI: two-stage residual inclusion
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Appendix D
This section is for the parameterization of each three data-generating processes in this study. Appendix D Tables 5–7
show the parameters for the simulation settings 1-3 outlined in DAGs 1-3, respectively. In each table, we have the same
set of parameters: α0 determines the nonadherence rate, α1 is the coefficient for Z-A association, α2 is the coefficient
for L1-A association, α3 is the coefficient for L2-A association, and α4 is the coefficient for U-A association. Also, θ0
determines the event rate, θ1 is treatment effect of interest (i.e., the coefficient for A-Y association), θ2 is the coefficient
for L1-Y association, θ3 is the coefficient for L2-Y association, θ4 is the coefficient forU-Y association, and θ5 determines
the Z-Y association.

Table 5 Parameterization of simulation for data generating process for simulation setting 1 outlines in DAG 1 (exclusion restriction
satisfied and no unmeasured confounding)

# Arm α0 α1 α2 α3 α4 Nonadherence θ0 θ1 θ2 θ3 θ4 θ5

1
Z = 1 0.72 0.6 0.4 0.35 0 10 -1 0 0 0 0.5 0

Z = 0 -4.06 0.6 0.4 0.35 0 10 -1 0 0 0 0.5 0

2
Z = 1 -0.23 0.6 0.4 0.35 0 20 -1 0 0 0 0.5 0

Z = 0 -3.14 0.6 0.4 0.35 0 20 -1 0 0 0 0.5 0

3
Z = 1 -1.47 0.6 0.4 0.35 0 40 -1 0 0 0 0.5 0

Z = 0 -1.92 0.6 0.4 0.35 0 40 -1 0 0 0 0.5 0

4
Z = 1 -2.52 0.6 0.4 0.35 0 60 -1 0 0 0 0.5 0

Z = 0 -0.85 0.6 0.4 0.35 0 60 -1 0 0 0 0.5 0

5
Z = 1 -3.76 0.6 0.4 0.35 0 80 -1 0 0 0 0.5 0

Z = 0 0.39 0.6 0.4 0.35 0 80 -1 0 0 0 0.5 0

6
Z = 1 -4.72 0.6 0.4 0.35 0 90 -1 0 0 0 0.5 0

Z = 0 1.35 0.6 0.4 0.35 0 90 -1 0 0 0 0.5 0

7
Z = 1 0.72 0.6 0.4 0.35 0 10 -5.5 0 0 0 8 0

Z = 0 -4.06 0.6 0.4 0.35 0 10 -5.5 0 0 0 8 0

8
Z = 1 -0.23 0.6 0.4 0.35 0 20 -5.5 0 0 0 8 0

Z = 0 -3.14 0.6 0.4 0.35 0 20 -5.5 0 0 0 8 0

9
Z = 1 -1.47 0.6 0.4 0.35 0 40 -5.5 0 0 0 8 0

Z = 0 -1.92 0.6 0.4 0.35 0 40 -5.5 0 0 0 8 0

10
Z = 1 -2.52 0.6 0.4 0.35 0 60 -5.5 0 0 0 8 0

Z = 0 -0.85 0.6 0.4 0.35 0 60 -5.5 0 0 0 8 0

11
Z = 1 -3.76 0.6 0.4 0.35 0 80 -5.5 0 0 0 8 0

Z = 0 0.39 0.6 0.4 0.35 0 80 -5.5 0 0 0 8 0

12
Z = 1 -4.72 0.6 0.4 0.35 0 90 -5.5 0 0 0 8 0

Z = 0 1.35 0.6 0.4 0.35 0 90 -5.5 0 0 0 8 0

Table 6 Parameterization of simulation for data generating process for simulation setting 2 outlines in DAG 2 (Exclusion restriction
satisfied, unmeasured confounding present)

# Arm α0 α1 α2 α3 α4 Nonadherence θ0 θ1 θ2 θ3 θ4 θ5

1
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.35 -0.2 0.02 0.05 0.05 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.35 -0.2 0.02 0.05 0.05 0

2
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.35 -0.2 0.02 0.05 0.05 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.35 -0.2 0.02 0.05 0.05 0

3
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.35 -0.2 0.02 0.05 0.05 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.35 -0.2 0.02 0.05 0.05 0
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Table 6 Parameterization of simulation for data generating process for simulation setting 2 outlines in DAG 2 (Exclusion restriction
satisfied, unmeasured confounding present) (Continued)

# Arm α0 α1 α2 α3 α4 Nonadherence θ0 θ1 θ2 θ3 θ4 θ5

4
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.35 -0.2 0.02 0.05 0.05 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.35 -0.2 0.02 0.05 0.05 0

5
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.35 -0.2 0.02 0.05 0.05 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.35 -0.2 0.02 0.05 0.05 0

6
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.35 -0.2 0.02 0.05 0.05 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.35 -0.2 0.02 0.05 0.05 0

7
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.2 -0.2 0.02 0.05 0.4 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.2 -0.2 0.02 0.05 0.4 0

8
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.2 -0.2 0.02 0.05 0.4 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.2 -0.2 0.02 0.05 0.4 0

9
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.2 -0.2 0.02 0.05 0.4 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.2 -0.2 0.02 0.05 0.4 0

10
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.2 -0.2 0.02 0.05 0.4 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.2 -0.2 0.02 0.05 0.4 0

11
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.2 -0.2 0.02 0.05 0.4 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.2 -0.2 0.02 0.05 0.4 0

12
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.2 -0.2 0.02 0.05 0.4 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.2 -0.2 0.02 0.05 0.4 0

13
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.3 -0.05 0.02 0.05 0.05 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.3 -0.05 0.02 0.05 0.05 0

14
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.3 -0.05 0.02 0.05 0.05 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.3 -0.05 0.02 0.05 0.05 0

15
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.3 -0.05 0.02 0.05 0.05 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.3 -0.05 0.02 0.05 0.05 0

16
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.3 -0.05 0.02 0.05 0.05 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.3 -0.05 0.02 0.05 0.05 0

17
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.3 -0.05 0.02 0.05 0.05 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.3 -0.05 0.02 0.05 0.05 0

18
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.3 -0.05 0.02 0.05 0.05 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.3 -0.05 0.02 0.05 0.05 0

19
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.15 -0.05 0.02 0.05 0.4 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.15 -0.05 0.02 0.05 0.4 0

20
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.15 -0.05 0.02 0.05 0.4 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.15 -0.05 0.02 0.05 0.4 0

21
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.15 -0.05 0.02 0.05 0.4 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.15 -0.05 0.02 0.05 0.4 0

22
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.15 -0.05 0.02 0.05 0.4 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.15 -0.05 0.02 0.05 0.4 0

23
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.15 -0.05 0.02 0.05 0.4 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.15 -0.05 0.02 0.05 0.4 0

24
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.15 -0.05 0.02 0.05 0.4 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.15 -0.05 0.02 0.05 0.4 0
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Table 6 Parameterization of simulation for data generating process for simulation setting 2 outlines in DAG 2 (Exclusion restriction
satisfied, unmeasured confounding present) (Continued)

# Arm α0 α1 α2 α3 α4 Nonadherence θ0 θ1 θ2 θ3 θ4 θ5

25
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.28 0 0.02 0.05 0.05 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.28 0 0.02 0.05 0.05 0

26
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.28 0 0.02 0.05 0.05 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.28 0 0.02 0.05 0.05 0

27
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.28 0 0.02 0.05 0.05 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.28 0 0.02 0.05 0.05 0

28
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.28 0 0.02 0.05 0.05 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.28 0 0.02 0.05 0.05 0

29
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.28 0 0.02 0.05 0.05 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.28 0 0.02 0.05 0.05 0

30
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.28 0 0.02 0.05 0.05 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.28 0 0.02 0.05 0.05 0

31
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.13 0 0.02 0.05 0.4 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.13 0 0.02 0.05 0.4 0

32
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.13 0 0.02 0.05 0.4 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.13 0 0.02 0.05 0.4 0

33
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.13 0 0.02 0.05 0.4 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.13 0 0.02 0.05 0.4 0

34
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.13 0 0.02 0.05 0.4 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.13 0 0.02 0.05 0.4 0

35
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.13 0 0.02 0.05 0.4 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.13 0 0.02 0.05 0.4 0

36
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.13 0 0.02 0.05 0.4 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.13 0 0.02 0.05 0.4 0

37
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.25 0.05 0.02 0.05 0.05 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.25 0.05 0.02 0.05 0.05 0

38
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.25 0.05 0.02 0.05 0.05 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.25 0.05 0.02 0.05 0.05 0

39
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.25 0.05 0.02 0.05 0.05 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.25 0.05 0.02 0.05 0.05 0

40
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.25 0.05 0.02 0.05 0.05 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.25 0.05 0.02 0.05 0.05 0

41
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.25 0.05 0.02 0.05 0.05 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.25 0.05 0.02 0.05 0.05 0

42
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.25 0.05 0.02 0.05 0.05 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.25 0.05 0.02 0.05 0.05 0

43
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.1 0.05 0.02 0.05 0.4 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.1 0.05 0.02 0.05 0.4 0

44
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.1 0.05 0.02 0.05 0.4 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.1 0.05 0.02 0.05 0.4 0

45
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.1 0.05 0.02 0.05 0.4 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.1 0.05 0.02 0.05 0.4 0
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Table 6 Parameterization of simulation for data generating process for simulation setting 2 outlines in DAG 2 (Exclusion restriction
satisfied, unmeasured confounding present) (Continued)

# Arm α0 α1 α2 α3 α4 Nonadherence θ0 θ1 θ2 θ3 θ4 θ5

46
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.1 0.05 0.02 0.05 0.4 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.1 0.05 0.02 0.05 0.4 0

47
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.1 0.05 0.02 0.05 0.4 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.1 0.05 0.02 0.05 0.4 0

48
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.1 0.05 0.02 0.05 0.4 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.1 0.05 0.02 0.05 0.4 0

49
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.2 0.2 0.02 0.05 0.05 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.2 0.2 0.02 0.05 0.05 0

50
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.2 0.2 0.02 0.05 0.05 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.2 0.2 0.02 0.05 0.05 0

51
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.2 0.2 0.02 0.05 0.05 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.2 0.2 0.02 0.05 0.05 0

52
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.2 0.2 0.02 0.05 0.05 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.2 0.2 0.02 0.05 0.05 0

53
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.2 0.2 0.02 0.05 0.05 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.2 0.2 0.02 0.05 0.05 0

54
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.2 0.2 0.02 0.05 0.05 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.2 0.2 0.02 0.05 0.05 0

55
Z = 1 0.55 0.25 0.02 0.04 0.05 11 0.02 0.2 0.02 0.05 0.4 0

Z = 0 0.02 0.25 0.02 0.04 0.05 11 0.02 0.2 0.02 0.05 0.4 0

56
Z = 1 0.46 0.25 0.02 0.04 0.05 20 0.02 0.2 0.02 0.05 0.4 0

Z = 0 0.12 0.25 0.02 0.04 0.05 21 0.02 0.2 0.02 0.05 0.4 0

57
Z = 1 0.25 0.25 0.02 0.04 0.05 41 0.02 0.2 0.02 0.05 0.4 0

Z = 0 0.32 0.25 0.02 0.04 0.05 41 0.02 0.2 0.02 0.05 0.4 0

58
Z = 1 0.05 0.25 0.02 0.04 0.05 61 0.02 0.2 0.02 0.05 0.4 0

Z = 0 0.52 0.25 0.02 0.04 0.05 61 0.02 0.2 0.02 0.05 0.4 0

59
Z = 1 -0.15 0.25 0.02 0.04 0.05 81 0.02 0.2 0.02 0.05 0.4 0

Z = 0 0.7 0.25 0.02 0.04 0.05 80 0.02 0.2 0.02 0.05 0.4 0

60
Z = 1 -0.25 0.25 0.02 0.04 0.05 91 0.02 0.2 0.02 0.05 0.4 0

Z = 0 0.8 0.25 0.02 0.04 0.05 89 0.02 0.2 0.02 0.05 0.4 0

Table 7 Parameterization of simulation for data generating process for simulation setting 3 outlines in DAG 3 (Exclusion restriction
violated)

# Arm α0 α1 α2 α3 α4 Nonadherence θ0 θ1 θ2 θ3 θ4 θ5

1
Z = 1 0.86 0 0.01 0.04 0 10 0.2 0 0.03 0.1 0.05 0.05

Z = 0 0.06 0 0.01 0.04 0 10 0.2 0 0.03 0.1 0.05 0.05

2
Z = 1 0.76 0 0.01 0.04 0 20 0.2 0 0.03 0.1 0.05 0.05

Z = 0 0.16 0 0.01 0.04 0 20 0.2 0 0.03 0.1 0.05 0.05

3
Z = 1 0.56 0 0.01 0.04 0 41 0.2 0 0.03 0.1 0.05 0.05

Z = 0 0.36 0 0.01 0.04 0 40 0.2 0 0.03 0.1 0.05 0.05

4
Z = 1 0.36 0 0.01 0.04 0 60 0.2 0 0.03 0.1 0.05 0.05

Z = 0 0.57 0 0.01 0.04 0 60 0.2 0 0.03 0.1 0.05 0.05
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Table 7 Parameterization of simulation for data generating process for simulation setting 3 outlines in DAG 3 (Exclusion restriction
violated) (Continued)

# Arm α0 α1 α2 α3 α4 Nonadherence θ0 θ1 θ2 θ3 θ4 θ5

5
Z = 1 0.16 0 0.01 0.04 0 80 0.2 0 0.03 0.1 0.05 0.05

Z = 0 0.77 0 0.01 0.04 0 80 0.2 0 0.03 0.1 0.05 0.05

6
Z = 1 0.06 0 0.01 0.04 0 90 0.2 0 0.03 0.1 0.05 0.05

Z = 0 0.86 0 0.01 0.04 0 90 0.2 0 0.03 0.1 0.05 0.05

7
Z = 1 0.86 0 0.01 0.04 0 10 0.1 0 0.03 0.1 0.05 0.2

Z = 0 0.06 0 0.01 0.04 0 10 0.1 0 0.03 0.1 0.05 0.2

8
Z = 1 0.76 0 0.01 0.04 0 20 0.1 0 0.03 0.1 0.05 0.2

Z = 0 0.16 0 0.01 0.04 0 20 0.1 0 0.03 0.1 0.05 0.2

9
Z = 1 0.56 0 0.01 0.04 0 41 0.1 0 0.03 0.1 0.05 0.2

Z = 0 0.36 0 0.01 0.04 0 40 0.1 0 0.03 0.1 0.05 0.2

10
Z = 1 0.36 0 0.01 0.04 0 60 0.1 0 0.03 0.1 0.05 0.2

Z = 0 0.57 0 0.01 0.04 0 60 0.1 0 0.03 0.1 0.05 0.2

11
Z = 1 0.16 0 0.01 0.04 0 80 0.1 0 0.03 0.1 0.05 0.2

Z = 0 0.77 0 0.01 0.04 0 80 0.1 0 0.03 0.1 0.05 0.2

12
Z = 1 0.06 0 0.01 0.04 0 90 0.1 0 0.03 0.1 0.05 0.2

Z = 0 0.86 0 0.01 0.04 0 90 0.1 0 0.03 0.1 0.05 0.2

13
Z = 1 0.86 0 0.01 0.04 0 10 0.2 0.2 0.03 0.1 0.05 0.05

Z = 0 0.06 0 0.01 0.04 0 10 0.2 0.2 0.03 0.1 0.05 0.05

14
Z = 1 0.76 0 0.01 0.04 0 20 0.2 0.2 0.03 0.1 0.05 0.05

Z = 0 0.16 0 0.01 0.04 0 20 0.2 0.2 0.03 0.1 0.05 0.05

15
Z = 1 0.56 0 0.01 0.04 0 41 0.2 0.2 0.03 0.1 0.05 0.05

Z = 0 0.36 0 0.01 0.04 0 40 0.2 0.2 0.03 0.1 0.05 0.05

16
Z = 1 0.36 0 0.01 0.04 0 60 0.2 0.2 0.03 0.1 0.05 0.05

Z = 0 0.57 0 0.01 0.04 0 60 0.2 0.2 0.03 0.1 0.05 0.05

17
Z = 1 0.16 0 0.01 0.04 0 80 0.2 0.2 0.03 0.1 0.05 0.05

Z = 0 0.77 0 0.01 0.04 0 80 0.2 0.2 0.03 0.1 0.05 0.05

18
Z = 1 0.06 0 0.01 0.04 0 90 0.2 0.2 0.03 0.1 0.05 0.05

Z = 0 0.86 0 0.01 0.04 0 90 0.2 0.2 0.03 0.1 0.05 0.05

19
Z = 1 0.86 0 0.01 0.04 0 10 0.1 0.2 0.03 0.1 0.05 0.2

Z = 0 0.06 0 0.01 0.04 0 10 0.1 0.2 0.03 0.1 0.05 0.2

20
Z = 1 0.76 0 0.01 0.04 0 20 0.1 0.2 0.03 0.1 0.05 0.2

Z = 0 0.16 0 0.01 0.04 0 20 0.1 0.2 0.03 0.1 0.05 0.2

21
Z = 1 0.56 0 0.01 0.04 0 41 0.1 0.2 0.03 0.1 0.05 0.2

Z = 0 0.36 0 0.01 0.04 0 40 0.1 0.2 0.03 0.1 0.05 0.2

22
Z = 1 0.36 0 0.01 0.04 0 60 0.1 0.2 0.03 0.1 0.05 0.2

Z = 0 0.57 0 0.01 0.04 0 60 0.1 0.2 0.03 0.1 0.05 0.2

23
Z = 1 0.16 0 0.01 0.04 0 80 0.1 0.2 0.03 0.1 0.05 0.2

Z = 0 0.77 0 0.01 0.04 0 80 0.1 0.2 0.03 0.1 0.05 0.2

24
Z = 1 0.06 0 0.01 0.04 0 90 0.1 0.2 0.03 0.1 0.05 0.2

Z = 0 0.86 0 0.01 0.04 0 90 0.1 0.2 0.03 0.1 0.05 0.2
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