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transition state structures with
tensor field networks and transfer learning

Riley Jackson, Wenyuan Zhang and Jason Pearson *

Transition states are among the most important molecular structures in chemistry, critical to a variety of

fields such as reaction kinetics, catalyst design, and the study of protein function. However, transition

states are very unstable, typically only existing on the order of femtoseconds. The transient nature of

these structures makes them incredibly difficult to study, thus chemists often turn to simulation.

Unfortunately, computer simulation of transition states is also challenging, as they are first-order saddle

points on highly dimensional mathematical surfaces. Locating these points is resource intensive and

unreliable, resulting in methods which can take very long to converge. Machine learning, a relatively

novel class of algorithm, has led to radical changes in several fields of computation, including computer

vision and natural language processing due to its aptitude for highly accurate function approximation.

While machine learning has been widely adopted throughout computational chemistry as a lightweight

alternative to costly quantum mechanical calculations, little research has been pursued which utilizes

machine learning for transition state structure optimization. In this paper TSNet is presented, a new end-

to-end Siamese message-passing neural network based on tensor field networks shown to be capable

of predicting transition state geometries. Also presented is a small dataset of SN2 reactions which

includes transition state structures – the first of its kind built specifically for machine learning. Finally,

transfer learning, a low data remedial technique, is explored to understand the viability of pretraining

TSNet on widely available chemical data may provide better starting points during training, faster

convergence, and lower loss values. Aspects of the new dataset and model shall be discussed in detail,

along with motivations and general outlook on the future of machine learning-based transition state

prediction.
1 Introduction

The transition state (TS) is central to several important chemical
prediction tasks, including reaction mechanism studies,
protein investigation, and catalyst design.2–5 The common
conception of a TS is a high energy conguration of reaction
atoms along a particular reaction coordinate – a threshold along
the trajectory from reactant to product which dictates reaction
activation energy. Mathematically TS are represented by saddle
points, also know as minimax points, on the potential energy
surface (PES) of a given quantum system. Saddle points are
complex critical points unique to surfaces with two degrees-of-
freedom or more where all dimensions are either at a relative
minimum or relative maximum. Of interest to most elds of
chemistry are rst-order saddle points where only a single
dimension is at a maximum while all others are minimised.
This maximised dimension corresponds to the reaction coor-
dinate, e.g. the bond being broken or formed, and the minima
which bookend this maximum represent the reactant and
rince Edward Island, Canada. E-mail:
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product complexes of the reaction. In other words, the rst-
order saddle point sits as the maximal energy geometry along
the minimum energy pathway (MEP) between reactant and
product complexes. Locating a specic TS on any given PES is
exceptionally difficult for a handful of reasons. First, since TS
are off-equilibrium conformers corresponding to the breaking/
forming of chemical bonds, electronic conguration must be
considered – i.e. TS search is only viable with quantum
mechanics (QM) based ab initio methodologies which are oen
incredibly costly and scale very poorly with the size of the
quantum system.6 Second, existing iterative Hessian-based
search algorithms which optimize surfaces for minimax
points potentially require many very expensive ab initio calls
before convergence – and convergence is never guaranteed.
Third, Hessian-based search algorithms are incredibly sensitive
to starting point, meaning accurate estimations of true TS
geometries must be provided to increase the probability of
convergence upon desired structures.7 Over the last several
decades many TS search algorithms have been developed to
address these listed obstacles. Algorithms of note include
Schlegel and Peng's synchronous transit quasi-Newton (STQN)
method,8,9 the nudged elastic band (NEB) method,10,11 and
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Zimmerman's growing string methods (GSM).12–14 Other
notable search implementations include eigen-vector following
methods15–17 and spline methods.18–21 While implementation,
reliability and use-cases differ among these search algorithms,
they all largely follow the same schema: (1) generate a “guess”
geometry of the TS from provided input structures (2) perform
local Hessian-based surface optimization (typically some vari-
ation of the Broyden–Fletcher–Goldfarb–Shanno algorithm). Of
the noted algorithms, GSMs are oen reported as the most
reliable,12 however they still require a handful of ab initio force
calls at each node. Depending on the number of nodes created
along the string, a single search can accrue dozens of force calls
– albeit far fewer than NEB and STQN. Peterson reported
signicantly lowered ab initio force calls with NEB when sup-
plemented with a machine-learned PES, resulting in a much
more rapid acquisition of valid structures.22 The use of
a machine-learned potential by Peterson is a footnote in the
radical paradigm shi over the past decade towards novel
machine learning (ML) algorithms for modelling chemical
trends.1,23,24 State-of-the-art neural networks (NNs) such as
SchNet and PhysNet are capable of achieving energy predictions
within error margins much smaller than 1 kcal mol�1 trained
upon data obtained using density functional theory (DFT)
methods,25,26 and recent work using transfer-learning has
allowed for coupled-cluster levels of accuracy with small sets of
training data.27 We believe that the success observed mimicking
ab initiowithMLmay be translated to TS search. However, while
these milestones are incredibly promising, they all generally fall
under the umbrella of “scalar regression”, where some repre-
sentation of a quantum system serves as input and a single real
number representing some aspect of that quantum system is
outputted, e.g. internal energy. Less success has been observed
developing predictive ML models which are capable of output-
ting structures – a requirement for modelling TS search.28

Progress has been made creating generative ML models for the
purposes of molecular design, which output data structures
representative of equilibrium structures, such as SMILES
strings.28–31 However, these models are not transferrable to the
task of TS prediction for a number of reasons. First, TSs are
fundamentally very special non-equilibrium conformers of
molecular systems, something not well represented by SMILES
strings and simple binary connectivity graphs.32 Second,
generative models are oen invariant to the translation and
rotation, i.e. the orientation, of the input molecules33–35 –

meaning the output of the model does not change if the input is
rotated and/or translated within its coordinate system. TS
prediction ultimately requires equivariance to orientation,
meaning the orientation of the output molecule must change
equivalently to the orientation of the input molecule(s). The few
existing equivariant ML models have only been developed
within the last handful of year,36–38 and only muchmore recently
have they been applied to computational chemistry, such as
with the very recent Cormorant architecture.39–41 In order to
translate the success of molecular predictive ML to structure
prediction, effort must be put into the development of novel
equivariant models capable of outputting veriable and human-
readable quantum systems. The solution we are proposing is an
© 2021 The Author(s). Published by the Royal Society of Chemistry
end-to-end approach – replacing both PES modelling and
traditional Hessian-based search. The alternative approach, like
that proposed by Peterson, is to replace only PES modelling and
utilize traditional saddle point search methods. There are
benets to this semi-learned approach, the main being that
accurate ML-based PES generating models already exist.25,26

However, these machine-learned potentials do not include TS
structures in their training sets, meaning their performance for
TS prediction would be dubious at best. Also, users will still be
required to interact with traditional search algorithms which
are very sensitive to input quality and oen very difficult to
operate effectively. Lastly, the success of end-to-end approaches
in computer vision and natural language processing have
shown considerable success along with other, more niche
domains, such that they are quickly becoming the de facto
methodologies in their respective elds.42–45 While chances of
observing similar success with-respect-to TS prediction are
questionable, we believe this approach is worth exploring.

1.1 Project contributions

The goal of this study is to develop a ML model to predict
accurate transition state structures on a potential energy surface
(PES) between reactant and product complexes as input. This is
challenging for several reasons. First, such a model requires
interpreting molecular systems in multiple coordinate systems.
Since reactant and product complexes are necessarily expressed
in different coordinate systems (which cannot be unique), our
ML models must both be capable of interpreting each of these
and generating a third structure in yet another coordinate
system. We nd that tensor eld networks based on the
equivariant tensor eld networks created by Thomas et al.38 are
amenable to this challenge and provide details of our chosen
architecture below. Second, the ambiguity of directionality on
the potential energy surface is an important challenge. It is, of
course, irrelevant whether one labels the reactant complex as
“reactants” or “products” and a transition structure prediction
must be appropriately invariant. We nd that incorporating
a Siamese architecture into our network is an effective strategy
for incorporating PES directional invariance within our model.
Finally, though there are a growing number of examples of ML
molecular property predictors and even generative models for
whole-molecule prediction, we nd a dearth of examples that
explicitly treat non-equilibrium molecular structures. Though
transition structures are critical for understanding kinetics,
intersystem crossings, enzyme function, etc. we nd that most
(if not all) ML predictors focus on equilibrium structure and
properties. As such, there is very little data from which to train
on. We use a novel approach to transfer learning as a solution
here, where we incorporate the benets from training on a large
equilibrium dataset to training on a small non-equilibrium
dataset.

1.2 Similar works

While signicant success has been observed applying ML to
traditional elds of predictive computational chemistry, such as
energy and force prediction, little research has been completed
Chem. Sci., 2021, 12, 10022–10040 | 10023
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with respect to ML applied to TS prediction. While there are
many facets of TS search that may be bolstered with ML, truly
desirable is the development of a novel ML algorithm capable of
outputting TS structure predictions directly, with a high level of
accuracy, reliability, and generalizability. Such a feat has been
attempted only a handful of times. The earliest found inclusion
of ML to TS-based research was the 2012 paper by Pozun et al.
The paper detailed the development of a support vector
machine (SVM), a type of traditional ML classier, which clas-
sied various non-equilibrium structures as either belonging to
a reactant, or product region of a mechanistic pathway. The
decision boundary function learned by the SVM, which is
a plane through feature space, may serve as an approximation
for the dividing surface of the reaction. From this dividing
surface, one may determine the rate of reaction as the approx-
imate equilibrium ux out of this surface. While the results of
this study could prove useful in a variety of elds, it is unrelated
to the proposed work due to its focus on kinetics, and the lack of
TS structures in the training dataset.46 Slightly more related is
the 2016 paper by Peterson, which described the use of tradi-
tional saddle-point search on machine-learned PESs. What is
most interesting about this second work is the proposed hybrid
QM-ML approach, where amajority of the saddle-point search is
carried out upon a PES generated by a NN. While Peterson re-
ported a drastic reduction in the number of required ab initio
calls for successful calculations, the reliability of the method,
e.g. the number of successfully obtained TSs, was not reported.
Peterson's study was deemed dissimilar to the proposed study
due to the lack of explicit TS structures in the dataset,47 and the
fact that TS predictions are still carried out with traditional
search algorithms, just upon machine-learned surfaces.48 Most
recently, Pattanaik et al. Built a graph NN capable outputting TS
distance matrices, which are used to generate a set of most
probable Cartesians following non-linear least squares optimi-
zation.49 Our approach is most similar to that followed by Pat-
tanaik et al., however there are a few key differences. First, we
directly output Cartesians as opposed to distance matrices. This
necessitates model equivariance and a standardized Cartesian
dataset, however it affords our model the ability to differentiate
enantiomers – something not possible with only a distance
matrix. Second, the set of bond features used as input to the
model proposed by Pattanaik et al. is a set of length 3 vectors,
where the rst entry of each vector is the bond distance for that
particular bond averaged between reactant and product. The
second and third entries indicate whether or not the bond has
been broken or formed when going from reactant to product,
and whether or not the bond was aromatic, respectively. Our
input differs radically for a handful of reasons. First, TSNet is
a Siamese architecture which offloads the combination of
reactant and product features to the model. TSNet is also
theoretically capable of operating on multi-reactant reactions,
though the construction of a multi-reactant reaction dataset to
test this capability is beyond the scope of this work. Second, we
expand our interatomic distances using 800 unique atom-
centered symmetry functions originally proposed by Behler,
which have been shown to increase the predictive capabilities of
chemical ML models.25,26,50 The last major difference between
10024 | Chem. Sci., 2021, 12, 10022–10040
TSNet and Pattanaik's graph NN come from overall architec-
tural differences. TSNet is a rotationally and translationally
equivariant convolutional graph NN, while Pattanaik's model is
an invariant multi-layer perceptron which operates atom-wise.
It is too early in the development of both TSNet and Patta-
naik's model to denitively say which model is superior with-
respect-to predictive capabilities and computational cost. We
leave an extensive benchmarking of TSNet and Pattanaik's
model to future studies when larger TS datasets are more readily
available.
1.3 Anticipated problems

Prior to the development of TSNet three major challenges were
anticipated: (1) how should inputs and outputs be represented?
(2) How would one present multiple inputs to a model? (3) How
would one deal with the lack of readily available TS data? The
rst question has largely been answered already and is general
to most chemical ML projects, while the latter two are much
more specic to TS search, meaning they must be answered
within this work. In the following sections, the answers to these
questions shall be explored.

1.3.1 Molecular representations. The main factors which
hindered the development of chemical predictive ML are the
fundamental difficulties with representing quantum systems,
such as molecules and reactions, in machine-interpretable
formats, previously discussed.51 While these detailed,
invariant representations work well with scalar regression,
structure prediction from graph inputs would ideally include
orientation information. This puts the additional constraint of
equivariance upon model selection, making existing state-of-
the-art models poor choices for drop in usage and severely
limits the number of possible architectures available. One such
architecture t for these purposes is a novel message passing
neural network (MPNN) proposed by Thomas et al. which
utilizes the spherical harmonics Ym

(l) to encode rotational
equivariance known as the tensor eld networks (TFNs).38 TFNs
take an additional set of edge features as input; interatomic unit
vectors. These unit vectors are centered on the origin of the
input coordinate system and serve as inputs to create a basis of
spherical harmonics functions from which learned lters are
constructed and convolved with xn. In a nutshell, this affords
TFNs with the ability to output tensor elds, mathematical
spaces where each point corresponds to a geometric tensor, for
each atom in a particular molecule – making them ideal for
predicting TS structures. Adding or removing atoms is not
inherently supported by TFNs, though this is not a requirement
for ML-based TS prediction as input and target systems already
include all relevant atoms. Changing the number of atoms
present in a particular system is a greater focus for a generative
architecture, where the goal is to create new molecules. TS are
effectively very special molecular conformers, so the inputted
array of atomic types can be carried forward for outputted
structures. A more detailed explanation of how TFNs operate
may be found in Section 2.2.

1.3.2 Representing multiple input systems. There are two
major types of TS search algorithms: double-ended, and single-
© 2021 The Author(s). Published by the Royal Society of Chemistry
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ended. Double-ended searches take two structures as input and
search for the TS between them, while single-ended searches
use either a reactant or product complex as a starting point to
search for novel TS. As predictive ML is ultimately a form of data
interpolation, single-ended TS search would be best le for
generative models – however, TSNet may prove to be an
adequate starting point for building a machine-learned single-
ended search algorithm. As such, the model must be capable
of taking multiple inputs. Dependence upon the order in which
these multiple inputs are provided will likely introduce
permutation variance. In other words, presenting a reactant,
product pair in an order which the model has not yet seen could
potentially result in a different prediction. A näıve solution
could involve data augmentation, where input pairs are
reversed – synthetically doubling the size of the dataset but not
technically doubling information. However, there exist
simplistic architectural changes which address the problem
more elegantly. By using the same network on each input, then
combining outputs commutatively, e.g. through summation,
both inputs can be utilized in a manner invariant to permuta-
tion. This architecture is effectively identical to a Siamese
neural network, an architecture proposed by Koch et al. in 2016
originally for training on very small categorical datasets, also
known as one-shot learning.52 However, while Siamese
networks are more oen used for classication, the architecture
is designed exclusively for regression. While a Siamese-like
architecture addresses multiple inputs, the question of which
method of computing loss was one of the more difficult aspects
of the development of the model. Computing loss directly on
Cartesians was anticipated to cause issues, as a double-ended
search algorithm must contend with three possibly very
different coordinate systems (one for the reactant, TS, and
product complexes). However, Cartesians are one of the very few
ways in whichmolecules/reactions may be visualized, a must for
the rudimentary validation pipeline of this work. Working
directly with Cartesians requires careful consideration when
creating training data to ensure coordinate systems are
consistent across product, reactant, and TS. Many modern QM-
based soware provides the option to obtain structures in
standard orientation, where molecules are translated such that
their center of mass is on the origin of the coordinate system
and rotated such that the molecule's principal axis of rotation
aligns with the z-axis. By ensuring all structures are optimized
in standard orientation, the multi-system problem may be
largely avoided.

1.3.3 Low data exploitative techniques. In addition to the
scarcity of architectures t for making structure predictions,
readily available datasets including TS structures are rare. To
our knowledge, the only other dataset designed for ML which
includes TS structures is an isomerization dataset created by
Grambow et al., developed in parallel to this study.53 The reason
for such data shortage is obvious: generating TS structures is
exceptionally difficult. In fact, the low feasibility of TS search
automation makes it likely that TS prediction will always be
mired by a lack of data. However, low data exploitative tech-
niques such as one-shot learning and transfer learning (TL)
have shown considerable promise in other elds such as
© 2021 The Author(s). Published by the Royal Society of Chemistry
natural language processing and computer vision.52,54 Ulti-
mately, while the scarcity of data is likely the biggest concern
with ML-based TS search, there are several promising mitiga-
tion strategies. TL specically is a very promising and easily
implemented remedy to low data learning where knowledge
from one source prediction task boosts performance on
a second target task which is begrudged by a lack of training
data. Unfortunately, predicting whether or not TL will provide
a boost to performance upon the target dataset task through
pre-training on a given source dataset is effectively impossible.55

The only truly viable option for detecting whether or not
a model will transfer properly is through trial-and-error and
experimentation. Selecting a source dataset and prediction task
as close to the target as possible is an easy way of increasing the
probability of success, which is why a new prediction task was
created from the reputable QM9 dataset.56,57Originally, the QM9
was created for molecular property prediction – however, such
a task is likely too different for a meaningful transfer of infor-
mation. Therefore, the decision was made to construct a new
prediction task from the high-quality structures in the QM9
similar in nature to that used by Thomas et al. when rst
showcasing TFN capabilities for chemistry. While it is true that
no physical motivations exist behind such a prediction task, the
goal is not for the model to learn physics directly during pre-
training, but to rather expose the model to what molecules
and chemical systems should look like before training to
construct TS structures.

2 Methods
2.1 Construction of the SN2-TS dataset

The semi-automated algorithm for dataset generation was
developed using Python 3.6, a programming language well
regarded for its utility as an adapter between applications.58 A
script written in Python that is capable of transcribing data
from common le formats and executing external programs is
oen more digestible, reliable, and quick to develop than
competing languages. Also, Python has become the de facto
language for interacting with highly optimized ML backends, so
integration between data generation and ML-based prediction
is palatable. Seed data was recorded into the common xyz
molecular le format by hand from various sources59–73 before
being funnelled into the semi-automated TS data generation
pipeline, titled Gaussian Manager (GM) (https://github.com/
UPEIChemistry/GaussianManager).

2.1.1 Gaussian manager. GM was based exclusively on the
Gaussian 09 soware suite.74 Manually compiled seed data are
gas-phase SN2-TS geometries obtained from several theoretical
studies ranging from the early 1980s to the late 2000s.59–73 GM
begins by performing a second-order saddle point search using
provided seed data as input “guesses” for starting points on the
PES. Calculation times are oen low due to the quality of the
seed data. However, convergence errors were common across
the dataset for saddle point search. These errors were largely
handled by GM's error resolution. The error resolution func-
tionality of GM is limited on account of the short development
time of the application. With more time, GM can potentially
Chem. Sci., 2021, 12, 10022–10040 | 10025
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evolve into a more autonomous process, requiring very little
human intervention. Gaussian has several exceptions, which
may raise for a variety of reasons. GM attempts to handle the
majority of exceptions typically thrown by IRC and saddle point
search algorithms by either modifying self-consistent eld
parameters, or loosening convergence metrics to ensure calcu-
lation completion. Many error codes cannot be handled effec-
tively, typically requiring manual review.

Aer TS optimization, GM performs an intrinsic reaction
coordinate (IRC) calculation to obtain corresponding reactant
and product geometries. To remedy convergence errors, IRC
calculations were customized with the following keywords:
loose, stepsize ¼ 2, which ensured IRCs ran with very lenient
convergence criteria, and the search computed only two steps
along the negative mode, thus “pushing” the optimization
towards either product or reactant complex. These IRCs are
then followed by separate geometry optimizations for each of
the reactant and product complexes. While most obtained
reactant and product complex geometries appear visually to
mimic the expected complexes some differ from expected
structures,75 particularly reactions containing atoms capable of
hydrogen bonding. The chosen basis set to optimize the struc-
tures with was the cc-PVDZ double-zeta basis.76 Calculations
were performed at the Møller–Plesset 2 (MP2) level of theory.77

The method and basis set were ultimately chosen to ensure
calculations completed in a reasonable amount of time, while
not sacricing a signicant amount of computational accuracy.

2.1.2 Dataset preparation for machine learning. Once all of
the Gaussian output les for all reactions were obtained, they
were split into arrays and compressed. Python 3.7, the NumPy
high dimensional mathematics package,78 and the h5py serial-
ization package were used for dataset construction. While xyz
les contain both atomic type and positional data, the infor-
mation is technically stored as plaintext. By reading the xyz les
with NumPy the entire dataset may be stored efficiently as high
ranked arrays. However, due to type inconsistencies between
type and positional data (integers vs. oats), separate arrays
must be constructed, resulting in an atomic-type array and
Cartesian array for the dataset – typical for other computational
chemistry ML datasets. Also similar to other chemical datasets
is the addition of dummy atoms to pad out smaller molecules
such that all molecules in the dataset contain a consistent
molecular size. This is required since high-dimensional arrays
must be rectangular. The SN2-TS dataset is composed of three
separate Cartesian arrays, corresponding to the positional data
of the reactant, TS, and product structures; a single atomic-type
array, as no atoms are added or removed upon transition from
reactant to product; and three energy arrays, listing energy
values of reactants, TSs, and products. These arrays are then
stored into the hdf5 le format using the h5py Python package,
which allows for quick serialization of large datasets and
a convenient nested structure – affording high portability and
organization. Due to its low number of structures, the SN2-TS
dataset is quite lightweight, requiring only 216 Kb of storage
space.

2.1.3 Statistical analysis. Dataset statistics were computed
using Python 3.7 and the NumPy high dimensional
10026 | Chem. Sci., 2021, 12, 10022–10040
mathematics package. Relevant code for statistical evaluation
and dataset construction may be found at: https://github.com/
UPEIChemistry/critical-length-predictor.
2.2 Tensor eld networks

TSNet borrows heavily from TFNs proposed by Thomas et al.,
complex multifaceted NNs built specically for equivariant
prediction upon point clouds (represented by graphs).38 While
other equivariant networks would likely suffice for TS predic-
tion, the architecture from Thomas et al. was the most readily
available and easily implemented architecture at the time TSNet
was developed. In the following sections, an explanation of each
distinct TFN layer, how TSNet differs from the original, and how
they are integrated together to create the nal learned “block”
shall be given. Though based on similar motivations to the
original, the overall construction of TSNet is very different. The
four greatest differences are: (1) while the original imple-
mentation only accepted a single molecule/reaction at a time,
TSNet utilizes dummy atoms and masking layers to allow for
batching multiple molecule/reactions (2) the model uses
residual skip connections (3) TSNet supports shared radial
functions rather than only creating new sets of trainable
weights every block (4) TSNet is built using a Siamese archi-
tecture, allowing it to accept any number of input systems. In
the case of TSNet, we accept two inputs (reactant and product),
though TSNet could easily be used for unimolecular reactions,
or even trimolecular reactions.

2.2.1 Point convolution. Point convolution layers contain
over 90% of the trainable weights of a TFN and serve as the entry
point to each learned block in the network. TSNet's imple-
mentation of the point convolution layer requires four distinct
inputs:

Input 1 – positional information. Like most state-of-the-art
architectures, TSNet utilizes an interatomic distance matrix
expanded using Behler's ACSFs, specically radial basis func-
tions. The shorthand ‘rbf’ is typically used when referring to
positional information. The rbf array is of shape (molecules,
atoms, atoms, basis functions) – a rank four array.

Input 2 – orientation information. Somewhat unique to TFNs
is the use of interatomic unit vectors as input. The set of unit
vectors for a single atom are computed as such:

Vi ¼ ci � cj����ci � cj
����
2

cj (1)

where i and j index atoms, ci is the x, y, z 3-tuple for Cartesian
coordinates of atom i and kxk2 is the Euclidean distance of the
vector x. The term ‘vectors’ is used when referring to input 2.
The array is of shape (molecules, atoms, atoms, 3), corre-
sponding to the x, y, z 3-tuple for each interatomic vector.

Input 3 – one-hot representation of atomic type. One-hot
vectors are a very common binary data structure used in ML
to represent the class of an object from a group of choices. For
example, in a system that operates on all atoms up to an
including uorine, the one-hot vector representing a carbon
atom would be a length nine vector with a one in the sixth
position and zeroes everywhere else. An entire molecule or
© 2021 The Author(s). Published by the Royal Society of Chemistry
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reaction would require a matrix of one-hot vectors, one for each
atom. In a nutshell, for TFNs, one-hots are used frequently to
represent the types of atoms present in a particular reaction or
molecule. This input was not required in the original imple-
mentation of TFNs, as they only operated on a single molecule/
reaction at a time. In order to operate on collections of mole-
cules at a time, dummy atoms must be utilized to pad out
smaller molecules to ensure inputs are rectangular. Dummy
atoms have atomic number zero and are all centered at the
origin of the molecule's coordinate system. As TFNs operate
atom-wise and share weights across all atoms of a molecule,
dummy atoms can potentially inuence model training in
undesirable ways. The new TFN implementation requires one-
hot vectors for corresponding positional and feature arrays to
track which atoms are dummy atoms and remove any contri-
butions attributed to them during training. TSNet utilizes
Prott and Pearson's implementation of dummy atom mask-
ing,79 which require one-hot vectors to track dummy atoms and
zero any contribution they make to training. Dummy atoms are
masked aer every layer.

Input 4 – vertex features represented as a set of tensor elds.
Feature arrays are the single way in which information ows
between learned blocks in a TFN. Ultimately, TFNs operate
upon and output tensor elds, thus vertex features must be
represented as sets of tensor elds, i.e. theymust be represented
as arrays of shape (molecules, atoms, features, representation
index). The nal axis of a tensor eld array, representation index
(RI), is related to which set of spherical harmonics functions are
Fig. 1 Point convolution layer. Illustration of the point convolution lay
rectangles are arrays. Input 1 (RBF) containing positional information, is
radial. Each point convolution layer has a unique radial; however, the
orientation information are used to create a basis of spherical harmonic
output from the radial using a tensor product to product a harmonic filt
including both positional and orientation information on the input mol
atoms, radial units, filter index). Input 4 (Features) is convolved with the
tensor product to produce a set of learned features which are of shape (
used to mask out dummy atom activations from the learned features.

© 2021 The Author(s). Published by the Royal Society of Chemistry
required to represent that particular feature array. In other
words, RI is the same as the parameter m for the spherical
harmonics, e.g. for Y1

0 RI is one (a scalar eld) and for Y3
1 RI is

three (a Euclidean vector eld). Like the original implementa-
tion, TSNet only supports up to vector elds, however this is
easily extendable to higher order tensors with minimal changes
to the architecture. It should be noted that TFNs can actually
operate on multiple feature arrays of differing RIs at a time. The
only true vertex features on hand are atomic types which are
only well represented by integers (or one-hot vectors, which are
a very common way of representing integers). To translate
atomic type to a tensor eld one must expand the set of one-hot
vectors for a collection of molecules which is of shape (mole-
cules, atoms, highest atomic number) to a scalar eld repre-
sentation of atomic type, which is of shape (molecules, atoms,
highest atomic number, 1). This operation is trivial mathe-
matically but is critical to the model. This scalar eld is then
operated upon by an atom-wise dense layer to produce an array
known as an ‘embedding’, which is exclusively machine-
interpretable, of shape (molecules, atoms, units, 1) where
‘units’ refers to the number of trainable weights in the atom-
wise dense layer. TSNet differs from the original in that it also
includes a vector eld embedding representation of atomic type
which is of shape (molecules, atoms, units, 3) to facilitate
residual skip connections between clusters of blocks of the
network. Fig. 1 showcases the ow of information through the
point convolution layer. All of the point convolution layers'
trainable parameters are contained within a NN known as the
er showcasing the flow of information. Ellipses are functions, while
inputted to an interatomic-wise dense neural network known as the
implementation supports radial sharing. Input 2 (Vectors) containing
s based on a provided value of l which is combined with the learned
er. Harmonic filters are spherically symmetric learned representations
ecules/reactions, and are rank 5 tensors of shape (molecules, atoms,
harmonic filter and the Clebsch–Gordan coefficients using another

molecules, atoms, learned features, output index). Input 3 (One-hot) is
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Fig. 2 Molecular convolution block (A) illustration of self interaction and equivariant activation layers. Self interaction layers are similar to
traditional 1 � 1 convolutions, while equivariant activation layers ensure higher order tensor field feature arrays are activated across all repre-
sentation indices. The shifted softplus activation from SchNet is used: ssp(x) ¼ ln(0.5ex + 0.5). (B) Illustration of the complete molecular
convolution block contain all layers for scalar and vector field inputs. These blocks are analogous to traditional convolutional layers in their
mathematical function, with the added benefit of equivariant afforded through the spherical harmonics.
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‘radial’ which operates interatomic-wise rather than atom-wise
– with weights shared across all atoms in a molecule. This is
distinct from networks like that proposed by Prott and Pear-
son, which utilises a positional array in which the second atoms
axis has been summed over to create a set of atomic environ-
ment vectors which describe the molecule. The radial extracts
learned features from the interatomic distance features, i.e. the
basis functions, and the second atoms axis is summed over
during the tensor product between the harmonic lter, the
vertex features, and the Clebsch–Gordan coefficients. Point
convolution layers contain over 90% of the weights in a TFN.

2.2.1.1 Concatenation. The harmonic lter which is
combined with vertex features is also a tensor eld, and there
are mathematical restrictions on how tensor elds of varying
irreducible representations must be combined. The combina-
tions TSNet supports are:

(1) Scalar � scalar / scalar.
(2) Scalar � vector / scalar.
(3) Scalar � vector / vector.
(4) Vector � vector / scalar.
(5) Vector � vector / vector.
Combinations (1), (3), and (5) are simply element-wise

multiplication, while (2) and (4) are dot products. Since TFNs
can accept multiple feature arrays of differing representation
order (i.e. differing values of l) and TSNet supports harmonic
lters up to l ¼ 1, all ve combinations are possible depending
10028 | Chem. Sci., 2021, 12, 10022–10040
on input orders and desired lter orders. For example,
providing both scalar eld and vector eld features and select-
ing both scalar and vector harmonic lters to be used results in
ve output feature arrays: three scalar elds, two vector elds.
Keeping feature arrays of identical representation order sepa-
rate is nonsensical, so they are concatenated along the features
axis resulting in as many feature arrays as there are differing
representation orders.

2.2.2 Self interaction and equivariant activation. Fig. 2A
shows how information ows between self interaction and
activation layers. Self interaction layers are conceptually similar
to 1 � 1 convolutions, where a weight kernel facilitates
communication across the vertices of the graph by mixing the
features axis of the learned feature arrays. Equivariant activa-
tion layers are quite simplistic as well, simply applying a bias to
inactivated feature arrays from self interaction layers before
input to an activation function. The activation function, the
shied soplus, originally from SchNet was maintained for the
new implementation.25 The shied soplus has the form:

ssp(x) ¼ ln(0.5ex � 0.5) (2)

2.2.3 Molecular convolution block. All of the TFN layers
integrate together to create the complete molecular convolution
block (MCB), presented in Fig. 2B. MCBs may be fed one into
© 2021 The Author(s). Published by the Royal Society of Chemistry
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the other using a typical feed forward approach, or constructed
with residual skip connections. Even the construction of
recurrent architectures is possible, though this has yet to be
attempted. Like typical convolutional neural networks,
a number of dense layers are appended to a collection of MCBs
to reduce the number of points in each atomic tensor eld to
the required output for the prediction task. For Cartesian
prediction, points in each atom's vector eld are reduced to one,
corresponding to the single x, y, z coordinate 3-tuple for each
atom. It should be noted that while the main use case of TSNet
is chemistry, the architecture itself is agnostic to prediction task
– TFN in general may be utilized upon any form of data well
represented by point clouds.
2.3 TSNet development

2.3.1 Implementation. While the original implementation
of TFNs was built for TensorFlow 1.x, the original repository
(https://github.com/tensoreldnetworks/tensoreldnetworks)
was forked and rebuilt from scratch using Python 3.7 and Keras
for TensorFlow 2.3.80,81 Keras is a user-friendly, streamlined
frontend for TensorFlow 2 which allows for highly modular
network construction through the layer interface. The new TFN
repository can be found at https://github.com/UPEIChemistry/
tensor-eld-networks and contains two sub-packages: tfn.lay-
ers, and tfn.tools. The rst package, layers, includes all TFN
Keras layers as well as the aggregate MCB layer, along with some
Fig. 3 TSNet architecture. (A) Illustration of the entire TSNet architectu
together before being inputted to a handful of capping dense layers. Ou
product pair. (B) Internals of the TFN trunks from (A). Molecular Convoluti
clusters of blocks at two blocks each. 64 self interaction units are used p
such that only vector fields are outputted, resulting in fewer internal radi
functions are used on a grid with a resolution of 0.02 angstroms (�A), pro
Each block in (B) contains multiple radials (C), resulting in an architectur

© 2021 The Author(s). Published by the Royal Society of Chemistry
additional utilities for construction of TFNs. The second
package, tools, contains a number of premade models and
scripts for loading datasets, such as the QM9 and the SN2-TS
dataset. Data preparation was completed using Python 3.7, and
the NumPy and h5py libraries.

2.3.2 Architecture. A complete view of the network archi-
tecture is presented in Fig. 3. A very ne grid of radial basis
functions (RBFs) was chosen compared to SchNet and Prott's
architecture to ensure distinction between very similar
conformers. Grid resolution was 0.02 �A, with basis function
width u of 0.2�A. Like Prott, a distance range of�1.0�A to 15.0�A
was probed. Basis functions centered below zero activate for
“self-interactions” (not to be confused with the TFN self-
interaction layer), where an atom is connected to itself with
a bond length of 0 �A. Allowing the grid to probe below 0 �A
ensures self-interactions activate a similar number of basis-
functions as compared to larger distances. MCBs in the new
TFN architecture are connected with residual skip connections,
unlike the original implementation, all of which use 64 self-
interaction units internally. The trunks in Fig. 3A are identical
networks with shared weights. Their outputs are elementwise
summed, and the resultant is fed into a handful of self-
interaction layers which reduce the number of points in each
atom's tensor eld to one to produce the nal predicted
Cartesian array. The architecture overall has approximately 2.4
million weights, most of which is concentrated within the
various radial functions in each block. It should be noted that
re. Weights are shared across both trunks and outputs are summed
tput of the network is the predicted Cartesians for the input reactant,
on Blocks (MCBs) are arranged in a residual style connection with three
er block. The final orange block supports combinations of inputs/filters
als. (C) Internals of the radial used in each block in (B). 800 radial basis
bing from �1.0 to 15.0�A. A cosine cutoff function was used after 15�A.
e with approx. 2.4 million trainable parameters.
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the implementation supports radial sharing, which can reduce
the number of trainable parameters ten-fold.

We should also point out that TSNet does not make use of
the energy data for our structures. Though this is tempting, we
have found in our tests that incorporating electronic energy
data leads to a decrease in performance, since that comes with
the necessary addition of a new loss function. When loss is split
among structural measures and energetic measures, the
performance on structure worsens. As such, since there are
many excellent models for the rapid prediction of quantum
energetics, we have focussed our efforts on structural
predictions.

2.3.3 Transfer learning. TL allows one to combine
sequences of training, providing the ability to pre-train models
on larger source datasets before tting a typically smaller, target
dataset. The core logic of the TL pipeline is responsible for
weight transfer, which searches model layers at any given node
in the process and replaces agged layer weights with kernels
from the previous node. Additional ags exist to “freeze” certain
layers, ensuring pre-trained weights are not overwritten during
training of the following node. While general to an arbitrary
number of source datasets (hence the title, “pipeline”), pipeline
training was held to only two nodes: the source being the QM9,
and the target being the SN2-TS dataset. Training within each
node is completely congurable independent of placement
within the pipeline. Pre-training is essentially a replacement to
random weight initialisation, providing a better guess at
parameter values for a particular target task to both boost
performance and reduce convergence times.

2.3.4 Training and validation
2.3.4.1 SN2-TS dataset. A benet of adding support for

training on batches of molecules rather than one molecule per
batch is an increase in the amount of data pushed through the
network during a single iteration of the optimizer. In fact, due
to the miniscule amount of data in the SN2-TS dataset, training
may be performed on the entire trainset rather than in batches,
resulting in effectively noiseless steps along the cost landscape
and smooth convergence. Selecting a validation split from
a small dataset may result in a split comprised entirely of
outliers, providing a skewed view on model performance. K-fold
cross validation with k¼ 5 was used to address this. K-fold cross
validation reports model performance as the average over k
different train/validation splits, reducing the inuence of
unfortunate splits. Training on the SN2-TS dataset was
completed in 1000 epochs using the Adam optimizer with an
initial learning rate of 1 � 10�3.82. The learning rate was halved
whenever the training reached a plateau to further assure
complete convergence upon local minima on the cost land-
scape. The mean absolute error (MAE) loss function with L2
regularization was utilized for both the QM9 and SN2-TS
dataset:

L ¼ 1

m

Xm

i

Xa

j

X3

k

��cijk � ĉijk
��þ l

Xm

l

wl
2 (3)

where m is the batch size, a is the total number of atoms for
molecule i, and k loops over the x, y, z 3-tuple. The scalar cijk is
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the predicted Cartesian coordinate for k-axis of atom j from the
i-th system of the dataset, and ĉijk is the corresponding true
Cartesian coordinate. The second term of the loss is the L2-
norm regularization term, which hinders any single weight
from reaching high values to combat overtting. l is a tuneable
scalar to control the level of regularization used during training
typically with a value in the range [0,0.1]. It is common practice
to utilize a small amount of regularization regardless of any
perceived overtting, thus a default l value of 0.01 is used.
Models were trained using the Compute Canada HPC cluster
Beluga on a single Nvidia 16 Gb Tesla v100 GPU.

2.3.4.2 QM9 dataset. The QM9 dataset was obtained from:
http://quantum-machine.org/datasets/. Targets for the QM9
were discarded in favour of a new prediction task more closely
related to TS structure prediction. For each molecule in the
dataset, a single random atom from the rst three atoms of the
Cartesian array was selected and perturbed by 0.75 �A along the
positive and negative x, y, and z axes, while all other atoms were
perturbed by 0.15�A. This resulted in a set of three systems: the
reverse structure, the forward structure, and the equilibrium
structure, which are labelled as pseudo-reactant, product, and
TS, respectively. For the pseudo-reaction double-ended predic-
tion task, reactant, and product Cartesians along with a single
atomic number one-hot array (since they are identical for all
three systems) serve as input while the TS Cartesian array serves
as the target. Training was completed on the QM9 in only 50
epochs – however, due to the size of the QM9 dataset, each
epoch contains many more optimizer iterations. Batch size for
the QM9 was 48, and training was completed with the Adam
optimizer at an initial learning rate of 1 � 10�3 using a 90 : 10
train/validation ratio. Loss and regularization were performed
following the strategies dened in Section 2.3.4.1.

2.3.4.3 uB97X-D3 isomerization dataset. The higher theory
uB97X-D3 isomerization dataset developed by Grambow et al.
was used following a similar approach to Pattanaik et al. to
benchmark TSNet. We split the uB97X-D3 dataset into an
80 : 10 : 10 train/validation/test split, further following Patta-
naik et al. We trained for 100 epochs with a batch size of 32
reactions. Optimization, loss, and regularization were per-
formed following the strategies dened in Section 2.3.4.1.

3 Results and discussion
3.1 SN2-TS analytics

Signicant thought was put into selecting the SN2 reaction for
generation of a TS dataset. While other saddle points exist upon
the PES, such as rotational TSs which only involve the rotation
of a particular group of a single species, there was initial
concern that such a prediction task may be too trivial. Also,
“product” and “reactant” states for rotations may be exceedingly
similar in structure, which could cause concern for models
which depend on picking out differences between inputs. Ulti-
mately, a greater impact was foreseen from a model capable of
performing predictions upon reactions in which bonds are
broken and formed. Gas-phase SN2 reactions are some of the
most simplistic reaction mechanisms: a nucleophile
approaches the center to form a bond, while the bond between
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 SN2-TS histograms. Reaction size and atomic type histograms for the SN2-TS dataset. Only heavy atoms (i.e. everything other than
hydrogen) are counted in both charts. The vast majority of structures within the dataset contain three to five heavy atoms of mostly carbon,
fluorine, and chlorine. All reaction centers are carbocations.

Edge Article Chemical Science
the leaving group and the center breaks – all in a single
concerted motion. In a nutshell, the decision to use SN2 reac-
tions was made due to their complexity over rotations and other
more trivial molecular motions, yet simplicity when compared
to other chemical reactions. The SN2-TS dataset was generated
using the second order Møller–Plesset perturbation theory
method with the cc-pVDZ double-zeta basis set.76,83 This level of
theory and basis were chosen strategically to ensure relative
accuracy while keeping calculation times low.

Only 53 SN2 reactions passed manual validation from a pool
of 114 seed structures, the majority of which are small systems
of 6–8 atoms. Each reaction includes three structures: reactant
complex, TS, and product complex. The dataset as a whole
includes 518 atoms and 17 226 interatomic distances totalled
across all three structures of each reaction. Most reactions are
symmetric, e.g. both nucleophile and leaving group are iden-
tical. Why so many calculations failed to converge is unknown,
but it could relate to the simplicity of many reactions in the
dataset. Hessian-based optimization methods are typically
quite sensitive to the curvature of the surface being searched. It
is possible that the PES around the small, symmetric reactions
from the SN2-TS is shallow enough that many steps must be
taken before convergence is observed. In other words, the PES
may be too at such that the Hessian does not provide enough
of a denitive direction for critical point location. This would
lead to the optimizer taking effectively random steps across the
surface, where each point is not radically different from the next
energetically. Theoretically, an exact critical point representing
reactant and product complexes should exist on the “true”
surface, however a weak approximation may represent very
shallow curvature as at, hindering convergence. Further
testing using methods of higher accuracy than MP2 must be
conducted before anything conclusive about IRC convergence
© 2021 The Author(s). Published by the Royal Society of Chemistry
failure can be stated. Fig. 4 presents size and atomic type
distributions for the dataset. Fig. 5 includes TS structures for
four reactions from the SN2-TS dataset, selected to showcase
example variety. All structures are presented and saved in
standard orientation. IRC calculations for locating product/
reactant complexes from optimized TS structures regularly
failed during data acquisition. The alternative approach
described above in Section 2.1.1 provided some success,
however it does not guarantee convergence upon the exact
complex, unlike true IRC calculations. This “noisy” optimiza-
tion procedure is the sole reason for why such a low yield of nal
reactions were obtained from seed structures. While sufficient
at providing a preliminary view of performance for TSNet, the
SN2-TS dataset could benet from a greater number of more
diverse structures.
3.2 TSNet performance

The architectural motivation behind TSNet is multifaceted,
pulling inspiration from ResNet,84 SchNet,25 the weight-sharing
network from Prott and Pearson,79 and the original TFN
architecture proposed by Thomas et al.38 The decision to use
only 64 self-interaction units for embeddings, MCB layers and
radials was motivated by the high memory constraints of the
new TFN implementation. Despite access to high-end hardware
through Compute Canada, TSNet regularly encountered
memory errors when using more than 64 units across the entire
network architecture – thus limiting the size of each individual
MCB. Training a larger version of TSNet will likely require
access to GPU hardware with greater than 16 Gb of onboard
vRAM. Presence of residual skip connections also motivated
architectural decisions, as skip connections allow the model to
determine during training which layers are necessary for
Chem. Sci., 2021, 12, 10022–10040 | 10031



Fig. 5 Select reactions from the SN2-TS dataset. 4 selected reactions from the SN2-TS dataset. The first reaction in the top left corner of the
figure is the largest system of the dataset, with 11 heavy (non-hydrogen) atoms. Note the slight sp3 nature to the carbon center in the TSs of the
first two reactions presented. This is consistent with Hammond's postulate. For the final two reactions, which are symmetric, the carbon center is
completely flat, meaning the TSs exist exactly halfway through the trajectory between reactant and product.
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training, push layer weights which are not necessary towards
zero, dropping their involvement in prediction. Ultimately, the
largest model within hardware constraints was chosen which
trained smoothly and allowed the model to decide which layers
were not necessary during training. One of the biggest additions
to TSNet over the original TFNs is the support for radial sharing.
In addition to TSNet TSNet-shared was tested, which utilizes
a single shared radial across all MCBs within the network,
resulting in a 10-fold reduction of trainable parameters.

Some complications arise from computing loss from Carte-
sian arrays, as the difference between true and predicted
includes coordinate system differences in addition to molecular
differences. A separate distance error metric was developed to
determine molecular difference within coordinate system
difference inclusion, which computes average absolute differ-
ence between the distance matrix of true and predicted
structures:

Distance error ¼ 1
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where i indexes m number of reactions, j, k index n number of
atoms within each reaction, and Dtrue and Dpredicted are m � n �
Table 1 k ¼ 5 cross validation results from SN2-TS. Cross validation resu
and trained from scratch. Loss values are coordinate angstroms (�A), wh
values are in parentheses. Overall best distance error values are achieved
by TSNet when pre-trainedwith themidpoint prediction task from theQM

Model

Train

Mean loss M

TSNet 0.1455 (0.01) 0.
Pre-trained TSNet (midpoint) 0.06956 (0.004) 0.
TSNet-shared 0.2977 (0.03) 0.
Pre-trained TSNet-shared (midpoint) 0.07941 (0.007) 0.
Pre-trained TSNet (energy) 0.1327 (0.03) 0.
TSNet-distance — 0.
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n distance matrices for the true and predicted TS structure,
respectively. Training using this metric as the loss function
resulted in incredibly poor training and performance (see Table
1). The underlying reason behind this failure is unknown,
however the current assumption is related to how distance
matrices are non-unique representations (i.e. there are an
innite number of Cartesian arrays which produce identical
distance matrices). A model trained to minimize distance error
is effectively allowed to cheat, producing nonsense Cartesians
which are close to the correct distance matrix, but are in fact not
representative of the true structure of the TS. Findings suggest
that successful molecular conformer prediction requires the
use loss functions which include a sort of systematic coordinate
error, where a theoretical perfect predictor which produces
indistinguishable TS structures may achieve loss values above
zero simply because the predictions are not within the same
coordinate system as the true structure. While removal of this
systematic error is ideal, use of distance error as a metric is
a fair replacement, allowing for the identication of models
which are still performant, despite their inability to translate/
rotate predictions into an arbitrary “true” coordinate system.
Ultimately loss and distance values should scale proportionally,
lts for TSNet and TSNet-shared upon the SN2-TS dataset, pre-trained
ile distance error values are Euclidean distance �A. Standard deviation
by TSNet trained from scratch, while the best loss values are achieved
9. TSNet-distancewhich trains using distance error performs theworst

Validation

ean distance error Mean loss Mean distance error

02672 (0.01) 0.4576 (0.03) 0.1831 (0.03)
07868 (0.006) 0.3631 (0.04) 0.2095 (0.03)
07301 (0.02) 0.6598 (0.1) 0.1950 (0.04)
04978 (0.01) 0.4181 (0.05) 0.1925 (0.06)
04387 (0.01) 0.5124 (0.07) 0.2838 (0.1)
6198 (0.2) — 1.828 (0.3)

© 2021 The Author(s). Published by the Royal Society of Chemistry
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but in some instances a handful of interesting interactions may
happen. The three major relationships between MAE and
distance error are as such:

� Low MAE, low distance error / model ts structures &
coordinate system.

� Low MAE, high distance error / model ts coordinate
system, not structures.

� High MAE, low distance error/ model ts structures, not
coordinate system.

Relationships one and three are ideal, while two is likely
indicative of overtting. In addition to computing distance
error, manual validation must be performed in order to obtain
the full view of a model's performance, as predicted chemical
systems are too complex to score reliably with a single number.
A fully automated pipeline including various molecular
comparison metrics and sub-graph matching would ideally be
utilized in place of manual validation; however, such a complex
validation pipeline is beyond the scope of this paper and the
SN2-TS dataset is small enough for visualization to be viable.

3.2.1 SN2-TS. Cross validation results for TSNet and TSNet-
shared may be found in Table 1. Cross validation shows that
TSNet slightly outperforms TSNet-shared on average when
trained from scratch upon the SN2-TS dataset, though perfor-
mance is mostly comparable. Train performance is excellent
across both models. On average for TSNet, interatomic
distances are off by only 0.02672 �A, meaning all predicted
atomic positions are only off by a small fraction of an angstrom
from where they are in the true TS structures. The interatomic
distance error is 0.07941 �A for TSNet-shared. Both of these
distance error values result in predicted structures which are
virtually indistinguishable from true TS structures to the
human eye. Fig. 6 further demonstrates how indistinguishable
training set predictions are from true TS structures.

Representative train/validation curves for TSNet may be
found in Fig. 7. Output inspection revealed virtually zero
noticeable differences between true and predicted structures for
both models as well. Validation performance suggests that
TSNet is overtting the SN2-TS dataset, and manual inspection
uncovers that validation predictions are worse than train
predictions. This overtting is likely not a aw of TSNet for
Fig. 6 Train results for TSNet and TSNet-shared. Train results for TSNe
dataset. The leftmost structure is the true TS for the reaction, while the ce
the prediction made by TSNet-shared. The quality of these predictions a
trained upon. Similar results are observed for train prediction using pre-tra
shared are able to reproduce the slight sp3 nature of the reaction cente
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a number of reasons. First, the small size and low diversity of
the dataset suggests TSNet and TSNet-shared perform worse on
the validation set simply because equivalent systems are not
abundant within the train set. Second, overtting behaviour is
not observed during the midpoint prediction task with the
QM9. TSNet is also trained by default with L2-regularization
using a l value of 0.01, and no noticeable changes to train
and validation performance were observed when increasing
regularization strength. Boosting TSNet validation performance
is likely only possible with a larger, more diverse dataset of
reactions. However, the performance of TSNet is promising, and
worth further exploration.

3.2.2 uB97X-D3 isomerization dataset. TSNet performance
on the uB97X-D3 isomerization dataset was better than the
graph NN developed by Pattanaik et al., with an average test
distance error of 0.2236 �A compared to 0.28 �A reported by Pat-
tanaik et al. for test set reactions which successfully optimized,
and a reported 0.43 �A loss for test set reactions which did not
optimize. Results may be found in Table 2. This comparison is
largely valid, as the distance error metric (see eqn (4)) is iden-
tical to the loss function used by Pattanaik et al. We leave both
further benchmarking and testing the viability of TSNet as
a guess generator for traditional TS search algorithms for future
studies, as it is beyond the scope of this report.

3.2.3 Midpoint prediction task. In order to take advantage
of the latent knowledge of the QM9 for TS prediction purposes,
some modications must be made to the original QM9
prediction task. The QM9 was modied in a similar fashion to
Thomas et al.,38 making a new vector eld prediction task more
closely related to TS predictions. In a nutshell, the midpoint
prediction task selects at random an atom from each molecule
in the dataset, perturbing it forward and backward by 0.75 �A,
taking snapshots of the entire molecule at each extrema. All
other atoms are perturbed in a similar fashion by only 0.15 �A.
From these modications, each molecule produces a set of 3
related structures, which serve as pseudo reactant, product, and
TS for pre-training of the model. While this new prediction task
is not based upon any true physical motivations, the ultimate
goal was to create dataset from which the model can learn what
molecules typically look like exclusively through exposure. For
t and TSNet-shared for C5H4N2O2 + CH3Cl, the largest system in the
nter structure is the predictionmade by TSNet, and the right structure is
re representative of all other reactions from the SN2-TS dataset when
ined variants of TSNet and TSNet-shared. Note how TSNet and TSNet-
r, an important aspect of this particular TS.
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Fig. 7 TSNet train/validation curves. Averaged loss and distance error curves for TSNet on the SN2-TS dataset both trained from scratch and pre-
trained using themidpoint task. Very similar curves were observed for TSNet-shared, and were thus omitted. Pre-training for bothmetrics results
in better starting points for predictions, however, pre-trained models do not outperform equivalent models trained from scratch during vali-
dation. Ultimately, worse validation performance is likely due to the small size of the SN2-TS dataset.

Table 2 uB97X-D3 results. Results for TSNet and TS-shared when trained upon theuB97X-D3 isomerization dataset. Loss values are coordinate
angstroms (�A) unless otherwise stated, while distance error values are Euclidean distance�A. Both TSNet and TSNet-shared perform well on the
uB97X-D3 dataset compared to the graph NN developed by Pattanaik et al.

Model

Train Validation Test

Mean loss
Mean distance
error Mean loss

Mean distance
error Mean loss

Mean distance
error

TSNet 0.1961 0.2130 0.2099 0.2236 0.2090 0.2236
TSNet-shared 0.1972 0.2131 0.2103 0.2238 0.2098 0.2238
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example, a model which has been exposed to enough conju-
gated systems should understand that typically they must be
planar simply because the model has observed enough planar
conjugated systems – the model has no understanding of the
orbital overlap which motivates conjugation. In essence, the
midpoint prediction task asks a model to view two perturbed
systems and produce the true system which links them, i.e. the
equilibrium structure from the QM9, encoding what molecules
should look like within model parameters. Performance of
TSNet on the midpoint task is effectively perfect (results in
Table 3). No difference between true and predicted structures
10034 | Chem. Sci., 2021, 12, 10022–10040
were discerned during manual validation for both models in
either the train, or the validation splits.

3.2.4 Transfer learning. The näıve approach to TL using the
original scalar prediction task posed by the QM9 performed the
worst out of all tested models, as anticipated, achieving average
validation loss and distance error values of 0.5124�A and 0.2838
�A, respectively. Pre-training TSNet and TSNet-shared with the
midpoint task provided both models with better initial weights
than Glorot initialization, producing predicted structures with
distinguishable moieties prior to training on the SN2-TS dataset
(see Fig. 8). Pre-training also results in faster convergence to
better loss values on both train and validation sets during cross
© 2021 The Author(s). Published by the Royal Society of Chemistry



Table 3 QM9 results. Results for TSNet and TS-shared when trained upon the QM9. Loss values are coordinate angstroms (�A) unless otherwise
stated, while distance error values are Euclidean distance�A. Both TSNet and TSNet-shared perform exceptionally well on themidpoint prediction
task, producing validation prediction indistinguishable from “true” target structures. TSNet performance predicting internal energy values is over
an order of magnitude worse than state-of-the-art networks. Effort was not put into constructing a model capable of producing high accuracy
energy predictions, as the ultimate goal was for transition state geometry prediction

Model

Train Validation

Mean loss Mean distance error Mean loss Mean distance error

TSNet (midpoint) 0.1286 0.03893 0.1355 0.05694
TSNet-shared (midpoint) 0.1962 0.03589 0.2209 0.06257
TSNet (energy) 0.1575 (eV) — 0.3976 (eV) —
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validation. However, pre-training does not result in lower
distance errors, which is a better metric for prediction quality.
Manual inspection of various validation results (Fig. 8) shows
that predictions made from pre-trained models are of compa-
rable quality to models trained from scratch.

TSs for reactions are mostly made up of interatomic
distances which are at equilibrium, with a handful of critical
distances surrounding the reaction center, most notably the
bonds being broken/formed. In a sense, by pretraining with the
midpoint task, TSNet encodes knowledge about “equilibrium”

chemistry within its weights – leading to superior predictions
prior to training compared to an equivalent model trained from
scratch. In other words, pretraining TSNet and TSNet-shared
with the midpoint task allows each model to effectively skip
Fig. 8 TSNet predictions during training. Snapshots of transition state p
taken prior to training, at epochs 10, 100, 500, and after training comple
cross validation fold, and these predictions weremade usingmodels train
presented as the leftmost structure. The first row of TS structures was
produced by TSNet pre-trained using the QM9 midpoint task. TSNet tr
model fails to produce high accuracy predictions post training. The initial
reactant and product complex – however, note how TSNet when pre-t
center, key to this particular transition state. Due to the small size of th
missing from TSNet predictions.

© 2021 The Author(s). Published by the Royal Society of Chemistry
the rst approx. 400 epochs of training observed when training
from scratch on the SN2-TS dataset. However, there are too few
examples within the SN2-TS dataset for TSNet to hook into the
underlying pattern which denes the SN2 reaction trajectory
and produce highly accurate predictions. This leads to opti-
mizing what is effectively noise, causing overtting. Following
the relationship between loss and distance error dened above
in Section 3.3, pre-training with the midpoint task before
training on the SN2-TS dataset in its current state createsmodels
which better t the coordinate system, rather than actual TS
structures. Re-iterating the point made in Section 3.3.1, likely
the only way of boosting performance is through the acquisition
of more data. However, the idea of using TL to pretrain
machine-learned TS structure predictors like TSNet is worthy of
redictions for C6H7N2O2Cl (the largest system in the SN2-TS dataset)
ted, presented in chronological order. C6H7N2O2Cl is part of the first
ed on all folds except the first fold. The true structure for C6H7N2O2Cl is
produced by TSNet trained from scratch, while the second row was
ained from scratch covers a massive distance during training, but the
prediction from pre-trained TSNet is essentially the midpoint between
rained fails to reconstruct the slight sp3 nature to the carbon reaction
e SN2-TS dataset, features crucial to this particular transition state are

Chem. Sci., 2021, 12, 10022–10040 | 10035



Fig. 9 Select validation results for all tested TSNet variants. Each of the three selected validation structures were selected from the first, second,
and third validation fold, respectively. Comparisons within the same fold are fair, as all TSNet variants are trained with identical train sets.
Comparisons between structures are less fair, as the models have different train sets for different folds. To keep it simple, comparisons across
rows are fair, comparisons down columns are not. Across each row predictions are presented from each variant of TSNet in comparison to the
true TS geometry. From left to right for each row structures are: the true TS, TSNet, TSNet-shared, TSNet-distance, TSNet (pre-trained w/
midpoint), TSNet-shared (pre-trained w/midpoint), and TSNet (pre-trained w/energies). Loss units are in coordinate angstroms (�A) while
(distance) error values are in Euclidean distance �A. Note how across all presented validation structures, TSNet-distance fails to produce any
distinguishable features. Better performance is observed from all other variants, with TSNet both trained from scratch and pre-trained with the
midpoint task producing arguably the best results. Poor performance across all models on the final structure presented, C2H6OF, is likely due to
a slight rotation in the methoxy group during the trajectory from reactant complex to product.
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further investigation. Pretraining can, in a sense, remove the
need to learn “equilibrium” chemistry, providing it prior to
training on TS data. There is simply a lack of enough TS
structures and clean reactant and product complexes to achieve
highly accurate predictions during validation (Fig. 9).

4 Conclusion

The innovations of this paper are threefold. First, a novel
dataset of SN2 reactions including TS structures has been
created, the rst of its kind. Second, a new MPNN based on
TFNs titled TSNet has been developed which perform admirably
on this dataset, given its size. Lastly, a TL method has been
tested which allows for pretraining of TSNet using the QM9,
a dataset over 4 orders of magnitude larger than the SN2-TS
dataset, providing a reduction to loss values and a boost to
prediction quality prior to training on the SN2-TS dataset.
Already TSNet has outgrown the SN2-TS dataset – and the need
for more data is paramount. Also, TS structures for much more
complex reactions should be acquired to further test out TSNet's
capabilities. While data acquisition is difficult for this partic-
ular task, if enough theoreticians make inhouse TS data readily
available, data scientists may be able to quickly compile data-
sets of respectable size for training purposes. Also, in the past
10036 | Chem. Sci., 2021, 12, 10022–10040
decade advancements have been made with respect to better
automated saddle point search methods,85–87 meaning better
pipelines for data acquisition may be constructed to reduce the
need for human intervention. In addition to data generation
and acquisition, new TL procedures should be developed to
shrink the minimum amount of target TS data necessary to
achieve high performance. Pre-training with the QM9 midpoint
prediction task has shown that pretraining tasks do not
necessarily have to be predicated by the laws of physics so long
as the model is ultimately exposed to meaningful chemical
structures. Ideally physically motivated prediction tasks would
be used for pretraining, such as predicting frames from
molecular dynamics trajectories – however, pseudo-physical
tasks like the QM9 midpoint task are much easier to generate.
While TSNet has been built for TS structure prediction, the
framework upon which the model is built is general to many
applications in chemistry. Ultimately, TSNet and TFNs are
capable of any form of conformer prediction, mean they may be
used for machine-learned molecular dynamics algorithms,
calculation of stable conformers for known and potentially
novel compounds, etc. The lightweight nature of ML vs. QM
could also make QM/MM techniques obsolete, as ML can ach-
ieve QM level accuracies in a fraction of the compute times.
© 2021 The Author(s). Published by the Royal Society of Chemistry



Edge Article Chemical Science
Despite the quick paradigm shi to ML for computational
chemistry, the eld is still extremely young and full of potential.
Hopefully, the very promising performance of TSNet will spark
interest in the development of both purely machine-learned TS
predictors, and composite methods which blend ML and
traditional search, resulting in a new cast of inexpensive
methods capable of predicting TS structures with a high degree
of delity, and reliability.
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