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Abstract

Bats typically emit multi harmonic calls. Their head morphology shapes the emission and hearing sound fields as a function
of frequency. Therefore, the sound fields are markedly different for the various harmonics. As the sound field provides bats
with all necessary cues to locate objects in space, different harmonics might provide them with variable amounts of
information about the location of objects. Also, the ability to locate objects in different parts of the frontal hemisphere
might vary across harmonics. This paper evaluates this hypothesis in R. rouxi, using an information theoretic framework. We
estimate the reflector position information transfer in the echolocation system of R. rouxi as a function of frequency. This
analysis shows that localization performance reaches a global minimum and a global maximum at the two most energetic
frequency components of R. rouxis’ call indicating tuning of morphology and harmonic structure. Using the fundamental
the bat is able to locate objects in a large portion of the frontal hemisphere. In contrast, using the 1st overtone, it can only
locate objects, albeit with a slightly higher accuracy, in a small portion of the frontal hemisphere by reducing sensitivity to
echoes from outside this region of interest. Hence, different harmonic components provide the bat either with a wide view
or a focused view of its environment. We propose these findings can be interpreted in the context of the foraging behaviour
of R. rouxi, i.e., hunting in cluttered environments. Indeed, the focused view provided by the 1st overtone suggests that at
this frequency its morphology is tuned for clutter rejection and accurate localization in a small region of interest while the
finding that overall localization performance is best at the fundamental indicates that the morphology is simultaneously
tuned to optimize overall localization performance at this frequency.
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Introduction

Irrespective of the species, echolocating bats usually emit

ultrasonic calls consisting of different harmonics (see [1,2] for

examples). Indeed, harmonicity is something really hard to avoid;

all mammals generate harmonics of the fundamental frequency

with their vocal folds. Nevertheless, bats seem to have at least some

control as to which of their harmonics to emit at each call. They

can also control the relative strength of their harmonics. In the

species studied thus far, both the emission pattern and the

directional hearing sensitivity vary considerably as a function of

frequency [3–6] i.e. the way the head morphology of bats shapes

the outgoing and the incoming sound field changes radically with

frequency. For example, the direction in which most energy is

emitted by noseleaved bats is different for their various harmonics

[3]. As the sound fields provide bats with the cues to locate echoes

in space, this suggests that the different harmonics in their calls

provide bats with different amounts of localization information.

Also, localization performance might be different for different

parts of the frontal hemisphere. In addition, the morphology of the

pinnae and the face might be shaped in order for the bat to be able

to gather information from different regions if required by the task.

In this paper, we test the hypothesis that the morphology of bats

has been shaped such that the different harmonics in their calls

allow the bat to localize targets in different region of the frontal

hemisphere with varying precision. To this end, we employ the

recently developed information theoretic framework we proposed

to quantify the localization performance in bat echolocation

systems [7]. We selected Rhinolophus rouxi to test our hypothesis

since the family of Rhinolophidae emit pulses consisting of a set of

narrowband harmonics [1,8,9]. In particular, R. rouxi uses pulses

with a strong 1st overtone of about 80 kHz and a weaker

fundamental of about 40 kHz (see spectrogram figure 1).

The fact that R. rouxi uses pulses consisting of one or two

narrowband components allows us to operationalize our hypoth-

esis by calculating the localization performance at a range of

frequencies that hypothetically could be used by the bat. This

allows us to tell whether (1) the morphology optimizes the

localization performance for the frequencies (harmonics) actually

used by the bat and (2) in what way localization performance

differs for the two harmonics.

While the calls of Rhinolophidae are often preceded by a short

upward sweep and/or followed by a short downward sweep, we

only consider the constant frequency (CF) component of the calls
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of R. rouxi in our analysis. The limited bandwidth and relatively

small energy in the frequency modulated (FM) component of their

call has been taken to indicate that Rhinolophidae rely less on the

spectral cues that are used for echolocation by bats emitting

broadband calls [10–13]. Rhinolophidae are known to hawk aerial

prey. In addition, they also hunt from perches from which they

perform very short foraging flights (less than 1 second) ambushing

passing prey [8,9,14,15]. R. rouxi has been observed to omit the

FM component in 90 percent of its calls while hanging from a

perch and scanning the surroundings for flying insect prey [8,9].

Moreover, some species have been observed to emit no FM

components at all. This strongly suggests that CF bats do not rely

on spectral cues while locating prey from a perch. Indeed, it has

been suggested that the FM component of the call is used to gauge

the distance to targets ([16] and see [8,9] for references). To

compensate for the lack of spectral cues, it is hypothesized that CF

bats employ behavioral strategies that most likely generate cues to

perform localization using the CF component of their calls

[5,17,18].

While perching, these animals move their pinnae vigorously

when emitting echolocation calls [19–21]. While the right ear is

moving forward, the left moves backward. The tips of ears move

through an arc of about 30 degrees or 1 cm [21]. The pinnae

movements are synchronized to the time of arrival of echoes. This

is, the ears are at their extreme positions between the reception of

echoes and sweep to the other extreme position during the

reception of an echo [19,21]. Ear movements are exhibited while

hanging from a perch as well as during flight (see ref [19] and a

Nature video associated with ref. [22] shows a rhinolophid bat

moving its ears during flight). As ear movements are a critical

aspect of the echolocation behavior of R. rouxi we take them into

account in our model.

Model Description
To evaluate the contributions of the harmonics in the calls of R.

rouxi we employ an information theoretic model of the echoloca-

tion task as illustrated in figure 2. The basic assumption of this

model is that localization of a target can be considered as a

template matching task [7,23,24].

A target, e.g., a fluttering insect (figure 2a), produces an echo

containing typical target-induced modulations (figure 2b) that are

picked up by the bat’s moving external ears (figure 2c). We

assume, that the pinnae move either up or down during the

reception of the echo [19–21]. Ear movement introduces

additional amplitude modulations of the echo at both tympanic

membranes (figure 2d). The exact way in which the echo is

modulated depends on the augmented head related transfer

function (AHRTF), i.e., the combination of the emission directivity

and the head related transfer function, of the bat. Each different

azimuth-elevation position of a target with respect to the bat

corresponds to a different expected modulation pattern at the left

and the right ear (illustrated in figure 2c). These expected

modulation patterns are termed templates in the remainder of

the paper. As the modulation of an echo by the moving pinnae

depends on the position of a target, the modulation encodes the

position of the target. In figure 2, the red and the green target are

positioned at different locations with respect to the bat. Therefore,

the modulation of the echo by the bat’s ear movements is different

for both insects as illustrated in figure 2c–d.

We assume that R. rouxi uses the amplitude modulation of the

echo due to the pinna movement to estimate the azimuth and

elevation of the target. Most studies of echolocation in Rhinolo-

phidae concern frequency modulations introduced into the echo

by targets (glints) that allow the bat to identify prey and separate

the target from the background (e.g. [25]). In this study, we do not

assume that these frequency modulations are of importance for

determining the azimuth and elevation of the target. Moreover, it

has been suggested that Rhinolophidae might introduce frequency

modulations onto the returning echoes by moving their pinnae due

to Doppler shifts thereby creating cues from which to infer

azimuth and elevation [26]. However, simulations strongly suggest

that this mechanism does not provide stable enough cues to

estimate the azimuth and elevation location of targets (see [27] for

an evaluation of this hypothesis).

If no noise sources would be present, comparing the amplitude

modulation in strong echoes from static reflectors with the

expected modulations corresponding to each azimuth-elevation

position and taking the best matching template as an estimate of

the direction of the echo would yield perfect localization

performance. However, in reality several factors impose a limit

on the localization performance. First, the bat has to classify the

echo in the face of unknown modulation imposed on the echo by

the fluttering of the target (for this reason the echo illustrated in

figure 2b is modulated). In addition, the localization performance

of the bat will be limited by the intensity of the echoes. The

amplitude of a weak echo can only be weakly modulated as

amplitude modulations that reduce the amplitude of the echo

below the detection threshold of the bat will be effectively

truncated. The detection threshold of the bat is determined by the

internal and environmental noise. A final factor interfering with

the matching between measurements and templates is uncertainty

about the strength of the echo. The strength of the echo, before

filtering by the pinnae, is unknown to the bat. The bat might

confuse a strong echo that originated from a strong reflector with

that from a weak reflector in a direction for which its sonar system

is highly sensitive. In sum, three factors limit the matching

between stored templates and measured amplitude modulations:

amplitude modulations generated by the target, the signal to noise

ratio and uncertainty about the echo intensity before filtering by

the pinnae. The information theoretic model of the echolocation

task we use in this paper takes into account these three factors.

Our model employs Bayes’ theorem to calculate the uncertainty

in matching measurements to templates in the face of the noise

factors described. We express this uncertainty in Shannon entropy

as a number of bits (see [7]). In particular, we calculate, for

measurements originating from each azimuth-elevation position,

how likely it is the bat will assign the measurement to each and

every azimuth-elevation position. This uncertainty about the true

target position is expressed in bits. The uncertainty about the true

origin of a measurement depends on the templates employed (i.e.,

Figure 1. 3D models of R. rouxi and spectrogram. (a) Rendering of
the R. rouxi model used in this study. (b) Model of the noseleaf used. (c)
Schematic spectrogram of a R. rouxi call.
doi:10.1371/journal.pone.0020627.g001

Information Generated by Moving Pinnae of R. Rouxi
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the amount of information missing to uniquely specify the target’s

position). Some template sets will encode the origin of the echo

with less ambiguity than others in the presence of the distortions

introduced by the echo reflection process. As the HRTF of R. rouxi

is different for each frequency, different frequencies yield different

template sets. In this paper, we compare the average entropy

about the true origin of a measurement for templates based on

different frequencies. As the AHRTF (and thus the template set) is

determined by the morphology of the bat, we can test whether the

bat’s morphology is tuned to a particular frequency by evaluating

whether the template set for this frequency yields better

performance than those based on other frequencies.

Entropy has proven a powerful measure to quantify the

performance of sensory systems under different conditions [28–

30]. Moreover, the model can be considered as an adaptation and

extension of the models used in cognitive psychology to model

human categorization performance, e.g. [31].

While the hearing directionality of R. rouxi has been measured

[5], this is not the case for the emission directivity. However,

simulation methods have become available that allow the

evaluation of the spatial sensitivity of the echolocation system of

bats at a high resolution [3,6,32–34]. Among these simulation

methods, Boundary Element Methods (BEM) are well suited to

simulate both the emission and hearing directionality of bats [3,6].

Furthermore, BEM is thus far the only simulation method that has

been formally validated for the simulation of HRTFs of small

mammals (for the bat Phyllostomus discolor [6] and for gerbils [35]).

Using BEM to simulate the spatial sensitivity of a bat requires a 3D

model of the morphology of the head of the species under study. In

our lab, we have developed a method to create such a model from

CT data [6]. The 3D model of R. rouxi used in this study is

rendered in figure 1a–b.

By using a model of the echolocation task and simulated

template sets it is possible to evaluate the performance of the bat’s

morphology in encoding the azimuth and elevation positions of

targets at different frequencies. Indeed, this is impossible to test in

an experiment as this would require the bat to shift its dominant

frequency over a large range. Moreover, even if the bat could be

induced to shift its frequency range, the specialization of its

cochlea and neural apparatus would introduce a confounding

factor making it impossible to evaluate the contribution of the

morphology to the localization performance.

Rhinolophidae have a very baroque facial morphology (see

fig. 1). They are characterized by large noseleaves with a number

of furrows. To directly test for the contribution of this facial

morphology to the localization performance, we ran a simulation

in which we substituted the emission pattern of R. rouxi by that of

two omni-directional emitters spaced 4.2 mm apart (i.e. half the

wavelength at 80 kHz). This simulation omits any effect of the

facial features of R. rouxi save for the spacing of its nostrils.

Results

The performance of the model in matching templates and

measurements critically depends on the assumed echo strength or

signal to noise ratio of the echo. In the lab, fixated R. rouxi were

found to call with an amplitude of about 105 dBSPL (at 10 cm in

front of the bat) [36]. R. rouxi hunts mostly for insects with a wing

length smaller than 10 mm [37]. Fluttering insects of this size

return an echo that is up to 50–60 dB weaker than the impinging

sound (depending on the frequencies used) [38]. In other words, as

little as 1e{4% of the impinging energy might be reflected in the

direction of the emitter. Therefore, we evaluated the performance

of the model for echoes ranging from 0 to 50 dBSPL in steps of 5

dB as this contains all echo strengths R. rouxi is likely to encounter.

Moreover, we evaluate the performance of the model for three

values of the amplitude modulation of the echo introduced by the

fluttering of the target referred to as Low, Medium and High noise

levels. The exact meaning of these values is explained in the

methods section below.

The head related transfer function
The HRTF of R. rouxi has been measured by Firzlaff and

Schuller [5]. We compare the simulated HRTF with the data

collected by Firzlaff and Schuller [5] (figure 3). The spatial

sensitivity simulated for the left and the right ear of our specimen

of R. rouxi matches well with the measured data. The correlation

between the simulated and the measured spatial sensitivity is

Figure 2. Illustration of the classification model used to evaluate the localization performance of R. rouxi. Top row: (a) Targets at
different locations (red and green insect) yield a similar echo (b) of which the amplitude is modulated due to movements of the targets. The
movement of the pinnae (c) during the reception of the echo modulates the amplitude of the echo (d). This modulation depends on how the pinna
movement moves the target through the HRTF of R. rouxi (illustrated in c bottom). (d) The final amplitude modulated echoes for the read and the
green target at both tympanic membranes. Bottom Row: An algorithmic explanation of the model. The direction from which an echo originates is
encoded by the amplitude modulation introduced by the ears (templates). Distortions of this encoding occur due to amplitude modulations
introduced by the moving targets. The bat tries to decode the direction of the echo. Our model estimates the mutual information between the echo
and the echo direction.
doi:10.1371/journal.pone.0020627.g002
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consistently larger than 0.5 (see figure 3). When comparing

measurements of the spatial sensitivity of different specimens of P.

discolor, correlations also varied between 0.9 and 0.5 (average

correlation: 0.75. This value is indicated by a red line in the right

panel figure 3) [6]. Therefore, mismatches between the simulated

and the measured HRTF are not larger than individual variations

within a species.

Finally, it is important to note that the difference between the

simulation of left and the right ear were about the same than

between the left ear and the measurements collected by Firzlaff

and Schuller [5]. This indicates that deviations between the

measurements and the simulations are not larger than the within

specimen variation.

Spatial distribution of entropy
The entropy about the origin of an echo, as expressed in bits of

information that remain to be specified to know the target position

exactly, varies considerably across the frontal hemisphere (figure 4).

The part of the frontal hemisphere in which R. rouxi is predicted to

be best at locating incoming echoes depends on the frequency and

the strength of the echo. For weak echoes (15 & 25 dBSNR), the

model performs best in a central part of the hemisphere. This

region in which the entropy about the origin of the echo is the

smallest decreases in size and shifts to slightly higher elevations as

frequency increases. The area in which localization is possible is

the smallest around 80 kHz. Echoes with a strength in the range of

5 to 20 dBSNR can not be located if they originate from the

peripheral region. The entropy about the origin of echoes is about

8 bits in this region for all frequencies considered. This is the

chance level performance, i.e., an entropy of 8 bits means that all

target locations are equally likely in the numerical experiments

conducted here.

As echoes become stronger, the overall performance of the

model increases. However, the best localization performance is no

longer strictly obtained in a central region. Indeed, for frequencies

around 40–60 kHz, performance is better in the periphery. The

reason for this, can be seen by comparing the performance for 35

and 50 dBSNR for all frequencies. Increasing the strength of the

echo saturates the performance of the model at 35 dBSNR in the

central region. Even at high frequencies, the performance of the

model does not increase any further for echoes stronger than about

30 dBSNR. In contrast, in the periphery, R. rouxi can exploit an

increase in echo strength up to about 50 dBSNR. It is noteworthy

that the performance at low frequencies (below 30 kHz) is bad

even for very high echo strengths. In sum, the simulation reveals a

complex three-way interaction between the origin of an echo, the

strength of the echo and the echo’s dominant frequency

determining the entropy about its origin.

The behavior of the model in which the facial morphology was

replaced by two isotropic sound sources is similar to that of the

original model. The main difference between the results of both

models is the increased performance of the model with the

isotropic sources. The region in which the predicted localization

performance is high, is systematically larger when the facial

morphology is omitted from the simulation.

Entropy as a function of frequency
In figure 5a, the average performance of the model in the

frontal hemisphere is plotted as a function of frequency and echo

strength. The curves tend to show a minimum around 40 kHz (i.e.

at the fundamental) while they reach a maximum around 80 kHz

(i.e. at the 1st overtone). Indeed, when averaging across echo

strengths (figure 5b), it can be seen that the model performs best

slightly below 40 kHz and worst slightly below 80 kHz. The

reason for the good performance at 40 kHz and the bad

performance at 80 kHz can be understood by looking at the

properties of the templates at these frequencies (figure 6).

The average gain of the templates reaches a minimum just

above 80 kHz. As the templates were normalized per frequency

such that the highest gain across all templates is zero dB, this

indicates that the energy in the templates around 80 kHz is more

(as compared to other frequencies) directed towards the center at

Figure 3. Simulated HRTF and emission patterns. Left: The simulated HRTF and emission pattern (frontal hemisphere only). Row a: simulated
spatial sensitivity of the left ear (mirrored). Row b: simulated spatial sensitivity of the right ear. Row c: spatial sensitivity of the right ear of a R. rouxi
specimen measured by Firzlaff and Schuller [5]. Row d: the simulated emission pattern. All plots in dB and normalized such that the maximum is 0.
Contour lines are 3 dB apart. The columns depict different frequencies: 20, 40, 60, 80 and 100 kHz. Right: The correlations of the simulated hearing
sensitivity of the left and the right ear with the sensitivity measured by Firzlaff and Schuller [5] as a function of frequency. The red horizontal line
denotes 0.75. This is the average between-specimen correlation found in ref. [6].
doi:10.1371/journal.pone.0020627.g003
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the cost of the peripheral templates. Indeed, the normalization

allows the average gain to be interpreted as the inverse of the

directivity index. The lower average gain for peripheral templates

explains why at this frequency range, localization performance is

lowest.

The best performance for frequencies around 40 kHz is

explained by a more subtle trade-off between the modulation

interval of the templates and their gain.

As can be seen in figure 6, at 40 kHz the slopes of the gain and

modulation as a function of frequency are maximal, but have

opposite signs. Below 60 kHz, the average within-template

modulation interval reduces quickly with lower frequencies. A

decrease in the within-template modulation interval decreases the

classification performance as this makes discriminating between

templates more difficult. On the other hand, decreasing frequency

increases the gain of templates, yielding better performance. It

seems that around 40 kHz two effects are balanced: the templates

have both high enough gains and within-template modulation to

enable good localization. It should be noted here, that the within-

template modulation interval is strictly due to the movement of the

pinnae.

The results of the simulation in which the facial morphology has

been replaced by two isotropic sources are also plotted in

figure 5b–c. By omitting the facial morphology, the performance

of the model increases around 80 kHz as the focusing of the

energy is reduced (figure 6a). This confirms the differences in

localization performance are mostly due to the redistribution the

emitted energy by the facial morphology of R. rouxi.

Figure 4. Spatial distribution of localization entropy. The entropy (in bits) about the origin of an echo as a function of reflector position, signal
to noise ratio (15 to 45 dB) and frequency. Left: results for the model in which the actual facial morphology of R. rouxi was included. Right: results for a
model in which the emission pattern of R. rouxi was replaced by that of two isotropic sources. The plots cover the frontal hemisphere of the bat (290
to +90 degrees in azimuth and elevation).
doi:10.1371/journal.pone.0020627.g004

Figure 5. Localization performance as a function frequency. Higher values denote higher entropy and lower localization performance. (a) The
performance of the model for different signal to noise ratios as a function of frequency for a medium noise level averaged across the frontal
hemisphere (see Methods section). (b) The performance as a function of frequency averaged across the signal to noise ratios for three levels of noise
and a model in which the emission pattern was replaced by that of two isotropic sound sources. (c) The difference between the azimuth-elevation
position for which performance is the worst and the best as function of frequency. This plot shows that, at around 80 kHz, the range in localization
performance across the frontal hemisphere is the largest. Moreover, the range in performance across locations in the frontal hemisphere is reduced
by replacing the emission pattern of R. rouxi by that of two isotropic sources. The yellow regions are 95% confidence ranges for the fundamental and
1st overtone in the call of R. rouxi as estimated from the data provided in ref. [8].
doi:10.1371/journal.pone.0020627.g005
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In sum, the facial morphology of R. rouxi focuses the emitted

energy most around 80 kHz. This reduces the localization of

peripheral echoes to such an extent that localization performance

across the frontal hemisphere is worse than at any other frequency.

In contrast, at around 40 kHz, the emitted energy is spread more

evenly across the frontal hemisphere. Moreover, at this frequency,

the external ears introduce ample gain variation in the templates.

Consequently, the localization performance is best around this

frequency.

Simulation of perch hunting
The simulation results presented in figures 4 and 5 give the

expected localization performance as a function of frequency and

the strength of the echo. However, the distribution of the strengths

of the echoes R. rouxi encounters depends on the distances of the

passing insects it attempts to capture. Indeed, R. rouxi seems to

leave its perch only if an insect is close enough to be caught within

0.5 to 1 second after take-off and it restricts its hunting flights to

about 5 meters, including the pursuit of insects [8,9]. The

relationship between the maximum distance of interest to the bat

and the distribution of resulting echo strengths is complex as it is

determined by spherical spreading, atmospheric attenuation and

the distribution of the distances between prey and bat.

We use a Monte Carlo technique to simulate the effect of the

extent of the foraging patch of R. rouxi on the expected echo

amplitudes. We run separate Monte Carlo simulations for each

frequency. In these simulations we assume foraging extents from 1

to 5 meter (in steps of 1 m). Furthermore, we assume that R. rouxi

hunts for insects returning an echo 40 dB weaker than the

impinging sound while hunting from a perch [37,38]. This is, we

assume that 0.01% of the energy is reflected back to the emitter

from the insect. Based on the measurements performed by Firzlaff

and Schuller [5] on the maximum gain of the external ears of R.

rouxi, we set the maximum gain of the external ears to 12 dB.

Finally, we assume R. rouxi emits its call with an amplitude of 105

dBSPL [36].

For each assumed foraging distance, we generated 1000 random

locations for the prey within a radius given by the current range

centered around the bat. Next, based on the 1000 distances

between the bat and the prey, we calculated the strength of each of

the echoes received by the bat based on the spherical spreading,

atmospheric attenuation [39,40], ear gain and reflector strength.

For each amplitude, the expected localization performance of the

model was retrieved (as plotted in figure 5a for Medium Noise

Level). The localization performance was then averaged across the

1000 replications.

Figure 7a, shows that when including the parameters known

about the behavior of R. rouxi, the tuning of the echolocation

system for frequencies little below 40 kHz is confirmed. The

curves in this figure reach a minimum around the fundamental.

Moreover, the lack in performance around 80 kHz is also shown

as the performance reaches a lower plateau around this frequency.

Indeed, performance reaches a global minimum around 80 kHz

and performance does not increases for higher frequencies. It is the

atmospheric attenuation for higher frequencies that prevents

performance to increase for frequencies above 80 kHz (as was the

case in figure 5 were atmospheric attenuation was not taken into

account).

Figure 7b plots the simulated performance for the model in

which the facial morphology was replaced by two isotropic

emitters. When comparing these results with those for the original

model (difference plotted in fig. 7c) it becomes clear that the model

using two isotropic sources outperforms the original model. In

addition, localization performance no longer reaches a global

minimum at 80 kHz.

The largest advantage of this model over the original model can

be noted around 80 kHz and above. The difference between the

model with and without facial morphology is largest for foraging

ranges of 3 meter and when using 80 kHz. In addition, the

frequency at which performance is best shifts from 40 to 30 kHz as

the assumed hunting range is extended beyond 3 meter. This is

due to atmospheric absorption becoming a more important factor

at these ranges. This also points to the morphology not only being

tuned for certain frequency ranges but also for a foraging range of

about 3 meter.

Discussion

In this paper we investigated whether the morphology of bat

might be shaped such that different harmonics provide different

views of the world. We used R. rouxi as a test case. Grinnell and

Schnitzler [41] have measured the emission pattern of R.

Figure 6. Changes in template properties as a function of frequency. (a &b) Gain and modulation interval of the templates as a function of
frequency. The range in dB of a template is defined as the difference between the highest and the lowest gain (in dB) in the template. The yellow
regions are 95% confidence ranges for the fundamental and 1st overtone in the call of R. rouxi as estimated from ref. [8]. In plot (a), different lines are
drawn for a model in which the original facial morphology was used and one in which the facial morphology was replaced by two isotropic sources.
Note that for the modulation interval for both models is the same as the modulations are introduced by the moving ears only. Therefore, plot (b)
contains only a single line. (c) This plot explains the terms ‘gain’ and ‘modulation interval’ plotted in (a). The black line depicts a stylized template
while the colored lines indicate the two terms.
doi:10.1371/journal.pone.0020627.g006
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ferrumequinum. However, they could not evaluate how the emission

pattern would change as a function of frequency. The simulation

method presented here allows to calculate the outgoing and the

incoming sound field at any frequency [3,6].

From the simulations, it follows that the main lobe is smallest at

the center frequency of R. rouxi. Our model of the information

transfer in an echolocation task predicts that having the highest

directionality at the dominant frequency has an important

functional consequence for R. rouxi. Indeed, at this frequency its

predicted localization performance of peripheral targets is worse

than for any frequency evaluated in this paper. This is because at

80 kHz the gain of the templates declines most rapidly for more

peripheral target positions (see figure 6a). While hindering the

ability to localize peripheral targets, this will decrease the influence

of clutter echoes from these positions. In the mathematical model

employed here (see Methods), clutter echoes would result in a

larger values of s and a lower signal to noise ratio, both of which

will decrease performance (see also ref. [3] for simulations on the

effect of clutter echoes in FM bats). Indeed, As s is used to model

the noise due to the amplitude modulations introduced by the

fluttering target, any other source that introduces amplitude

modulations will results in a larger value for s. Echoes from clutter

will interfere with the target echo and introduce unwanted

amplitude variations.

The best overall localization performance is reached around

40 kHz (i.e. the fundamental frequency). The best performance of

the echolocation system of R. rouxi at its fundamental is due to a

trade-off between gain and variation in the template set (see

figure 6). Localization performance is enhanced if the pinnae

introduce more variation in the templates. Indeed, if ear

movements modulate the incoming echo more, estimating the

direction of the echo will be easier as the modulations will be more

robust against unknown reflector modulations. However, modu-

lating the amplitude of an echo reduces its average gain making

the signal more likely to fall below the noise level. Therefore, any

echolocation system is faced with a trade-off between introducing

more pronounced cues in the echoes and keeping the average

strength of the echo as high as possible [7]. From the analysis

presented here, it follows that around 40 kHz the morphology of

R. rouxi strikes the best balance between these conflicting demands.

Currently, it is unclear what R. rouxi uses its fundamental for (see

also ref. [8] for a discussion). These bats regularly omit the

fundamental from their pulses [8,15]. Furthermore, audiograms

based on behavioral measurements and on otoacoustic emissions

indicate R. rouxi is insensitive to the frequencies in its fundamental

[42,43]. However, neural populations tuned to the frequencies in

the fundamental have been found in the superior colliculus and

other places in the neural pathway [44]. Moreover, the external

ears of R. rouxi are most sensitive at the fundamental [5] and

occasionally the fundamental is emitted at the same loudness as

the 1st overtone [8]. Our findings suggest that R. rouxi has an

echolocation apparatus that can provide the bat simultaneously

with a focused view (using the 1st overtone) and a wide view (using

the fundamental).

The functional relevance of having an echolocation system with

a focused and a wide view modus can be readily inferred when

taking into account the ecological background of R. roux. Bats of

the family Rhinolophidaee are known to hunt in densely cluttered

environments [1,8,9]. Indeed, the use of CF pulses by Rhinolo-

phidae has been interpreted as an adaption to hunting in cluttered

environments [1,38]. First, clutter is rejected as fluttering and

moving targets induce Doppler shifts to which the cochlea is highly

sensitive [42,43]. Second, the high frequency echoes from objects

behind a target are highly attenuated because of the atmospheric

absorption at these frequencies [38]. Having an echolocation

system that is optimized for focusing on a small portion of the

world could represent another adaption to the cluttered environ-

ment in which it hunts. By emitting 40 kHz pulses it could acquire

a general impression of the environment including parameters

such a density of the clutter, level of confinement and nearness of

large reflectors. Simultaneously, by using 80 kHz it could gather

information about the precise location of a specific target in its

region of interest with minimal interference from clutter.

The difference in performance for the two harmonics is mostly

due to the facial morphology of R. rouxi. Replacing the emission

pattern with that of two isotropic sound sources reduces the effect

of frequency on performance. This suggests that the facial

morphology of R. rouxi is evolutionary tuned to provide the bat

with a focused view at the 1st overtone and a wide view at the

fundamental. Indeed, in a Monte Carlo simulation of the perch

Figure 7. Results of the Monte Carlo simulation of perch hunting. (a) The average entropy about the location of an insect as function of the
used echolocation frequency and the distance between the bat and the insect (which determines the echo strength) as established by a Monte Carlo
simulation. (b) Similar as (a) but for the model in which the emission pattern of R. rouxi was replaced by that of two isotropic sources. (c) Difference
between (a) and (b). Note that the scale of the y-axis is different in (c). The yellow regions are 95% confidence ranges for the fundamental and 1st

overtone in the call of R. rouxi as estimated from ref. [8].
doi:10.1371/journal.pone.0020627.g007
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hunting behavior of R. rouxi we found that the largest difference

between the model with and without the facial morphology at

80 kHz and for a foraging range of 3 meter. This indicates that the

facial morphology is not only tuned to a certain frequency but that

its effect might also be tuned to a certain foraging range. In

addition, in this simulation, the frequency at which performance is

best increases from 40 to 30 kHz as the assumed foraging range is

extended beyond 3 meter. This also points to the morphology not

only being tuned for certain frequency ranges but also for a

foraging range of about 3 meter.

Interestingly, our findings, based here on R. rouxi, can probably

be extended to other members of the same family. The body size

of Rhinolophidae is correlated with their dominant frequency

[45]. More importantly, the width of the noseleaf is strongly

correlated to the resting frequency [46]. Bigger bats (with larger

noseleaves) have lower dominant frequencies. This suggests that

the clutter rejection mechanism found in R. rouxi might also be

present in other bats from the same family with a similar call

design and ecological niche. Irrespective of their size, they might

all make use of the 1st overtone that rejects clutter by focusing on a

small frontal region of interest.

The finding that the morphology of R. rouxi helps it to reject

echoes from peripheral reflectors fits with our recent proposal

about the functional role of the noseleaves of FM bats. Recently,

we have argued that the noseleaves of bats hunting in cluttered

environments are especially suited to reject clutter. Indeed, the

functionality of the noseleaf of Micronycteris microtis, an FM bat

hunting among vegetation, has been interpreted as serving to

reject clutter echoes by reducing the degree to which peripheral

objects are ensonified. In turn, this reduces the interference

between echoes from targets and echoes from spurious objects [3].

See ref. [7] for an information theoretic analysis of the

echolocation system of Micronicteris microtis.

It is important to note that our analysis does not take into

account any processing of the echo in the cochlea of R. rouxi. The

specialized physiology of the cochlea is not taken into account

because we set out to evaluate the influence of the morphology of

R. rouxi on its localization performance. Therefore, our informa-

tion estimates should be considered as an upper limit of the actual

information transfer. Processing in the cochlea and the auditory

pathway can only reduce the information transferred. The low

amount of information transferred about peripheral objects at the

dominant frequency of R. rouxi can not be reversed by neural

processing. Further work could aim at estimating the information

transfer rate in the cochlea given the specialized functionality of

this organ in CF bats. We have previously presented such an

analysis for FM bats [30].

Further research could establish whether other species of bats

derive different types of information from the various harmonics in

their calls. More specifically, our analysis could be extended to bats

using frequency modulated calls. Indeed, many of these bats not

only change the relative amplitude of the harmonics in their calls.

They also can alter the time-frequency structure of their calls (e.g.

[47]). The framework and analysis presented in this paper could be

used to investigate (and quantify) the functional relevance of this

plasticity in the design of the calls.

Methods

Simulation of the hearing sensitivity and emission beam
We have reported in detail on the method we use to simulate

the directionality of bat echolocation systems and its validation

elsewhere [3,6]. Therefore, we will only report briefly on the

simulation methods here. Using BEM to simulate the sound field

around an object requires the construction of a detailed mesh

model of the object under study. Therefore, the head of a single

specimen of R. rouxi was scanned with a MicroCT machine using a

resolution of 70 mm. After reconstruction of the shadow images, an

initial mesh model is obtained using a set of standard biomedical

imaging tools. Current computational facilities allow to simulate

models containing up to 32,000 triangles. The noseleaf of R. rouxi

Figure 8. Results of measurements performed to estimate the parameter settings of the model. (a) The standard deviation of the spectral
power of echoes from a fluttering locust at 40 and 80 kHz for five directions of ensonification. (b) The correlation between the magnitude of echoes
from a fluttering locust as a function of the time between the collection of the echoes for 6 different frequencies (averaged across direction from
which the insect was ensonified).
doi:10.1371/journal.pone.0020627.g008

Table 1. The azimuth and elevation positions from which a
fluttering locust was ensonified.

Directions 1 2 3 4 5

Azimuth 35 45 45 90 245

Elevation 0 30 230 0 0

doi:10.1371/journal.pone.0020627.t001
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is a very complex structure consisting of two rows of furrows. To

construct a highly detailed model of this structure, it was decided

to make a separate model of the noseleaf. Therefore, in this paper

we use a detailed model of the noseleaf to simulate the emission

directionality of R. rouxi and a model of the complete head

(including a simpler noseleaf model) to simulate the hearing

directionality. Both initial models were subjected to several rounds

of smoothing and remeshing to reduce the number of triangles in

the models to little under 32,000. The maximum edge length of

the final head model was 0.5 mm. For the noseleaf model a

maximum edge length of 0.35 mm is used. At 110 kHz, the

highest frequency employed in the presented simulations, an edge

length of 0.5 mm results in a sampling of more than 4 nodes per

wavelength which is sufficient to obtain stable simulation results.

Figure 1, shows the bat models used in this study together with a

spectrogram of R. rouxi calls. Five virtual receivers are placed in

both the left and the right ear canal of the head model at the

approximate position of the eardrum. We report on the average

sound field as picked up by both groups of receivers. Furthermore,

to simulate the emission beam pattern we placed virtual receivers

in both nostrils of the noseleaf model. To obtain the emission

beam pattern the complex sound field of the left and the right

nostril are summed and we report on the magnitude only. Placing

receivers in the noseleaf model to simulate the emission beam

pattern is warranted by the reciprocity principle [48] and

enhances numerical stability of the simulations [49]. Virtual

omnidirectional sources were placed on an imaginary sphere with

a diameter of 1 m around the bat head or noseleaf model. The

sources were spaced 2.5 degrees apart covering 290 to 90 degrees

in both azimuth and elevation (i.e. 10,658 sources). Placing the

sources in this regular configuration allows for easy preprocessing

of the data. However, this configuration does not uniformly

sample the sound field on the sphere. Therefore, we resampled the

sound field at equally spaced positions during the processing of the

data using the Recursive Zonal Equal Area Sphere Partitioning

Toolbox [50]. We assume that all the emitted sound energy stays

within the frontal hemisphere i.e., negligible amounts of energy

are radiated backward, requiring the normalization of the

emission beam patterns of the bats per frequency f

ð
V

p2
f ,w,h

:cos(h):dwdh~1, ð1Þ

with p denoting the magnitude of the emission strength for

frequency f in direction (azimuth = w, elevation = h) and V the

frontal hemisphere. The spatial sensitivity of the complete sonar

system is calculated by pointwise multiplication of the values at

corresponding directions for the HRTF and the emission beam

pattern at frequency f [13]. We assume that ear movements result

in rigid rotations of the hearing directionality. In cats it has been

shown that this is a good approximation [51]. Furthermore, the

ear movements modeled in this paper are modest and can

probably be well approximated by rigid rotations of the hearing

directionality. To the best of our knowledge, no quantitative data

on the ear movements in R. rouxi exist. However, [19] reported on

the ear movements in the closely related bat R. ferrumequinum.

Other authors found that R. ferrumequinum moves its pinnae back

and forth in alternation over an angle of about 30 degrees [21].

The movement of one ear is in antiphase with respect to the other.

This is, as one ear moves forward, the other one moves backwards.

Based on this data, we simulate ear movements for rotations

between 215 and 15 degrees in azimuth and elevation in steps of 5

degrees (0 degrees being the position in which the pinnae were as

the animal was scanned). This is, we modeled the motion of the

ears as a diagonal sweep from 215 degrees in azimuth and

elevation to +15 degrees in azimuth and elevation. To test whether

the results depend on the exact way the motion is modeled, we ran

simulations in which the ears were either moved straight up-down

(azimuth fixed to 0 degrees) or straight left-right (elevation fixed to

0). We found that the three motion patterns yielded very similar

results.

Moving the pinnae was simulated by extracting a different part

of the 360 degrees simulated sound field for each position. For

each ear position we extracted an area of 180 degrees in elevation

and in azimuth. It should be noted that, in order to simulate the

pinnae movements, we rotated the HRTF but not the emission

beam pattern. Therefore, the AHRTF is a combination of a

rotated HRTF and a stationary emission beam pattern. Rotating

the HRTF instead of rotating the ears with respect to the head is

an approximation that is unlikely to influence the results. Indeed,

we have previously shown that the influence of the head on the

HRTF is small [6]. Moreover, we have run additional simulations

to confirm this in R. rouxi (results not shown).

Echolocation model
In this section of the paper, we outline our mathematical model

(see [7] for a more detailed description) of the echolocation task. In

each ear, we model the measured echo magnitudes in dB at 7 ear

positions i (215 degrees to +15 degrees in steps of 5 degrees). The

magnitudes received at the left and at the right ear are

concatenated and stored in the vector ~mmf containing 14 elements.

Note that this implies that modeling the pinnae to be moving in

anti-phase only changes the order of the data in ~mmf . Therefore,

under the current model, the phase relationship between the

movement of the pinnae is of no importance for the outcome.

Using the same measurement noise model as proposed in [7], the

vector ~mmf is assumed to be corrupted both by the unknown and

varying reflector strength as well as the system noise. Their

different effects on the vector ~mmf follow naturally if we represent

the received echo magnitudes on a logarithmic scale (in dB), i.e.,

apply a compression very similar to the one performed by the

hearing system. System noise is additive but, because of the

logarithmic compression, its effect on ~mmf can be approximated by

a maximum operator

~mmf ~max(~tth,f z~aaz~gg,0) ð2Þ

^max(~tth,f z~aa,0)z~gg ð3Þ

with~tth,f the template, i.e., the expected magnitude modulation at

the different pinna positions (scaled such that maxh(~tth,f )~0),

stored by the bat for reflector position h and frequency f . The

noise level, i.e., the lower threshold below which no signal can be

detected, is set at 0 dBSPL. The vector~aaz~gg denotes the unknown

and varying echo strength modulation due to the fluttering target.

The term~aa~½a � � � a� represents the mean echo strength averaged

over the ear positions. As the noise level is set to zero the

parameter a can be interpreted to specify the signal to noise ratio

of the echo. The term ~gg represents normally distributed

multivariate noise, i.e. ~gg*N(0,S) (the meaning of S is explained

in the next paragraph). This noise term models the unknown

amplitude modulations imposed onto the echo due to target

movement (e.g., fluttering target).

Following Bayes’ theorem, the posterior probability P(hD~mmf ,a)
of a received vector ~mmf of strength a to originate from position h
can be written as given by equation 4

Information Generated by Moving Pinnae of R. Rouxi

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e20627



P h D~mmf ,a
� �

~
P ~mmf Dh,a
� �

:P hð ÞX
h’

P ~mmf Dh’,a
� �

:P h’ð Þ
ð4Þ

Taking into account that the expected value of ~mmf , i.e.,
~tta

h,f ~ max (~tth,f z~aa,0), depends on a, the likelihood of a received

vector ~mmf given a reflector position h’ and echo strength a is

calculated as,

P ~mmf Dh’,a
� �

~
e{d=2

2pð ÞK=2DSD1=2
ð5Þ

with K the total number of ear positions in the binaural template
~tth,f and

d~½~mmf {~tt
a
h,f �’:S{1:½~mmf {~tt

a
h,f �: ð6Þ

The covariance matrix S gives the variances and covariances of

the stochastic vector ~gg. However, the magnitude of the echo a is

unknown to the bat. Therefore, it is introduced as a nuisance

parameter in the model,

P(~mmf Dh)~

ðau

al

P(~mmf Dh,a)P(a)da ð7Þ

with al ,au½ � the range of a values that can occur. Hence, we rewrite

equation 4 to arrive at,

P h D~mmf

� �
~

P ~mmf Dh
� �

P hð ÞX
h’

P ~mmf Dh’
� �

P h’ð Þ
ð8Þ

Equation 7 is calculated assuming that the bat considers all echo

strengths in the interval al ,au½ � equally likely and thus maintains a

uniform prior across reflector strengths. This is, we assume that the

bat has no priori knowledge about the fraction of the impinging

energy reflected by the target. Equation 8 gives the posterior

distribution of h. Using Shannon entropy, the uncertainty about

the true target position when receiving a particular echo ~mmf from

position h can be expressed in bits as,

Hh;~mmf
~
X

h’

P(h’ D~mmf ): log2 P(h’ D~mmf ) ð9Þ

The quantity of direct behavioral relevance though is the

average information Hh carried by all possible echoes ~mmf

originating from position h. To calculate this quantity one

should average over all realizations of the reflector ensemble.

Hh is approximated using a Monte Carlo simulation. For each

frequency f and position h, 20 realisations of the measurements

~mmf are generated. For each of these realizations, equations 4 to

9 are evaluated and the average value Hh is reported. Twenty

realizations for each frequency f and position h were found to

yield stable results. Finally, in this paper, we mostly report on

the global information transfer Hh which averages Hh across the

different target positions h.

The average entropy about the origin of an echo, can easilty be

transformed in a measure of angular resolution as solid angle given

by,

Dh~21{ R{Hhð Þ ð10Þ

with R~8 in our simulations.

Estimation of the covariance matrix
As outlined above, the model has only one free parameter, the

covariance matrix S. This matrix models the unknown amplitude

modulations of the received echo due to target fluttering.

S~

s2
L1

. . . s2
L1,R1

. . . s2
L1Rn

..

.
P s2

Li ,Ri

..

.

s2
L1,R1

s2
R1

s2
Ln,Rn

..

.
s2

Li ,Ri
P

..

.

s2
Ln,R1

. . . s2
Ln,Rn

. . . s2
Rn

2
66666666664

3
77777777775

ð11Þ

with Li and Ri denoting the i-th position of the left and the right

ear respectively. In our simulations, n~7. As can be seen from

equation 11, three types of covariance values need to be filled in in

this matrix. First, the variation for each of the positions of the two

pinnae, s2
Li

and s2
Ri

. To obtain an estimate of this variance we

ensonified a fluttering locust (Locusta migratoria, body length about

6 cm). The locust was attached in front of a Polaroid ultrasonic

emitter. The distance between the locust and the emitter was

45 cm. The insect was ensonified using an hyperbolic FM sweep

from 100 to 30 kHz, duration 1.5 ms. The fluttering locust was

ensonified in batches of 400 calls with an interpulse interval of

6 ms yielding a repetition rate of about 166 Herz. The locust was

ensonified from 5 different aspect angles to verify whether the

estimation of S is aspect angle independent (see table 1). A

Knowles microphone (Knowles Electronics, Itasca, IL, USA,

FG23329) was mounted on top of the Polaroid emitter. For each

angle, at least 20 batches of 400 measurements are collected,

yielding a minimum of 8000 echoes. For each echo we extracted

the spectral power at 40 and 80 kHz using the Goertzel algorithm.

We calculated the standard deviation of the spectral power at these

frequencies for each of the 5 positions from which the locust was

ensonified. For the 5 positions and the 2 frequencies, the standard

deviation of the gain was about 5 dB. (figure 8). Therefore, we

used 5 dB as the default value for the diagonal elements of S.

However, we also evaluated the model for s~3 and s~7. In the

results presented above, we have labeled s~3, s~5 and s~7 as

Low, Medium and High noise respectively.

The collected data also allowed us to estimate the value of

s2
Li ,Rj

,s2
Li ,Lj

and s2
Ri ,Rj

(the off-diagonal elements of S). At 40 kHz,

the correlation between the magnitude of any given measurement

and one that is collected later varies between 0.1 and 0.3. For

80 kHz, the maximum correlation is less than 0.1 (figure 8). Based

on this data, s2
Li ,Rj

,s2
Li ,Lj

and s2
Ri ,Rj

were set to 0:3:s2
Li

. Other

values were tested (0:s2
Li

, 0:1:s2
Li

& 0:5:s2
Li

) but were found to

influence the results very little.

Finally, interaural covariances s2
Li ,Ri

between a given measure-

ment in one ear and one that is collected simultaneously in the

other ear need to be determined. As the distance between the

pinnae of R. rouxi is small compared to its hunting distance, this

covariance was set to 0:95:s2
Li

indicating a high correlation
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between the modulation due to target fluttering in the left and in

the right ear. The values in S will depend on the species of prey

ensonified by R. rouxi. Nevertheless, the presented measurements

give plausible values for the different entries of S.

Acknowledgments

The authors thank U. Firzlaff and A.M. Surlykke for commenting on an

earlier draft of this paper.

Author Contributions

Conceived and designed the experiments: DV HP JR. Performed the

experiments: DV JS. Analyzed the data: DV HP. Wrote the paper: DV

HP.

References

1. Schnitzler H, Kalko E (2001) Echolocation by insect-eating bats. Bioscience 51:

557–569.
2. Siemers B, Schnitzler H (2004) Echolocation signals reect niche differentiation in

five sympatric congeneric bat species. Nature 429: 657–61.
3. Vanderelst D, Mey FD, Peremans H, Geipel I, Kalko E, et al. (2010) What

noseleaves do for FM bats depends on their degree of sensorial specialization.

PLOS One x: xx–xx.
4. Obrist M, Fenton M, Eger J, Schlegel P (1993) What ears do for bats: a

comparative study of pinna sound pressure transformation in Chiroptera.
Journal of Experimental Biology 180: 119.

5. Firzlaff U, Schuller G (2004) Directionality of hearing in two CF/FM bats,

Pteronotus parnellii and Rhinolophus rouxi. Hearing Research 197: 74–86.
6. De Mey F, Reijniers J, Peremans H, Otani M, Firzlaff U (2008) Simulated head

related transfer function of the phyllostomid bat Phyllostomus discolor. The
Journal of the Acoustical Society of America 124: 2123–32.

7. Reijniers J, Vanderelst D, Peremans H (2010) Morphology-Induced Information
Transfer in Bat Sonar. Physical Review Letters 105: 148701.

8. Neuweiler G, Metzner W, Heilmann U, Rubsamen R, Eckrich M, et al. (1987)

Foraging behaviour and echolocation in the rufous horseshoe bat (rhinolophus
rouxi) of sri lanka. Behavioral ecology and sociobiology 20: 53–67.

9. Schnitzler H, Hackbarth H, Heilmann U, Herbert H (1985) Echolocation
behavior of rufous horseshoe bats hunting for insects in the ycatcher-style.

Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and

Behavioral Physiology 157: 39–46.
10. Chiu C, Moss CF (2007) The role of the external ear in vertical sound

localization in the free ying bat, Eptesicus fuscus. The Journal of the Acoustical
Society of America 121: 2227–35.

11. Fuzessery Z (1996) Monaural and binaural spectral cues created by the external
ears of the pallid bat. Hearing research 95: 1–17.

12. Aytekin M, Grassi E, Sahota M, Moss C (2004) The bat head related transfer

function reveals binaural cues for sound localization in azimuth and elevation.
The Journal of the Acoustical Society of America 116: 3594.

13. Wotton JM, Jenison RL, Hartley DJ (1997) The combination of echolocation
emission and ear reception enhances directional spectral cues of the big brown

bat, eptesicus fuscus. J Acoust Soc Am 101: 1723–33.

14. Jin L, Feng J, Sun K, Liu Y, Wu L, et al. (2005) Foraging strategies in the greater
horseshoe bat (Rhinolophus ferrumequinum) on Lepidoptera in summer.

Chinese Science Bulletin 50: 1477–1482.
15. Jones G, Rayner J (1989) Foraging behavior and echolocation of wild horseshoe

bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolo-
phidae). Behavioral Ecology and Sociobiology 25: 183–191.

16. Fitzpatrick DC, Suga N, Misawa H (1991) Are the initial frequencymodulated

components of the mustached bat’s biosonar pulses important for ranging?
Journal of Neurophysiology 66: 1951–1964.

17. Mogdans J, Ostwald J, Schnitzler H (1988) The role of pinna movement for the
localization of vertical and horizontal wire obstacles in the Greater Horseshoe

Bat, Rhinolopus ferrumequinum. The Journal of the Acoustical Society of

America 84: 1676.
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