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Abstract

It 1s largely unknown how hematopoietic progenitors are positioned within specialized niches
of the bone marrow microenvironment during development. Chemokines such as CXCL12,
previously called stromal cell-derived factor 1, are known to activate cell integrins of circulat-
ing leukocytes resulting in transient adhesion before extravasation into tissues. However, this
short-term effect does not explain the mechanism by which progenitor cells are retained for
prolonged periods in the bone marrow. Here we show that in human bone marrow CXCL12
triggers a sustained adhesion response specifically in progenitor (pro- and pre-) B cells. This
sustained adhesion diminishes during B cell maturation in the bone marrow and, strikingly, is
absent in circulating mature B cells, which exhibit only transient CXCL12-induced adhesion.
The duration of adhesion is tightly correlated with CXCL12-induced activation of focal adhe-
sion kinase (FAK), a known molecule involved in integrin-mediated signaling. Sustained adhe-
sion of progenitor B cells is associated with prolonged FAK activation, whereas transient adhesion
in circulating B cells is associated with short-lived FAK activation. Moreover, sustained and
transient adhesion responses are differentially affected by pharmacological inhibitors of protein
kinase C and phosphatidylinositol 3-kinase. These results provide a developmental cell stage—
specific mechanism by which chemokines orchestrate hematopoiesis through sustained rather

than transient activation of adhesion and cell survival pathways.
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Introduction

Chemokines were initially characterized as cytokines with
chemoattractant properties involved in the recruitment of
leukocytes to sites of inflammation (1). However, it is now
clear that chemokines also participate in many physiological
and pathological processes (2, 3). Several chemokines are
known to trigger biological responses of B cells (4-7). The
chemokine CXCL12, previously called stromal cell—
derived factor 1, causes potent calcium mobilization and
chemotaxis responses in progenitor B cells in bone marrow
(8-10). Moreover, mice lacking either the gene for
CXCL12 or its receptor CXCR4 have impaired B lym-
phopoiesis (11, 12). The mechanisms underlying this defect
are not clear. CXCL12 could exert a direct proliferative
effect on B cell progenitors (13) and/or have a positioning
effect by retaining B cell progenitors in appropriate support-
ive niches of the bone marrow (14). This positioning effect
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could be the result of chemotaxis of developing B lineage
cells to their distinct bone marrow locations and/or adhe-
sion to bone marrow matrix molecules such as vascular cell
adhesion molecule (VCAM)*-1 via the integrin very late
antigen (VLA)-4 (15). With respect to the latter, the
VCAM-1-VLA-4 interaction also appears necessary for B
lymphopoiesis (16, 17).

Integrins are expressed by lymphocytes in low ligand
binding activity form, in which they are unable to exhibit
firm adhesion (18). The augmentation of integrin-depen-
dent adhesion requires cellular signaling by chemokines or
cytokines, which up-regulate integrin affinity and/or avid-
ity (19-21). Certain chemokines, including CXCL12, in-
duce firm arrest of rolling lymphocytes by activating inte-
grins under flow conditions (22). It is speculated that

* Abbreviations used in this paper: BIM, bisindolylmaleimide; ERK, extra-
cellular signal-regulated kinase; FAK, focal adhesion kinase; HRP, horse-
radish peroxidase; MCF, mean channel fluorescence; MEK, mitogen-
activated protein kinase kinase; PI3-K, phosphatidylinositol 3-kinase;
PKC, protein kinase C; PTX, pertussis toxin; VCAM, vascular cell adhe-
sion molecule; VLA, very late antigen.
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chemokine-stimulated lymphocytes remain arrested on en-
dothelium for a short time (1-3 min) and either transmi-
grate to tissues or return to the circulation if signals for
transmigration are lacking (23). However, this transient
type of chemokine-induced adhesion does not accurately
model the bone marrow environment where B cell pro-
genitors are retained for long periods of time in supportive
niches for growth and maturation signals (24-26). More-
over, in contrast to the peripheral vasculature, CXCL12
and VCAM-1 are constitutively present at high concentra-
tions in the extravascular bone marrow compartment (5,
27, 28). To simulate the continuous exposure of progenitor
B cells to CXCL12 and VCAM-1 in the bone marrow, we
have developed an adhesion assay by which cells are first
exposed to CXCL12 before incubation in VCAM-1-
coated wells. In this assay (“long-term” adhesion assay), the
cells are continuously exposed to CXCL12 for 30—60 min.
By contrast, in the conventional adhesion assay used to
demonstrate transient adhesion to VCAM-1 (“short-term”
adhesion assay), cells are first placed in VCAM-1—coated
wells and then exposed to CXCL12 for 1-5 min (22).

Using the long-term adhesion assay we demonstrate that
bone marrow B cells show a sustained, VLA-4—dependent
adhesion response. This sustained CXCL12-mediated ad-
hesion response of developing bone marrow B cells de-
creases with maturation and is surprisingly absent in
mature, peripheral blood B cells. By contrast, using the
short-term adhesion assay we observe conventional tran-
sient CXCL12-mediated adhesion responses in both bone
marrow and peripheral blood B cells. Interestingly, the type
of adhesion response closely correlates with the duration of
focal adhesion kinase (FAK) activation. Moreover, sus-
tained and transient adhesion responses are differentially af-
fected by pharmacological inhibitors of protein kinase C
(PKC) and phosphatidylinositol 3-kinase (PI3-K). Thus,
sustained and transient CXCL12-induced adhesions are
distinct physiological processes that are regulated during B
lymphopoiesis.

Materials and Methods

Antibodies and Reagents. The following antibodies were used
for cell staining: FITC-labeled anti-k light chain, FITC-labeled
anti-\ light chain, PE-labeled anti-IgD, PECy5-labeled anti-
CD34 (BD Biosciences), and APC-labeled anti-CD19 (Caltag
Laboratories). For integrin surface staining and adhesion block-
ing, mouse anti-human integrin o, monoclonal antibody was
used (clone P1H4; Chemicon). The secondary antibody was
goat anti-mouse IgG-Cy5-labeled antibody (Jackson Immu-
noResearch Laboratories). Antibodies used for immunoblotting
were antiphosphotyrosine monoclonal antibody (4G10; provided
by T. Roberts, Dana Farber Cancer Institute, Boston, MA) and
rabbit anti-FAK polyclonal antibody (Santa Cruz Biotechnology,
Inc.). The secondary antibodies were horseradish peroxidase
(HRP)-conjugated goat anti-mouse IgG-2b antibody (Caltag
Laboratories) and HRP-conjugated goat anti—rabbit antibody
(Bio-Rad Laboratories). PMA, DMSO, and pertussis toxin
(PTX) were from Sigma-Aldrich. Bisindolylmaleimide (BIM)-I,
a PKC inhibitor, BIM-V, an inactive analogue of BIM-I (29),

wortmannin, a PI3-K inhibitor, and PD98059, a mitogen-acti-
vated protein kinase kinase (MEK) inhibitor, were purchased
from Calbiochem-Novabiochem. All of the cell culture reagents
were from Life Technologies.

Cell Culture and Isolation. REH (pro-B cell line; CRL8286)
and HS-Sultan (plasmacytoid cell line; CRL1484) were from
American Type Culture Collection. 697 (pre-B) cell line was
provided by M.D. Cooper (Howard Hughes Medical Institute,
Birmingham, CA). Cells were maintained in RPMI 1640 sup-
plemented with 10% FBS. Heparinized human bone marrow
cells were obtained by iliac crest aspiration from healthy adult
volunteers after informed consent and in accordance with the
guidelines approved by the Institutional Review Committee of
the Dana Farber Cancer Institute. Peripheral blood cells were
isolated from the bufty coats of healthy donors. Bone marrow or
peripheral blood samples were diluted with PBS (Life Technolo-
gies) and low density mononuclear cells were isolated by Ficoll-
Hypaque (Amersham Biosciences) separation. Cells were then
washed twice with PBS, pH 7.4, and resuspended in ice-cold
PBS with 2% FBS. For adhesion experiments, B cells were iso-
lated by negative selection using a B cell isolation kit and MACS
separation columns (Miltenyi Biotec) according to the manufac-
turer’s protocol. For immunoprecipitation and Western blotting,
B cells were isolated by positive selection using CD19 micro-
beads and MACS separation columns (Miltenyi Biotec) accord-
ing to the manufacturer’s protocol. The purity of B cells isolated
from bone marrow as well as peripheral blood was >95%, as es-
timated by flow cytometry analysis (MoFlo®; DakoCytomation).
Isolated B cells were stored at 37°C in StemSpan™ H2000 se-
rum-free medium (StemCell Technologies Inc.) for 12 h before
experiments.

Adhesion Assay. Adhesion assays were performed in 96-well
plates (Nalge Nunc International) coated with 50 ng of recombi-
nant human VCAM-1 (R&D Systems) per well. At this concen-
tration of VCAM-1, there was no adherence of unstimulated
cells. Wells were then washed three times with HBSS containing
Hepes (Life Technologies) and blocked with 20% FBS in PBS for
1 hat 37°C.

Short-Term Adhesion Assay. 103 cells in 46 pl of adhesion me-
dium (HBSS buffered with Hepes and supplemented with 0.1%
BSA) were added to the wells and allowed to settle at 37°C. At
the various time intervals, 4 pl of recombinant human CXCL12
(R&D Systems) up to a concentration of 1.0 wM was added to
the wells. As a negative control, adhesion medium was added in-
stead of CXCL12 or the assay was performed in BSA-coated
wells (Table I).

Table I.  Short-Term Adhesion Assay

Incubation time in Time of exposure

VCAM-1—coated wells to CXCL12 Total time of assay
min min min
29 1 30
28 2 30
27 3 30
26 4 30
25 5 30
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Long-Term Adhesion Assay. Cells were first stimulated with
1.0 pM CXCL12 in suspension at 37°C for defined amounts of
time and then placed into VCAM-1—coated wells for 30 min at
37°C. CXCL12 was continuously present during the entire ex-
periment (Table II).

In some studies, cells were incubated with 100 ng/ml PMA for
10 min, 100 ng/ml PTX for 2 h, or 5 pwg/ml anti-o, integrin
monoclonal antibody for 30 min before the adhesion assay. In ex-
periments using pharmacological inhibitors, cells were incubated
with different concentrations of BIM-I/BIM-V for 2 h, wort-
mannin for 45 min, or PD98059 for 2 h at 37°C before the adhe-
sion assay. The optimal concentration of anti-a, antibody was de-
termined in preliminary experiments.

Analysis of Adhered Cells.  After the adhesion assay, wells were
washed manually four times with adhesion medium to remove
nonadhered cells. The number of adhered REH cells was deter-
mined using the CyQUANT cell proliferation kit (Molecular
Probes) and fluorescence of the samples was measured by a mi-
crotiter plate fluorometer (DYNEX Technologies). Adhered
bone marrow and peripheral blood cells were detached from the
bottom of the wells by treatment with 0.01% EDTA (Life Tech-
nologies) in PBS. Detached bone marrow B cells were stained to
define four stages of human B cell differentiation as previously
described (9): the earliest B cell population, designated as pro-B
cells, identified as CD19* CD34*; k=/N~, pre-B cells, identified
as CD19% CD347; k= /N7, followed by immature B cells identi-
fied as CD19" k*/N* IgD7; and mature B cells identified as
CD19* k*/N* IgD*. Detached peripheral blood B cells were de-
fined as CD197 cells. Incubation and washing was performed at
4°C. After washing with PBS, cells were fixed in 1% paraformal-
dehyde PBS and analyzed using a MoFlo® cytometer (DakoCyto-
mation). Data are shown as the percent of adhesion calculated
from the number of cells determined in the adhered population
and the number of cells determined in starting population. For
clarity, in experiments using pharmacological inhibitors the re-
sults are presented as a percentage of specific adhesion (back-
ground adhesion observed in the absence of adhesion stimulus
was subtracted from CXCL12- or PMA-stimulated adhesion).

Cell  Stimulation, Immunoprecipitation, and Western Blotting.
Cells were starved in serum-free RPMI 1640 for 1 h at 37°C and
then either left unstimulated or stimulated with CXCL12. Alter-
natively, cells were first incubated with PTX, BIM-I, or BIM-V
for 1 h at 37°C before CXCL12 stimulation. The reactions were
stopped by adding 1 ml ice-cold PBS and cells were lysed with
lysis bufter (1% Triton X-100, 150 mM NaCl, 50 mM Tris-HCI,

Table II.  Long-Term Adhesion Assay

Preincubation Incubation time in
time with CXCL12 VCAM-1—coated wells Total time of assay

min? min? min
1 30 31
5 30 35
15 30 45
20 30 50
30 30 60

“Time of exposure to CXCL12.
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pH 7.6, with protease and phosphatase inhibitors) followed by
centrifugation at 13,000 g. For immunoprecipitations, the cell ly-
sates were incubated with anti-FAK antibody followed by incu-
bation with protein A Sepharose beads. Immunoprecipitates were
washed three times with washing buffer (150 mM NaCl, 50 mM
Tris-HCI, pH 7.6, and 0.1% Triton X-100) and then eluted by
boiling in SDS sample buffer. Protein samples were separated in
SDS-PAGE and transferred to nitrocellulose membranes (Bio-
Rad Laboratories) for Western blotting. Blots were blocked with
5% BSA in TBS-T bufter (150 mM NaCl, 50 mM Tris-HCI, pH
7.6, 0.1% Tween 20) for 1 h and incubated overnight with an-
tiphosphotyrosine monoclonal antibody (4G10). Bound antibody
was revealed with HRP-conjugated anti-mouse antibody using
enhanced chemiluminescence (Amersham Biosciences) and visu-
alized by autoradiography. The band intensities were determined
by densitometry using ImageQuant Version 1.1 (Molecular Dy-
namics Inc.) and are expressed for each lane as multiples of the
control (assigned as a value of 1). The membranes were then
stripped and reblotted with anti-FAK antibody followed by en-
hanced chemiluminescence.

Statistical Analysis.  Student’s t test was used for statistical anal-
ysis. The level of significance is indicated by the P value. Data are
presented as mean & SD, unless otherwise indicated.

Results

Short-Term Stimulation with CXCL12 Induces Transient
Adhesion to VCAM-1 in Both Bone Marrow and Peripheral
Blood B Cells.  As previously reported for circulating hu-
man T lymphocytes (22), we found that short-term stimu-
lation with CXCL12 induced rapid but transient adhesion
to VCAM-1 of early lineage pro-B cells (REH cell line) as
well as of circulating, mature B cells. Adhesion was de-
tected at the concentration of 50 nM, reached a maximum
at 1.0 uM, and did not increase at higher concentrations
(Fig. 1 A). Adhesion was transient, reaching its peak after
1-2 min of stimulation and decreasing to baseline after 5
min (Fig. 1, B and C). Next, we compared transient
CXCL12-mediated adhesion of primary bone marrow and
peripheral blood B cells. Transient CXCL12-mediated ad-
hesion was comparable for total bone marrow (containing
early and late lineage B cells) and peripheral blood B cells:
21.5% * 9.0% (mean * SD) of total bone marrow B
cells (Fig. 1 D) and 22.14 = 7.14% of peripheral blood B
cells (Fig. 1 E) adhered to VCAM-1 after 2 min of stimula-
tion with CXCL12.

Long-Term, Continuous Exposure to CXCL12 Induces Dif-
ferential Adhesion Responses to VCAM-1 in Bone Marrow and
Peripheral Blood B Cells. As demonstrated in Fig. 1, short-
term stimulation with CXCL12 triggered a robust adhesion
of developing bone marrow B cells to VCAM-1 but the
transient character of this adhesion response does not reflect
the hypothetical role of this chemokine as a bone marrow B
cell retention factor (14, 30). High levels of CXCL12 (5,
27, 31, 32), as well as the VLA-4 integrin ligand VCAM-1
(28, 33, 34), are constitutively expressed in the bone mar-
row microenvironment. To simulate the continuous expo-
sure of progenitor B cells to CXCL12, we performed the
long-term adhesion assay, in which cells were first exposed
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Figure 1. CXCL12 induces rapid and transient ad-
hesion of peripheral blood as well as bone marrow B
cells to VCAM-1 using the short-term assay conditions
(refer to Materials and Methods). (A) REH cells were
incubated in VCAM-1—coated wells for 28 min and
then stimulated with different concentrations of
CXCL12 for 2 min followed by the removal of nonad-
herent cells and quantitation of adhesion as described in
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Materials and Methods. (B and C) Kinetics of
CXCL12-induced transient adhesion of REH pro-B
and peripheral blood B cells to VCAM-1 is shown.
Cells were incubated in VCAM-1- or BSA-coated
wells for 25-29 min and after that time 1.0 pM
CXCL12 was added for 5 to 1 min followed by the re-
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moval of nonadherent cells and quantitation of adhe-
sion as described in Materials and Methods. Data repre-
sent the mean * SD of three separate experiments,
each performed in triplicate. (D and E) Comparison of
transient CXCL12-induced adhesion of bone marrow
and peripheral blood B cells to VCAM-1. The adhe-
sion assay was conducted using 1 M CXCL12 as de-
scribed in A. Data represent the mean = SD of five
(bone marrow) or six (peripheral blood) separate ex-
periments, each performed in triplicate. *, **, and ***,
statistical significance as compared with negative con-
trol and assessed as P < 0.05, P < 0.01, and P < 0.005,

2 min stimulation with CXCL12

to CXCL12 for up to 30 min and then incubated in
VCAM-1—coated wells for another 30 min. We found that
long-term stimulation with CXCL12 induced strong and
sustained adhesion of REH pro-B cells to VCAM-1, which
reached a maximum at 1 pM of CXCL12 (Fig. 2 A) and
persisted for at least 60 min (Fig. 2 B). Similarly, primary
total bone marrow CD19% B cells, which were exposed to
CXCL12 for 1 or 30 min before 30 min of incubation in
VCAM-1—coated wells, demonstrated strong, sustained ad-
hesion after long-term stimulation (Fig. 2 C, middle). In
sharp contrast, peripheral blood B cells showed no adhesion
responses after prolonged CXCL12 stimulation (Fig. 2 C,
right). However, peripheral blood B cells responded with
strong up-regulation of adhesion after PMA stimulation
(not depicted), suggesting that peripheral blood B cells were
still able to up-regulate their adhesion to integrin ligands
through chemokine receptor—independent pathways (35).

2 min stimulation with CXCL12

respectively.

CXCL12-induced Adhesion of Bone Marrow B Cells to
VCAM-1 Decreases with Maturation. Next, sustained (Fig.
3, A and B) and transient (Fig. 3 C) adhesion responses
were determined for individual bone marrow B cell subsets
using long-term or short-term adhesion assay conditions,
respectively (refer to Materials and Methods). We observed
a gradual decrease in the CXCL12-induced adhesion re-
sponse during B cell maturation. The sustained adhesion
response was stronger for early lineage (pro- and pre-) B
cells than for mature B cells from bone marrow (P <
0.0005). Similarly, the transient adhesion response was
stronger for early lineage B cells than for mature bone mar-
row B cells (P < 0.05).

Peripheral blood B cells exhibited a transient adhesion
response, which was not statistically different from late lin-
eage, mature B cells in bone marrow (Fig. 3 C). The over-
all responsiveness of bone marrow B cells to integrin acti-
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bated in VCAM-1—coated wells for 30
min followed by the removal of nonad-
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as described in Materials and Methods.
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vation was unchanged throughout development as measured
by PMA-induced adhesion (not depicted).

CXCL12-induced Adhesion to VCAM-1 Is VLA-4 Integrin
Dependent. To examine if CXCL12-induced B cell adhe-
sion is dependent on VLA-4 integrin activation, REH or
peripheral blood B cells were incubated with 5 pg/ml
anti-VLA-4 monoclonal antibody before the adhesion as-
say. We found that both sustained (Fig. 4 A) and transient
(Fig. 4, B and C) adhesion responses were completely
blocked. In contrast, cells treated with isotype-matched
nonblocking antibody exhibited strong CXCL12-induced
adhesion to VCAM-1.

Expression of VLA-4 Integrin Does Not Change During Hu-
man B Cell Development. We examined surface expres-
sion of o, integrin chain on developing bone marrow B
cells to determine if the decrease in adhesion response of
bone marrow B cells to CXCL12 during maturation
could be explained by a reduction in VLA-4 expression.
Flow cytometric analysis revealed high levels of a, chain
on every analyzed subset of bone marrow or peripheral
blood B cells: 93% of pro-B, 92% of pre-B, 98% of imma-
ture, 76% of mature bone marrow B cells (Fig. 4 D), and
78% of peripheral blood B cells expressed o, (Fig. 4 E).
Moreover, the calculated mean channel fluorescence
(MCF) was similar for each B cell population. There was
no statistical difference in the mean percentage of VLA-4"
cells as well as MFC values between cell populations. This
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moval of nonadherent cells and quantita-
tion of adhesion as described in Materials
and Methods. CXCL12 was present
throughout the incubation period. Ki-
netics of CXCL12-induced sustained ad-
hesion of REH pro-B cells to VCAM-1
is shown in B and the comparison of sus-
tained CXCL12-induced adhesion of
REH, bone marrow, and peripheral
blood CD19% cells to VCAM-1 is shown
in C. Data represent the mean = SD of
three (REH cells), four (bone marrow),
and five (peripheral blood) independent
experiments, each performed in tripli-
cate. *, **, and ***, statistical significance
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as compared with negative control and
are assessed as P < 0.05, P < 0.01, and
P < 0.005, respectively.
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finding suggests that changes in integrin adhesiveness
rather than an increase in the number of molecules are
relevant to this process.

We also questioned whether prolonged exposure to
CXCL12 could aftect o, expression levels. Consequently,
we evaluated the expression of o, on bone marrow and pe-
ripheral blood B cells after 5, 15, and 30 min of incubation
with 1.0 pM CXCL12 (not depicted). The expression of
o, was unchanged suggesting that CXCL12 does not
downmodulate o, integrin expression on bone marrow or
peripheral blood B cells.

CXCL12-induced Adhesion to VCAM-1 Is Ga; Protein-
coupled Receptor and PKC Dependent. To explore the role
of Go protein—dependent signaling in the activation of B
cell adhesion by CXCL12, we pretreated the cells with
PTX at a concentration of 100 ng/ml. We found that sus-
tained CXCL12-induced adhesion responses of early pro-B
cells (Fig. 5 A) as well as transient responses of both early
and mature B cells (Fig. 5, B and C) were completely
blocked by PTX. In contrast, PMA-induced adhesion,
which activates integrins independently on G protein—cou-
pled receptor (36), was not altered by PTX (Fig. 5). Next,
we evaluated the role of PKC, a key molecule involved in
chemokine- and integrin-triggered signaling pathways (37,
38). We used the highly selective metabolic inhibitor of
PKC, BIM-I, and as a negative control its inactive ana-
logue BIM-V (29). We found that BIM-I blocked both
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sustained (REH cells) and transient adhesion (peripheral
blood and REH cells). The inhibition by BIM-I occurred
in a dose-dependent manner but required a concentration
of 1,000 nM for statistically significant inhibition compared
with the negative control, BIM-V. As an example, data are
shown for the inhibition of transient adhesion of peripheral
blood B cells (Fig. 5 D). However, as shown in Fig. 5, E
and F, we consistently found that BIM-I more effectively
blocked sustained adhesion (by * 90%) than transient ad-
hesion (by = 45%) responses. This difference in BIM-I in-
hibition between sustained and transient adhesion is highly
statistically significant (P = 0.01), suggesting that the sig-

1 -Medium
W -CXCL12

Figure 3. Decreasing response of B cells to CXCL12-
induced adhesion to VCAM-1 during maturation. Sus-
tained adhesion responses by developmental B cell subsets
are shown in A and B. Transient adhesion responses by B
cell subsets are shown in C. Long-term adhesion assay (A
and B) was conducted as described in Fig. 2 and short-term
adhesion assay (C) was conducted as described in Fig. 1.
Data represent the mean £ SD of four (bone marrow) and
five (peripheral blood) experiments, each performed in
triplicate. *, **, and ***, statistical significance between ad-
hesion of CXCL12- and medium-stimulated cells (nega-
tive control) and are assessed as P < 0.05, P < 0.01, and
P < 0.005, respectively. The difference in CXCL12-
induced adhesion response between pro-/pre-B cells and
mature bone marrow B cells was statistically significant for
sustained adhesion (P << 0.0005) as well as for transient ad-
hesion (P < 0.05).

naling pathways involved in sustained versus transient ad-
hesion are qualitatively difterent.

Effect of PI3-K and Extracellular Signal-regulated Kinase
(ERK) Inhibition on CXCL12-induced B Cell Adhesion to
VCAM-1. Recent studies using activated T cells indicate
that CXCL12 has the unique ability to cause sustained acti-
vation of both PI3-K and ERK-2, in contrast to the tran-
sient signaling response typical for other chemokines (39).
We pretreated REH cells with different concentrations of
wortmannin, a PI3-K inhibitor, or with PD98059, a MEK
inhibitor that acts directly upstream of ERK, before the ad-
hesion experiments. We observed that similar to BIM-I, as
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little as 10 nM of wortmannin completely inhibited the
sustained adhesion response but only partially inhibited the
transient adhesion response of REH pro-B cells (Fig. 6, A
and B). The difference in inhibition of sustained and tran-
sient adhesion by wortmannin at 10 nM was highly signifi-
cant (P = 0.001). Thus, this finding also supports the con-
cept that the CXCL12-induced signaling pathways in
sustained and transient adhesion differ at some level. In
contrast to PKC and PI3-K inhibitors, the MEK inhibitor
PD98059 used at a broad range of concentrations did not
influence CXCL12-mediated adhesion of REH cells to
VCAM-1 (Fig. 6, C and D).

CXCL12 Induces Prolonged FAK Activation in Early Lin-
eage but Not Mature B Cells. FAK is thought to play an
important role in cell adhesion and migration (40). There-
fore, we assessed FAK activation after CXCL12 stimula-
tion in developing bone marrow and circulating peripheral
blood B cells. We first determined that CXCL12 induces
FAK tyrosine phosphorylation in REH pro-B cells in a
dose-dependent manner. The phosphorylation was evident
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B cell subpopulations (D) and total
peripheral blood B cells (E) is shown.
The black line represents cells stained
with the isotype control and the
shaded part of the histogram repre-
sents cells stained with anti-o, anti-
body. The values of MCF represent
the average of three independent ex-
periments = SD. The differences be-
tween MCEF values of different sub-
sets are not statistically significant.

at a concentration of 50 nM, reached a maximum at 100
nM, and decreased at 500 nM but was still detectable at
1-2 WM CXCL12 (Fig. 7 A). Next, we stimulated primary
bone marrow and peripheral blood B cells as well as cell
lines representing different stages of B cell development,
i.e., REH pro-B cells, 697 pre-B cells, and HS Sultan
postgerminal center B cells, with 100 nM CXCL12 for
different periods of time. We detected remarkable difter-
ences in the kinetics of CXCL12-induced FAK phosphor-
ylation between early lineage and mature B cells. In early
lineage B cells, CXCL12 induced a markedly prolonged
FAK phosphorylation that was detectable for up to 20 min
in REH cells and up to 30 min in 697 cells (Fig. 7 B, top
and middle). Stimulation of cells with higher concentra-
tions (1,000 nM) of CXCL12 did not additionally prolong
FAK phosphorylation (not depicted). In contrast, in ma-
ture peripheral blood B cells (Fig. 7 C, bottom) and HS
Sultan cells (Fig. 7 B, bottom) FAK phosphorylation
peaked at 1 min and reversed to baseline level 3 min after
CXCL12 stimulation. In primary total bone marrow B
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cells FAK phosphorylation was also protracted, detectable
for 10 min, and then declined to baseline (Fig. 7 C, top).
The shorter duration of FAK phosphorylation in total
bone marrow cells compared with the pro-/pre-B cell
lines was ascribed to the fact that total bone marrow B cells
included both early and late lineage B cell subsets. Total
bone marrow B cell fraction contains a significant number
of mature B cells (40-60% of total B cells), in which FAK
activation is of much shorter duration than in the early lin-
eage B cells. CXCL12-induced FAK phosphorylation was
mediated by Goy protein—coupled receptor signaling, as
cell incubation with PTX completely blocked FAK activa-
tion (Fig. 7 D).

Taken together, we demonstrate that CXCL12 induces
prolonged FAK phosphorylation in bone marrow B cells,
in contrast to short-lived FAK phosphorylation in periph-
eral blood B cells. Importantly, prolonged FAK phosphor-

cxcLi12 P < 0.01, respectively.

ylation in bone marrow B cells correlates with sustained
adhesion of these cells to VCAM-1.

CXCL12-induced FAK Phosphorylation in B Cells Is PKC
Dependent. To investigate whether CXCL12-induced
FAK phosphorylation 1s PKC dependent, we incubated
REH cells with different concentrations of BIM-I or its
negative control, BIM-V. FAK phosphorylation induced
after long-term (20 min) CXCL12 stimulation was com-
pletely inhibited by BIM-I treatment (Fig. 8 A). In con-
trast, FAK activation after short-term (3 min) CXCL12
stimulation (Fig. 8 C) was only partially blocked by BIM-1,
even at high concentrations (2.0 wM). The incubation of
cells with BIM-V, the inactive analogue of BIM-I, did not
affect CXCL12-induced FAK phosphorylation (Fig. 8, B
and D). The difference in BIM-I inhibition of FAK phos-
phorylation after long-term and short-term CXCL12 stim-
ulation of REH cells closely correlates with the differential
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inhibitory effect of BIM-I on sustained and transient
CXCL12-induced adhesion (Fig. 5, E and F).

Discussion

In the bone marrow, developing B cells must remain in
close contact with stromal cells to receive signals necessary
for growth and maturation (26, 41, 42). Within the ex-
travascular hematopoietic compartment, the earliest pro-
genitor B cells (pro-B cells) are located within or near the
endosteum (43). As bone marrow B cells differentiate, they
move toward the sinusoids along stromal cell processes and
after expressing sIgM enter the peripheral circulation (44).
The mechanisms by which developing B cells are appro-
priately positioned in the bone marrow are not known. In-
dependent gene targeting experiments in mice have sug-
gested that both the CXCL12/CXCR4 and VLA-4/
VCAM-1 axes are critical for B lymphopoiesis (11, 12, 16,
45, 46). We speculate that these are related phenomena
because CXCL12 and other chemokines can transiently
activate cell surface integrins of all known leukocyte types
including T cells, neutrophils, monocytes and eosinophils
(21, 22, 47-49), and most importantly, CD34" bone mar-
row progenitor cells (50). In this study we show that as for
T cells, CXCL12 also triggers rapid, transient VLA-4—depen-
dent adhesion of bone marrow and peripheral blood B
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PD98059 (M) assessed as P << 0.05 and P < 0.02, respectively.

cells. However, the kinetics of CXCL12-mediated adhe-
sion is markedly different when bone marrow B cells are
first exposed to CXCL12 before being placed in VCAM-
coated wells. The continuous exposure to CXCL12 and
VCAM-1, which we believe models the bone marrow en-
vironment (27, 28), causes sustained rather than transient
adhesion to VCAM-1. This sustained CXCL12-mediated
adhesion response gradually diminishes as B cells mature in
the bone marrow and is absent in circulating peripheral
blood B cells (Figs. 2 and 3). Therefore, we propose that
sustained CXCL12-mediated adhesion is an important
process in the retention of developing progenitor cells
within the bone marrow microenvironments for pro-
longed periods of time (24, 25). Because under short-term
assay conditions progenitor B cells (refer to Fig. 1) exhibit
transient CXCL12-mediated adhesion, it is plausible that
transient CXCL12-induced adhesion plays a role in the
homing of early B lineage cells (e.g., during fetal develop-
ment and perhaps later in ontogeny) to bone marrow,
where VCAM-1 is constitutively expressed on endothelial
cells (28). Moreover, transient CXCL12-mediated adhe-
sion likely plays a role in the trafficking of circulating B
cells to sites of tissue inflammation, where VCAM-1 ex-
pression is up-regulated (51). The decrease in CXCL12-
induced adhesion responses (sustained and transient) dur-
ing B cell maturation (Fig. 3) is in agreement with an
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overall decrease in CXCL12-induced responsiveness (as
measured by chemotaxis and calcium mobilization) during
B cell development in human bone marrow (8-10). The
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decrease in CXCL12-induced responses is disproportion-
ate to the constant CXCR4 (9) and VLA-4 surface ex-
pression levels (Fig. 4). Therefore, we propose that

Cc CXCL12 (3 min)
BIM-I(uM)  © 0 05 10 20
CXCL12(nM) 0 100 100 100 100

= 0 e e ==
1.0 6.2 4.3 31 1.5
l- o o e o—

D CXCL12 (3 min)
BIM-V (uM) 0 0 0.5 1.0 2.0
CXCLi2(nM) © 100 100 100 100

- -
5.2 5.2 5.2

1.0 5.1

S S

Figure 8. CXCL12-induced FAK phosphorylation of early B cells is PKC dependent. REH cells were exposed to different concentrations of BIM-I or
its negative control BIM-V and then stimulated with 100 nM CXCL12 for 20 (A and B) or 3 min (C and D). Immunoprecipitation (IP) with anti-FAK
antibody was performed followed by Western blot (WB) with antiphosphotyrosine antibody (4G10). The membranes were then stripped and reblotted

(RB) with anti-FAK antibody to verify equal protein loading (as shown

in the bottom panels). Numbers under each lane indicate the fold increase of

phosphorylated FAK based on densitometry values. Data are representative of three independent experiments.
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CXCL12/CXCR4-mediated cell activation is regulated
by postreceptor signaling pathways during B cell develop-
ment.

Both sustained and transient adhesion responses are af-
fected by pharmacological inhibitors of PKC and PI3-K.
Interestingly however, although sustained adhesion of bone
marrow pro-B cells is completely blocked by the above
mentioned inhibitors, transient adhesion of bone marrow
pro-B and circulating peripheral blood B cells is only par-
tially blocked (Figs. 5 and 6). This observation suggests that
the signaling pathways in sustained and transient CXCL12-
induced adhesion are qualitatively different. In contrast, the
MEK inhibitor, PD98059, did not influence CXCL12-
induced adhesion, which implies that the mitogen-activated
protein kinase pathway does not contribute to integrin ac-
tivation in the REH pro-B cells. A similar observation has
been noted in bone marrow—derived leukemia and my-
eloma cell lines (50, 52).

We also find that FAK activation is differentially regu-
lated during B cell development. Our studies show that
CXCL12 can mediate prolonged FAK phosphorylation in
bone marrow—derived progenitor B cells correlating with
their sustained adhesion response (Fig. 7). In contrast, in
circulating mature B cells, CXCL12 induces only brief
FAK phosphorylation correlating with their transient adhe-
sion response. The basis for this correlation between
CXCL12-induced adhesion and FAK phosphorylation is
not straightforward. First, the mechanisms by which FAK
activation influences cell adhesion are not well understood.
When FAK™/~ and FAK"/* murine fibroblast-like cells are
placed on a substrate such as fibronectin, the FAK™/~ cells
exhibit an increased number of focal adhesions and a non-
polar morphology suggesting a role of FAK in focal adhe-
sion disassembly rather than in focal adhesion formation
(53). It is not clear how these data relate to the studies pre-
sented here. In the experiments using murine (FAK™/~ and
FAK*/7) fibroblast-like cells, FAK activation or the lack
thereof is occurring through outside-in signaling, i.e.,
through ligand-induced integrin activation. In contrast, in
our experiments both inside-out (i.e., CXCL12-induced)
as well as outside-in (i.e., VLA-4/VCAM-mediated) inte-
grin signaling events contribute to FAK activation (54).
The prolonged activation of FAK in primary and cell line—
derived bone marrow B cells is remarkable because chemo-
kines characteristically trigger transient activation of signal-
ing molecules (22, 55). However, recently Tilton et al. (39)
showed that CXCL12 induced prolonged phosphorylation
of protein kinase B and ERK-2 in IL-2—expanded T lym-
phocytes, thus indicating that sustained activation of signal-
ing can occur in hematopoietic cells. Remarkably, we
show that FAK phosphorylation after long-term (i.e., 20
min) CXCL12 stimulation is completely blocked by the
PKC inhibitor BIM-I, whereas FAK phosphorylation after
short-term (i.e., 3 min) CXCL12 stimulation is only par-
tially blocked (Fig. 8). This result parallels the differential
effect of PKC inhibition in sustained versus transient
CXCL12-induced adhesion (Fig. 5, E and F) and provides
additional evidence for the close relationship between
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CXCL12-induced FAK phosphorylation and the activation
of cell adhesion.

In summary, we demonstrate that sustained adhesion to
VCAM-1 i1s triggered by CXCL12 in progenitor but not
mature B cells and thus may play an important role in the
retention of developing B cells in their microenvironmen-
tal niches in the bone marrow. As progenitor B cells difter-
entiate, CXCL12 responsiveness gradually diminishes pos-
sibly enabling sIgM™ B cells to exit and enter the peripheral
circulation. The sustained adhesion response is tightly asso-
ciated with prolonged activation of FAK in progenitor B
cells. This association is intriguing because FAK plays an
important role in cell adhesion, cell motility, as well as in
cell survival (56). We conclude that sustained signaling
through CXCR4 might be an essential physiologic process
in B lymphopoiesis.
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