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Abstract

Background: Power calculators are currently available for the design of genetic association studies of binary phenotypes
and quantitative traits, but not for “time to event” outcomes, which are of particular relevance in pharmacogenetics. With
the rapid emergence of pharmacogenetic association studies of single nucleotide polymorphisms (SNPs), and
the complexity of clinical outcomes they consider, there is a need for software to perform power calculations
of time to event data over a range of design scenarios and analytical methodologies.

Results: We have developed the user friendly software tool SurvivalGWAS_Power to perform power calculations for
time to event outcomes over a range of study designs and different analytical approaches. The software calculates the
power to detect SNP association with a time to event outcome over a range of study design scenarios. The software
enables analyses under a Cox proportional hazards model or Weibull regression model, and can account for treatment
and SNP-treatment interaction effects. Simulated data sets can also be generated by SurvivalGWAS_Power to enable
analyses with methods that are not currently supported by the power calculator, thereby increasing the flexibility of
the software.

Conclusions: SurvivalGWAS_Power addresses the need for flexible and user-friendly software for power calculations for
genetic association studies of time to event outcomes, with particular design features of relevance in pharmacogenetics.

Keywords: Pharmacogenetics, Power calculation, Time to event, Cox proportional hazards, Weibull regression, Simulation,

Censoring, SNP-treatment interaction

Background

Power calculations are an essential component of study
design, and are readily available for genome-wide associ-
ation studies (GWAS) of binary phenotypes and quanti-
tative traits [1]. However, as yet, software is not available
to determine adequate sample size for GWAS of “time
to event” outcomes. Such outcomes are of particular
relevance in the emerging field of pharmacogenetics,
where the event could be death, disease remission, or
the occurrence of an adverse drug reaction, for example,
after treatment intervention. The most appropriate
approach to the analysis of time to event data is through
survival modelling, which can allow for censoring
because the event has not occurred, or due to patient
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drop-out, before the end of the study. Software is thus
required to enable power calculations for GWAS of time
to event outcomes, for alternative analytical models, par-
ticularly for pharmacogenetic studies, where the impact
of alternative treatments, and potentially their inter-
action with single nucleotide polymorphisms (SNPs), is
often of relevance in the study design.

The objective of GWAS is to identify SNPs that are
associated with outcome, typically at a stringent level of
genome-wide significance (defined as p<5x107%) [2].
SNPs are variations in the DNA sequence and are
encoded by genotypes. Genotypes can be represented as
AA, AB and BB, where A and B are the two alternative
alleles at the SNP. Association of a SNP with outcome
can then be assessed within a generalised linear model-
ling framework, accounting for relevant confounding
variables as covariates. It is typical to assume an “additive”
genetic model, whereby the effect of the heterozygous AB
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genotype is intermediate between homozygous AA and
BB genotypes. Under this additive model, genotypes are
coded according to the number of B alleles carried, such
that AA=0, AB=1and BB=2.

Currently, software to determine power for GWAS of
binary phenotypes and quantitative traits is available.
These include the freely available ‘Genetic Power Calcu-
lator, developed by Purcell et al. [1], which is a web
based platform, and ‘genomeSIM’ developed by Dudek
et al. [3] for the simulation of large-scale genomic data
in population based case-control samples. However, as
yet, software for power calculations for GWAS of time
to event outcomes is not available. In response to this
analytical bottleneck, we have developed the user
friendly tool, SurvivalGWAS_Power, which is the first
program to implement both data generation and power
calculations for GWAS of time to event outcomes. The
software is of particular relevance to pharmacogenetic
studies, where the design will likely include alternative
treatment interventions, and analyses are likely to con-
sider SNP-treatment interaction effects.

Implementation

SurvivalGWAS_Power was built using C# and developed
as a Windows application, utilising pre-designed frame-
works Math.NET and Accord.NET [4], for the gener-
ation of pharmacogenetic data and statistical analyses,
respectively. SurvivalGWAS_Power requires specifica-
tion of genetic parameters, such as the magnitude of the
SNP effect on the outcome and the minor allele fre-
quency (MAF). The varied collection of design scenarios
includes adding a recruitment period, SNP-treatment in-
teractions, and/or different censoring options (for ex-
ample, withdrawal due to an adverse treatment event).
We created these pharmacogenomic study designs after
a thorough examination of published studies in the lit-
erature [5], including Charland et al. [6], Depta et al. [7],
Wiese et al. [8], and Absenger et al. [9]. The power cal-
culation is performed by simulating multiple datasets
based on the user specified parameter settings and study
design options, specifically testing for SNP associations
(and SNP-treatment interactions, if required) with the
time to event outcome across all simulated datasets.
For GWAS, the usual threshold for “genome-wide sig-
nificance” is p<5x107%. However, the software is
equally applicable to power calculations for individual
SNPs, for which a nominal significance threshold of
p <0.05 is appropriate.

User interface

The main window consists of two panels, the first for
design, analysis and parameter inputs, and the second
for all output. The menu bar has a “Save Sample Data”
option, as well as another option to store all the datasets
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from every simulation run. This is useful for those who
want to test power for methods not supported by the
program. The data are saved as a text file, in R statistical
software friendly readable format. The interface has been
designed to be user friendly; there are various help but-
tons to navigate the user through the program in the
form of tooltips, and an example of a commonly used
pharmacogenetic study design is available as a guide.
The inputs are split into two sections: (i) data generation
inputs; and (i) statistical analysis inputs. The user
defined parameter inputs are submitted in text boxes.

Data simulation

For each replicate of data, a SNP genotype (coded as 0, 1 or
2) is generated for each individual from a binomial distribu-
tion dependent on the MAF and assuming Hardy-Weinberg
equilibrium. The user is given the option of incorporating
an active treatment against a placebo. Treatment allocation
is also simulated using a binomial distribution.

Time to event for each individual is then simulated on
the basis of specified model parameters from a Weibull
distribution, which allows for the possibility of a devi-
ation from a proportional hazards assumption. The value
of the shape parameter, a, of the Weibull distribution is
specified by the user. A value of a <1 indicates that the
failure rate decreases over time. A value of a=1 indi-
cates that the failure rate is constant over time, resulting
in proportional hazards. A value of a <1 indicates that
the failure rate increases with time. The scale parameter
of the Weibull distribution is parameterized to incorpor-
ate SNP, treatment, and SNP-treatment interaction ef-
fects in generating time to event for each individual.
Specifically, the scale parameter for the ith individual is
given by, b; = doeﬁssf+ﬁx""+ﬁ)fsix', where x; is the treatment
covariate (coded as 0/1 for placebo/active), S; is the SNP
genotype coded under an additive model for the minor
allele. The value of the “baseline” scale parameter d,, is
specified by the user. The parameters j; and f5, are the
effect on log-hazard of the minor allele at the SNP, and
the treatment effect, respectively, and f3, is the interaction
effect between the SNP and treatment. The values of each
of these parameters are also specified by the user.

The simulated observed time to event outcome is gener-
ated for the following possible study design scenarios, each
of which include the option of incorporating treatment and
SNP-treatment interaction effects. In all scenarios, the sim-
ulated time to event of the ith individual is denoted ¢;, and
the observed event time (after censoring) is denoted J;.

Scenario 1-End of study censoring.

This scenario is designed based on a user specified and
fixed end of study time, Z. If the event occurs before
the end of the study and due to this scenario not including
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censoring before time Z, the observed event time for the
ith individual is 6; = t; otherwise &; = Z.

Scenario 2-Censoring during the study period and at
end of study.

The censoring time of the ith individual, ¢; is simulated
from a Weibull distribution with a user defined scale
parameter and a fixed shape parameter of 1. Small values
of the scale parameter will generate more censored
observations. If censoring occurs before the end of the
study, the individual is assumed to have dropped out at
that time, thus 6; = ¢;. If censoring occurs after the end of
the study, yet the event occurred before the end of the
study, then the observed event time for the ith individual
is §; = t; otherwise 8, = Z - r;.

Scenario 3-Recruitment period and end of study censoring.
The recruitment time, 7;, is simulated from a discrete
uniform distribution between 0 and a specified end
time. There is no censoring before the end of the study
and if the event occurs before the end of the study the
observed event time for the ith individual is §; = ¢; - r;;
otherwise §;=Z - r;.

Scenario 4-Censoring during the study period and at the
end of study with a recruitment period.

The censoring time of the ith individual, ¢; is simulated
from a Weibull distribution with a user defined scale
parameter and a fixed shape parameter of 1. If censoring
does not occur before the end of study, and an event has
occurred, an individual will have observed time §; = t,—7;
unless censored at the end of study, then §; =Z -r..
If censoring does occur during the study period,
then §;,=¢;-r;

Analysis

There are two options to compare when running the
analysis; (i) a Cox proportional hazards model and (ii) a
Weibull regression model. Users can select between run-
ning their choice of analysis model by fitting: (i) the SNP
alone; (ii) the SNP and treatment; or (iii) the SNP, treat-
ment and SNP-treatment interaction.

The Cox proportional hazards regression model is the
most extensively used analysis of time to event out-
comes. It is a semi-parametric model that assumes that
the hazard functions of individuals are proportional over
time. The framework Accord.Net has a built in Cox pro-
portional hazards function, which calculates the partial
likelihood and obtains parameter estimates and Wald
test p-value.

The Weibull regression model is parametric with com-
pletely specified hazard and survivor functions, and is
beneficial in scenarios where the hazard is not propor-
tional or has an accelerated failure time feature. We ob-
tain maximum likelihood estimates of model parameters
using an iterative Newton-Raphson method, the full der-
ivation of which is presented in Additional file 1.
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Validation

The user interface implements a validation system to
track user errors at input. As the user inputs values into
parameter textboxes, the error provider will check that
the entered values are valid. Before the power calcula-
tion begins, the error provider will check that all re-
quired information has been entered for a selected
scenario. For example, the user cannot select treatment
as an analysis covariate if a treatment effect has not been
included in the simulation model. The workflow is pre-
sented in Fig. 1.

Output

The output comprises of a sample dataset, a table of the
analysis output for each simulation run and two histo-
grams of parameters across simulations: (i) coefficient
values for the SNP effect from the regression model; and
(ii) - logio Wald p-values for the SNP effect. All histo-
grams can be saved by right clicking the graph and
selecting “save as image”. Power, at the specified signifi-
cance threshold, ¢, is approximated by the proportion of
replicates for which p < ¢ for the SNP effect on outcome.
Power, at the same significance threshold, is also calcu-
lated for the SNP-treatment interaction effect, if this
term is included in the analysis model.

Results

SurvivalGWAS_Power can simulate a large number of
datasets to enable efficient estimation of power based
on specified model parameters and design scenarios.
We present the results of example power calculations
for two similar scenarios to demonstrate the utility of
the software.

Figure 2 presents the input parameter tab of the soft-
ware. The example demonstrates a scenario with censor-
ing during the study period and at the end of the study,
and including a recruitment period. Here we have con-
sidered SNP and treatment main effects and a SNP-
treatment interaction effect in simulating event times.
However, in the analysis, we have only considered the
SNP main effect. Specifically, a Weibull regression
model is implemented for analysis to test the SNP asso-
ciation (i.e. the null hypothesis Hq:S,=0 against the
alternative Hp : 5, # 0), for which power is estimated to
be 90% at a significance threshold of p < 0.05.

Figure 3 shows the additional output from the analysis.
This is the output from the setup shown in Fig. 2. The
left histogram shows the distribution of estimated SNP
effect sizes across simulations, which in this example are
centred around 0.5, and not the true effect size of 0.4.
This bias occurs as the data are simulated with treat-
ment and SNP-treatment interaction effects, but the
analysis model does not take these into account.
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Figure 4 presents the input parameter tab of the software
with an alternative scenario to Fig. 2. We have used the
same simulation model as in the previous example, includ-
ing censoring during the study period and at end of study
with a recruitment period. Here we have also considered
SNP and treatment main effects and a SNP-treatment
interaction effect in simulating event times. However, in the
analysis, we have considered the SNP main effect along
with treatment and an interaction effect. A Weibull regres-
sion model is implemented for analysis to test: (i) the null
hypothesis Hy: 5; = 0 against the alternative Hy : 5= 0, for
which power is estimated to be 54% at a significance
threshold of p < 0.05; and (ii) the null hypothesis Hy: 5, =0
against the alternative Hy : 8, # 0, for which power is esti-
mated to be 0% at a significance threshold of p < 0.05.

Figure 5 shows the additional output from the analysis.
This is the output from the setup shown in Fig. 4. The
left histogram shows the distribution of estimated SNP
effect sizes across simulations, which in this example are
centred around 0.4. Unlike the previous example, the ef-
fect estimates are now unbiased because the correct ana-
lysis model is fitted by accounting for treatment and
SNP-treatment interaction effects.

Performance

Figure 6 presents run times of SurvivalGWAS_Power
under two different analyses as a function of the number
of simulations: (i) SNP effect only; and (ii) SNP effect,
treatment effect and SNP-treatment interaction. Results
are presented for a Cox proportional hazards model and
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Weibull regression model, for a sample size of 1000 indi-
viduals and a scenario with censoring but no recruit-
ment period.

Conclusions

Survival GWAS_Power effectively and efficiently esti-
mates the power of the Cox proportional hazards model
and Weibull regression model under a variety of phar-
macogenetic settings. Specifically, we allow for testing of
SNP main effects (i.e. testing the null hypothesis Hy: 5, =0
against the alternative Hp : f5; # 0) and SNP-treatment inter-
action effects (ie. testing the null hypothesis Hy:f5,=0
against the alternative Hj : 5, = 0).

The software offers the option for users to simulate
data and use other programs such as R for analysis. For
example, Uno et al. [10] have demonstrated that, where
the proportional hazards assumption is invalid, the use
of the Cox proportional hazards method will produce a
loss in power to detect associations. They propose using
alternative robust measures for the difference between
survival curves instead of parametric models. The flexi-
bility of our software enables generation of time to event
data under models with non-proportional hazards that
can be exported for association testing with methods not
supported by our power calculator.

SurvivalGWAS_Power is important as it is the first
genetic data simulator with time to event outcomes, and
the first to enable estimation of power for multiple phar-
macogenetic designs and analysis methods. However, the
software is not limited to pharmacogenetic designs: for
example, the treatment can be used to represent any
binary covariate. This adds flexibility to the software for
application to general GWAS of time to event outcomes.

In summary, this application offers a much needed
user-friendly and flexible software tool for power calcu-
lations for time to event outcomes in pharmacogenetic
association study designs.

Additional file
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