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Autophagy inhibition of hsa-
miR-19a-3p/19b-3p by targeting 
TGF-β R II during TGF-β1-induced 
fibrogenesis in human cardiac 
fibroblasts
Meijuan Zou1, Fang Wang2, Rui Gao1, Jingjing Wu3, Yingwei Ou1, Xuguan Chen1, 
Tongshan Wang4, Xin Zhou4, Wei Zhu4, Ping Li5, Lian-Wen Qi5, Ting Jiang6, Weiwei Wang6, 
Chunyu Li6, Jun Chen6, Qifang He6 & Yan Chen6

Transforming growth factor-β1 (TGF-β1) plays an important role on fibrogenesis in heart disease. 
MicroRNAs have exhibited as crucial regulators of cardiac homeostasis and remodeling in various 
heart diseases. MiR-19a-3p/19b-3p expresses with low levels in the plasma of heart failure patients. The 
purpose of our study is to determine the role of MiR-19a-3p/19b-3p in regulating autophagy-mediated 
fibrosis of human cardiac fibroblasts. We elucidate our hypothesis in clinical samples and human cardiac 
fibroblasts (HCF) to provide valuable basic information. TGF-β1 promotes collagen I α2 and fibronectin 
synthesis in HCF and that is paralleled by autophagic activation in these cells. Pharmacological 
inhibition of autophagy by 3-methyladenine decreases the fibrotic response, while autophagy 
induction of rapamycin increases the response. BECN1 knockdown and Atg5 over-expression either 
inhibits or enhances the fibrotic effect of TGF-β1 in experimental HCF. Furthermore, miR-19a-3p/19b-3p 
mimics inhibit epithelial mesenchymal transition (EMT) and extracellular matrix (ECM) prodution and 
invasion of HCF. Functional studies suggest that miR-19a-3p/19b-3p inhibits autophagy of HCF through 
targeting TGF-β R II mRNA. Moreover, enhancement of autophagy rescues inhibition effect of miR-19a-
3p/19b-3p on Smad 2 and Akt phosphorylation through TGF-β R II signaling. Our study uncovers a novel 
mechanism that miR-19a-3p/19b-3p inhibits autophagy-mediated fibrogenesis by targeting TGF-β R II.

Abnormal expression of cardiomyocyte gene can result in cardiomyocyte hypertrophy and impaired cardiomyo-
cyte viability and contraction, ultimately resulting in heart failure (HF)1,2. The heart function decreases and affects 
the lungs, liver, and other body systems. HF is considered as the most common ultimate of many cardiovascular 
disease including dilated cardiomyopathy (DCM)3, myocardial infarction (MI)4,5, diabetic cardiomyopathy6,7, 
aortic stenosis (AS) and hypertension8,9. Interstitial fibrosis of myocardial cells may initiate with the dysfunctional 
cardiac remodeling following cardiac injury. Fibrosis is a complex process resulting from activation of some sig-
naling pathways, such as Transforming growth factor (TGF)-β 1 signaling10. Indeed, the dynamic mobilization 
within cardiac extracellular matrix (ECM) is critical during the pathogenesis of ventricular remodeling following 
DCM, MI, hypertension, and other cardiovascular conditions11. TGF-β 1 signaling has broad-ranging effects that 
may affect cell growth, differentiation and the production of ECM proteins12–14.
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TGF-β 1 is also a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis15. The phenomenon that 
an abundant latent collagenase system is closely associated with interstitial collagen matrix in heart has been 
identified for the first time by Montfort and Pérez-Tamayo in 197516. During the harmful remodeling process, 
cardiac fibroblasts are differentiated into myofibroblasts and the ECM components such as collagen I α 2 and 
fibronectin are accumulated17,18. Moreover, differentiation of fibroblasts into myofibroblasts activates matrix met-
alloproteinase (MMPs) such as MMP-2 and MMP-9 in the border of remodeling area. The MMPs activation 
accelerates degradation of adjoining ECM and thus facilitates the highly organized matrix to be replaced with the 
structureless and thickened matrix19,20. The dysregulation between accumulation and degradation of ECM has 
been involved in the mobility of ventricular geometry and function and then contributes to the development to 
heart failure (HF)21.

TGF-β  Receptor II is formed with trans-membrane serine/threonine kinase and the TGF-β  type II serine/
threonine kinase receptor22. TGF-β  Receptor II can transduce the TGF-β 1, TGF-β 2 and TGF-β 3 signaling 
from cell membrane to cytoplasm and then regulate a series of physiological or pathological processes includ-
ing mesenchymal cell proliferation and differentiation23,24, and ECM production25. Researchers have shown an 
association between a common TGF-β  Receptor II polymorphism and risk of sudden cardiac arrest caused by 
ventricular arrhythmias in the setting of coronary artery disease26. The formation of the receptor complex com-
posed of TGF-β  Receptor I and TGF-β  Receptor II molecules symmetrically bound to the cytokine dimer results 
in the phosphorylation and the activation of TGF-β  Receptor I by the constitutively active TGF-β  Receptor I27.

Autophagy works as a tightly-regulated process for bulk degradation, through which intracellular components 
are sequestered into autophagosomes and subsequently degraded by lysosomes28–30. Autophagy is critical for the 
clearance of damaged organelles and protein to maintain cellular homeostasis31,32. Autophagy can communicate 
with apoptosis as one of the programmed cell death through autodigestive cellular progression, cellular infection 
with pathogens or extracellular stimulation29,30,33,34. The overall regulation of interstitial fibrosis may contain the 
complex functioning of various regulatory factors35. It has been reported that the cardiomyocyte-specific deletion 
of basal autophagy resulting from Atg5 deficiency leads to spontaneous cardiac hypertrophy36,37. TGF-β 1 can 
induce autophagy in other cellular systems, however, there is little evidence supporting the link between auto-
phagy and fibrogenesis in cardiovascular disease.

MicroRNAs (miRNAs) are a series of small non-coding RNAs that regulate gene expression by binding to 
complementary sequences in un-translated regions (UTR) of target messenger RNAs (mRNAs) bearing fully 
complementary target sites to trigger either translation repression or mRNA degradation38,39. MiRNAs are 
involved in a wide spectrum of biological processes including autophagy40, fibrosis41, cell proliferation42, and 
apoptosis43. An abundant number of evidences indicate that miRNA-mediated gene negative regulation plays 
important roles in the cardiac homeostasis and pathological remodeling44–47. William T. Pu’s study has focused 
on the genome-wide miRNA expression profiling in left ventricular myocardium of 67 patients belonging to 
four diagnostic groups. The groups comprise ischemic cardiomyopathy (ICM), dilated cardiomyopathy (DCM), 
aortic stenosis (AS), and nonfailing controls48. They have found that miRNA expression profiles were signif-
icantly changed in heart diseases and that the pattern of miRNA expression was distinct in various forms of 
heart diseases, respectively. Among them, the expresson of miR-19a-3p/19b-3p is low in DCM (p ≦  0.001), ICM 
(p <  0.001), and AS (p <  0.001)48. In our present study, we have found that expression of miR-19a-3p/19b-3p in 
HF patients is lower than in normal. In addition, the over-expression of miR-19a-3p/19b-3p in vitro sufficiently 
decreases the autophagy and fibrosis induced by TGF-β 1 signaling, accompanied by inhibition effect of TGF-β  
R II. Our further investigation revealed the molecular mechanisms of miR-19a-3p/19b-3p in the regulation of 
autophagy-related fibrogenesis in human cardiac fibroblasts (which are responsible for the deposition of extra-
cellular matrix).

Method and Materials
Cell culture and treatment. Human Cardiac Fibroblasts (HCF) was purchased from Cell Bank of Tongpai 
Biotechnology Co., Ltd. (Shanghai, China). The base medium for HCF cell line is formulated Dulbecco’s Modified 
Eagle’s Medium (DMEM, Gibco Inc.). To make the complete growth medium, we add the following components 
to the base medium: 4.5 g/L glucose and fetal bovine serum to a final concentration of 10%. Exponentially grow-
ing cultures were maintained in a humidified atmosphere of 5% carbon dioxide (CO2) at 37 °C.

Cell proliferation assay. Cell growth was analyzed using the Cell Counting Kit-8 (Dojindo Molecular 
Technologies, Inc., Japan) according to the manufacturer’s instructions. Briefly, human Cardiac Fibroblasts were 
seeded at a density of 5 ×  103 cells/well in 96-well plates and treated with TGF-β 1 (10 ng/ml) for 0, 24, 48, 72, 
and 96 hours at 37 °C with 5% CO2. Then, the medium in each well was substituted with 100 μl of fresh medium 
containing 10% Cell Counting Kit-8, and the cultures were incubated at 37 °C for 2 hours. The absorbance value 
(A) was determined using Synergy™  2 Multi-Mode Microplate Reader (BioTek Instruments, Inc., headquartered 
in Winooski, VT, USA) at 450 nm. Cell Viability (%) =  average absorbance of treated group/average absorbance 
of control group × 100.

MiR-19a-3p/19b-3p prediction targets. TargetScan 7.0 human, miRDB, miRanda, Ingenuity Pathway 
Analysis were used to identify predicted miR-19a-3p/19b-3p targets. The mRNAs would be considered as targets 
if selected miRNA was predicted with high probability to interact with their 3′ -UTR. The mRNA targets were 
then compared to genes and pathways associated with human cellular morphology to evaluate potential miRNA 
regulation of cell motility.

Dual-luciferase activity assay. The 3′ UTR of human TGF-β  R II cDNA containing the putative target site 
for the miR-19a-3p/19b-3p (sequence shown in Supplementary data) was chemically synthesized and inserted 
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at the XbaI site, immediately downstream of the luciferase gene in the pGL3-control vector (Promega, Madison, 
WI) by Integrated Biotech Solutions Co., Ltd (Shanghai, China) (Supplementary data). Twenty-four hours before 
transfection, cells were plated at 1.5 ×  105 cells/well in 24-well plates. 200 ng of pGL3- TGF-β  R II-3′ -UTR plus 
80 ng pRL-TK (Promega) were transfected in combination with 50 nM of the miR-19a-3p/19b-3p mimics or 
miRNA mimic control using LipofectamineTM 2000 reagent (Life Technologies, Carlsbad, CA, USA) according to 
the manufacturer’s protocol, respectively. Luciferase activity was measured 24 hours after transfection using the 
Dual Luciferase Reporter Assay System (Promega). Firefly luciferase activity was normalized to renilla luciferase 
activity for each transfected well. Three independent experiments were performed in triplicate.

The sequence of 3′ UTR of human TGFBR2 cDNA containing the putative target site for the miR-19a-3p/19b-3p; 
stark black body stands for the putative target site for miR-19a-3p/19b-3p: C  TC TT CT GG GG CA GG CT G 
G GC CA TG TC CA AA GA GG CT GC CC CT CT CA CCAAAGAACAGAGGCAGCAGGAAGCTGCCCCTGAAC
TGATGCTTCCTGGAAAACCAAGGGGGTCACTCCCCTCCCTGTAAGCTGTGGGGATAAGCAGAAACA
ACAGCAGCAGGGAGTGGGTGACATAGAGCATT CT AT GC CT TT GA CA TT GT CA TA GG AT AA GC TG TG-
TT AG CA CT TC CT CA GG AA AT GA GA TT GA TT TT TA CA AT AG CC AA TA AC A TT TGCACTTTATTAATGCC
TGTATATAAATATGAATAGCTATGTTTTATATATATATATATATATCTATATATGTCTATAGCTCTATATATA
TAGCCATACCTTGAAAAGAGACAAGGAAAAACATCAAATATTCC

The use of miR19a/19b mimics. The miR-RiboTM miR19a/19b mimics were chemically synthesized 
mature double stranded miRNA that could be ready to use (Guangzhou RiboBio Co., Ltd.). The product with 
lyophilized form was transported at normal temperature. The freeze-dried powder was prepared as a 20 μM stock 
solution in sterilized ddH2O and stored at −40 °C. For miRNA miR19a/19b mimics transfection, the optimal con-
centration for human cardiac fibroblasts was 50 nM. For 24-well plate system: 1.25 μl storage solution of miRNA 
mimic (20 μM) was diluted in 50 μl serum-free medium, mixed gently and incubated at room temperature for 
5 minutes. For 6-well plate system: 5 μl storage solution of miRNA mimic (20 μM) was diluted in 250 μl serum-free 
medium, mixed gently and incubated at room temperature for 5 minutes.

Transient transfections. Cells were transiently transfected with miR-19a-3p/19b-3p mimics, BECN1 
siRNA, pCMV-myc-Atg5 plasmid using LipofectamineTM 2000 reagent (Life Technologies, Carlsbad, 
CA, USA), according to the manufacturer’s instructions49. Short interfering RNA against the human bec-
lin 1 (BECN 1) and the sequence was: sense 5′ -AAGAUUGAAGACACAGGAGGC-3′  and antisense 
5′ -GCCUCCUGUGUCUUCAAUCUU-3′ . The universal negative control siRNA were used. The expression vec-
tor was transfected 24 hours before treatment with TGF-β 130.

IF and confocal fluorescence microscopy. Human cardiac fibroblasts were pro-transfected with 
miR-19a-3p/19b-3p and then treated with 10 ng/ml TGF-β 1. MAP-LC3 (green) was labeled with primary 
anti-MAP-LC3 polyclonal antibody. Goat anti-rabbit IgG/FITC were used as secondary antibody. Cells were 
simultaneously imaged in the presence of SNLYSO sensor (an autolysosome fluorescent probe, shown red) to vis-
ualize autophagy. The nuclei were stained with 4′ , 6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St. Louis, 
MO) for 10 minutes before imaging. An FV10-ASW laser scanning confocal microscope [Ver 2.1] (Olympus 
Corp, MPE FV1000) was used for co-localization analysis30.

Total RNA extraction, Q-PCR for mRNA and miRNA quantification. Total RNA was extracted using 
Trizol reagent (Invitrogen, USA). The concentration and purity of the RNA samples were determined spectro-
scopically. Reverse transcription was performed with M-MLV (Promega, USA) following standard protocols. For 
the TaqMan-based real-time reverse transcription-polymerase chain reaction (RT-PCR) assays, the ABI 7900 HT 
Sequence Detection system (Applied Biosystem, Foster City, CA) was used. For quantitative PCR of miRNA, the 
miR-19a-3p/19b-3p primer and EzOmics SYBR qPCR kit were purchased from Biomics. Amplification procedure 
was 94 °C for 5 min, followed by 30 cycles at 94 °C for 30 s, 61 °C for 45 s, finally 72 °C for 10 min.

Variations in expression of miR-19a-3p/19b-3p between different RNA samples from cells or plasma 
were calculated after normalization to U6 or ath-miR-156a, respectively50. The methods were carried out in 
accordance with the approved guidelines and all experimental protocols were approved by the First Affiliated 
Hospital of Nanjing Medical University. The ethical code of our study is 2013-SRFA-078 obtained from the 
licensing committee of Nanjing Medical University. For quantification of TGF-β  R II transcripts, Q-PCR was 
carried out with total RNA samples extracted from human cardiac fibroblasts after miR-19a-3p/19b-3p mim-
ics transfection. TGF-β  R II (158 bp) mRNA was amplified at an annealing temperature of 60 °C and using 
the following primers: TGF-β  R II (forword): 5′ -CAGAAATCCTGCATGAGC-3′  and TGF-β  R II (reverse): 
5′ -GCAGCATCTTCCAGAATAAAG-3′ . TaqMan quantitative assay was performed with the expression level 
of the corresponding housekeeping gene GAPDH as an internal control. The nucleotide sequences of miR-19a-
3p/19b-3p are available in the GenBank database with the accession numbers of LM378760.1, LM378761.1.

Cell synchronization and flow cytometry. Autophagy induction of human cardiac fibroblasts was 
examined using SNLYSO Autophagy Detection Kit (Catalog Number: E0010, SNPT, Chengdu, China), accord-
ing to the manufacturer’s instructions. In brief, cells were treated for indicated condition and the medium was 
gently removed. 250 μl SNLYO Sensor was added to cover the sample and incubated for 20 hours. Finally, cells 
were treated with trypsin and collected to make the density of 105~106/ml and analyzed by BD FACSCalibur™  
Flow Cytometry System (Franklin Lakes) and a computer station running Cell Quest software (BD Biosciences, 
Franklin Lakes, NJ).

Transwell invasion assay. The invasion behavior of human cardiac fibroblasts was determined using 
24-well Millicell Hanging Cell Culture inserts with 8 mm PET membranes (Millipore, Bedford, Massachusetts, 
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USA) as described previously45,51–53. Briefly, after the cells were treated for indicated condition, 5.0 ×  104 human 
cardiac fibroblasts in 200 μl serum-free DMEM medium were plated onto BD BioCoatTM MatrigelTM Invasion 
Chambers (8 μM pore size polycarbonate filters; BD Biosciences), while complete medium containing 10% FBS 
was added to the lower chamber. After processing the invasion chambers for 48 hours (37 °C, 5% CO2) in accord-
ance with the manufacturer’s protocol, the non-invading cells were removed with a cotton swab; the invading 
cells were fixed in 100% methanol and then stained with crystal violet solution and counted microscopically. The 
data are presented as the average number of cells attached to the bottom surface from five randomly chosen fields.

Western blotting. Briefly, after washing twice with PBS, total cellular proteins were extracted with lysis 
buffer (50 mmol/l Tris [pH 7.4], 150 mmol/l NaCl, 1% Triton X-100, 1% deoxycholic phenylmethylsulfonyl flu-
oride, 1 mg/ml aprotinin, 5.0 mm sodium pyrophosphate, 1.0 g/ml leupeptin, 0.1 mm phenylmethylsulfonyl flu-
oride, and 1 mm/l DTT). Protease inhibitors were added immediately before use. The lysates were centrifuged at 
13,000×  g for 15 min at 4 °C. The concentration of total proteins was measured using the BCA assay method with 
Varioskan spectrofluorometer and spectrophotometer (Thermo, Waltham, MA) at 562 nm. Protein samples were 
separated with 12% SDS-PAGE gel and electrophoretically transferred onto the polyvinylidene difluoride (PVDF) 
membranes (Millipore, Boston, MA). Immune complexes were formed by incubation of proteins with primary 
antibodies overnight at 4 °C. After incubation with the appropriate secondary antibodies, blots were visualized 
using the ECL plus Western blotting detection reagents (Bio-Rad) and the ChemiDoc XRS Plus luminescent 
image analyzer (Bio-Rad, Hercules, CA, USA). Densitometric analysis of band intensity was performed using 
Image lab software (Bio-Rad, Hercules, CA, USA)30.

Immunocytochemistry. IHC staining of heart valve tissue using MAP-LC3, TGF-β  R I, TGF-β  R II, 
Fibronectin, MMP-2, MMP-9 antibodies was performed. Briefly, the twenty heart valve tissue samples of 20 
cases patients with dilated cardiomyopathy were subjected to deparaffinization, rehydration, and antigen retrieval 
before the staining procedures were performed. The tissue slides were blocked with 2.5% normal horse serum 
for 10 minutes. Then, tissue slides were incubated with rabbit anti-human MAP-LC3, TGF-β  R I, TGF-β  R II, 
Fibronectin, MMP-2, MMP-9 antibody (dilution 1:50) overnight at 4 °C. After the tissue slides were washed, 
they were incubated with anti-mouse IgG HRP and anti-rabbit IgG HRP secondary antibody for 10 minutes. The 
slides were stained with 3, 3′ -diaminobenzidine (DAB) (Vector Laboratories), counterstained with hematoxylin 
(Vector Laboratories), dehydrated, treated with xylene, and mounted. All slides were examined and representative 
pictures were taken using an Olympus BX41 microscope (Olympus America, Melville, NY).

Statistical analyses. All data were expressed as mean ±  SEM and statistically compared by one-way 
ANOVA with Dunnett’s test and post-hoc tests were undertaken using the GraphPad Prism software. The details 
of each statistical analysis used were presented in the figure legends. Significance was indicated as *P <  0.05, 
#P <  0.05 and **P <  0.01, ##P <  0.01, $$P <  0.01.

Results
TGF-β1 simultaneously induces fibrosis and autophagy in human cardiac fibroblasts. Firstly, 
we investigated whether there was a correlation between TGF-β 1-induced autophagy and fibrosis in human car-
diac fibroblasts. Human cardiac fibroblasts were treated with TGF-β 1 (10 ng/ml) for 0, 24, 48, 72, and 96 hours. 
Protein samples were harvested for western blotting assay. The autophagy hallmarks LC3-I, LC3-II, p62/SQSTM1, 
as well as indicator proteins of the fibrogenesis response Collagen I α 2, Fibronectin and the Smad phospho-
rylation were analyzed. TGF-β 1 induced LC3-II lipidation, with parallel increases in collagen I α 2, fibronectin 
expression and Smad2 and Smad3 phosphorylation. Our results showed that TGF-β 1 (10 ng/ml) significantly 
increased the synthesis of Collagen type I α 2 and Fibronectin. Simultaneously, the conversion of water solu-
ble MAP-LC3 (LC3- I) to the autophagosome-associated lipidated form (LC3-II) and p62 degradation were 
determined with the increase of Smad 2 and Smad 3 phosphorylation (Fig. 1a,b). The effect of TGF-β 1 on cell 
cytotoxicity was determined by CCK-8 assay. As shown in Fig. 1c, we also showed that TGF-β 1 treatment at a 
concentration of 10 ng/ml exhibited little effect on the viability of human cardiac fibroblasts. So, this dose was 
taken in the following experiments. To obtain more quantitative assessment of the induction of autophagy, we 
used flow cytometer analysis to count SNLYSO sensor (autolysosome fluorescent probe) labeled cells and assess 
the presence of autophagy flux. Figure 1d,e clearly show autophagosome and autophagolysosmes flux in human 
cardiac fibroblasts stimulated with TGF-β 1.

TGF-β1-induced autophagy is required for fibrosis in human cardiac fibroblasts. To further 
determine whether autophagy induction contribute to TGF-β 1-induced fibrosis, we examined the effects of 
TGF-β 1 stimulation of human cardiac fibroblasts in the presence of autophagy inducer and inhibitor. Rapamycin 
and 3-methyladenine (3-MA) are known pharmacological inducer and inhibitor of autophagy, as reported by our 
group and others. Thus we co-treated human cardiac fibroblasts with rapamycin (1 μM) or 3-MA (5 mM) and 
TGF-β 1 (10 ng/ml) for 48 and 72 hours, and collagen type I α 2 and fibronectin expression levels were then com-
pared with their corresponding controls (Fig. 2a,b). We found that rapamycin or 3-MA co-treatment significantly 
increased or decreased TGF-β 1-induced pro-fibrotic effects in human cardiac fibroblasts (Fig. 2b). Densitometric 
analysis of LC3-II in co-treated human cardiac fibroblasts (TGF-β 1 and autophagy inducer or inhibitor) versus 
controls revealed that TGF-β 1 treatment is associated with an increase in LC3 -II at 48 hours versus control and 
an increase in LC3-II at 96 hours. We suggest that increased or decreased autophagy in the presence of autophagy 
inducer or inhibitor is linked to basal production of matrix component proteins and thus that autophagy is posi-
tively correlated to the synthesis of matrix components and human cardiac fibroblasts function.

Moreover, to utilize a parallel non-pharmacological approach to test the same hypothesis, beclin 1 (BECN1) 
gene expression was suppressed using siRNA interference in human cardiac fibroblasts (Fig. 2c) and later treated 
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with TGF-β 1 (10 ng/ml). These cells were compared with human cardiac fibroblasts, which were infected with 
scrambled siRNA. The expression of collagen type I α 2 and fibronectin were then detected and compared 
between groups of scrambled siRNA and BECN1 siRNA transfection. The results showed that BECN1 knock-
down significantly decreased TGF-β 1-induced pro-fibrotic effects (Fig. 2d–g). We further used pCMV-myc-Atg5 
plasmid to transfect into human cardiac fibroblasts and showed that TGF-β 1 stimulation induced significantly 
more fibronectin synthesis in pCMV-myc-Atg5 overexpressed cells compared with corresponding control cells 
(Fig. 2h–k). Our results showed that rapamycin and pCMV-myc-Atg5 increased TGF-β 1-induced expression 
of MMP2, MMP9, and Vimentin in human cardiac fibroblasts (Fig. 2l,m); 3-MA and BECN1 siRNA decreased 
TGF-β 1-induced expression of MMP2, MMP9, and Vimentin in human cardiac fibroblasts (Fig. 2l,n), respec-
tively. Our experiments showed that autophagy induction significantly increased the TGF-β 1-induced fibrogenic 
effect.

Coincidence of elevated autophagy marker and fibronectin induction in human heart valve  
tissue. The twenty heart valve tissue samples of 20 cases patients with dilated cardiomyopathy were randomly 
selected for IHC assay. Representative photomicrographs of Fibronectin, MMP-2, MMP-9, MAP-LC3, TGF-β  
R I, and TGF-β  R II expression in 20 samples of heart valve tissue from patients with HF were determined by 
IHC staining. Our results showed in Fig. 3 that heart valve tissue from patients with dilated cardiomyopathy was 

Figure 1. TGF-β1 simultaneously induces fibrosis and autophagy in human cardiac fibroblasts. (a) Human 
cardiac fibroblasts were treated with TGF-β 1 (10 ng/ml) for 0, 24, 48, 72, and 96 hours. Protein samples were 
harvested for western blotting assay. The autophagy hallmarks (LC3-I, LC3-II, p62/SQSTM1), as well as 
indicator proteins of the fibrogenesis response in fibroblasts (collagen I α 2, fibronectin and the Smad signaling 
pathway) were analyzed by western blotting assay. TGF-β 1 induced LC3-II lipidation, with parallel increases in 
collagen Iα 2, fibronectin expression and Smad2 and Smad3 phosphorylation. Data were normalized to GAPDH 
levels. Results are the means of three independent experiments from four different donors. (b) Representative 
quantitative data of densitometric analyses. Data are the means of three independent experiments from three 
different donors. For each experiment, LC3-I, LC3-II, p62/SQSTM1, collagen I α 2, and fibronectin levels in 
HCF treated with TGF-β 1 were compared with those from time-matched controls and normalized to GAPDH 
levels. *p <  0.05, **p <  0.01 vs. 0 hrs group. (c) TGF-β 1 treatment does not affect cell viability of human cardiac 
fibroblasts. HCF cells were exposed to TGF-β 1 (10 ng/ml) for the indicated time points (24, 48, 72, 96 hours), 
and cell viability and proliferation was measured by CCK-8 assay as described in the Materials and Methods 
section in three different culture experiments (n =  3). TGF-β 1 treatment was not associated with any significant 
changes in cell viability. (d,e) HCF cells were treated with 10 ng/ml TGF-β 1 for 0, 24, 48, 72, and 96 h. Cells 
were then probed by SNLYSO sensor (an autolysosome fluorescent probe) and autophagic cells were analyzed 
and quantitated by flow cytometer. Results from three independent experiments are shown as means ±  SEM. 
**p <  0.01 vs. 0 hrs group.
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positive for Fibronectin, MMP-2, MMP-9, MAP-LC3, TGF-β  R I, and TGF-β  R II, except for sparse cytoplasmic 
staining in a few glia and neurons. Although these experiments were only conducted in specimens from a limited 
number of patients, their results are consistent with the preclinical evidence shown above and suggest that nota-
bly high expression of TGF-β  R I and TGF-β  R II may be associated with autophagy-mediated fibrosis in human 
heart diseases.

MiR-19a-3p/19b-3p expresses with low levels in the plasma of HF patients. Studies of the last 
two years have shown that miRNA can be free outside the cells and stable in plasma or serum. Thus, these miR-
NAs can be used as disease diagnosis, therapeutic response and prognosis evaluation of effective and sensitive 
biomarker54. Thus, the differential expressions of 26 kinds of microRNAs from the literature were verified by 

Figure 2. TGF-β1-induced autophagy is required for fibrogenesis in human cardiac fibroblasts. (a) HCF 
were treated with TGF-β 1 (10 ng/ml) in the presence of the rapamycin (1μM) and 3-MA (5 mM) for indicated 
durations. Western blotting revealed that inhibition of autophagy by 3-MA abrogated fibrogenic effects of 
TGF-β 1, whereas rapamycin treatment enhanced fibrogenic effects of TGF-β 1. (b,c) Densitometric analysis 
of fibronectin and collagen I α 2 levels in HCF, which were stimulated with TGF-β 1 or rapamycin (1μM) and 
3-MA (5 mM). **p <  0.01 vs. TGF-β 1-treated group. (d,e) Inhibition of autophagy by BECN1 siRNA decreased 
fibronection and collagen I α 2 biosynthesis. BECN1 knocked down cells and their correspondence scramble 
infected cells were treated with TGF-β 1 (10 ng/ml) for 48 and 72 hours. Protein loading was confirmed using 
GAPDH. Data are means of independent experiments of HCF cells from three different donors. For each 
experiment, LC3-I, LC3-II, p62/SQSTM1, fibronectin, and collagen I α 2 levels were compared with those from 
time-matched controls and normalized to GAPDH levels. (f–h) Densitometry analysis showed that BECN1 
knockdown was associated with a significant (**p <  0.01) decrease of TGF-β 1-induced fibronectin and collagen I 
α 2 biosynthesis in HCF. (I,j) HCF were pro-transfected with Atg 5 (pCMV-myc-Atg 5) and TGF-β 1 (10 ng/ml)  
for another 48 hours. LC3-I, LC3-II, p62/SQSTM1, collagen I α 2, and fibronectin levels were measured in whole-
cell lysates. (k) Densitometry analysis revealed that autophagy induction by Atg 5 overexpression was associated 
with a significant (**p <  0.01) increase in TGF-β 1-induced fibrogenic effects in HCF. (l) HCF were treated with 
TGF-β 1 (10 ng/ml) in the presence of the rapamycin (1μM) and 3-MA (5 mM) for 48 hours. MMP-9, MMP-2, 
and Vimentin levels were measured in whole-cell lysates and normalized to GAPDH levels. (m,n) HCF were 
pre-transfected with BECN1 siRNA or Atg 5 (pCMV-myc-Atg 5) and TGF-β 1 (10 ng/ml) for another 48 hours. 
MMP-9, MMP-2, and Vimentin levels were measured in whole-cell lysates and normalized to GAPDH levels.
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Q-PCR assay and ath-156a was added as the external reference for corresponding control. Results show that 
expression of miRNA19a-3p/19b-3p is much low in HF patients (Fig. S1a,b). As shown in Fig. S1c,d, the expres-
sions of miRNA 19a-3p/19b-3p were significantly down-regulated in DCM plasma pool samples. The expression 
of miRNA 19a-3p/19b-3p in the plasma samples of 38 patients with DCM was quantitatively tested by qRT-PCR. 
MiRNA 19a-3p/19b-3p decreased in DCM plasma samples. P <  0.001 (miRNA 19a); P =  0.001 (miRNA 19b). 
The expression of miRNA 19a-3p/19b-3p decreased more obviously in end stage of DCM plasma samples than in 
early stage. P =  0.009 (miRNA 19a); P =  0.008 (miRNA 19b) (Fig. S1e,f).

In addition, twenty plasma samples of 20 cases patients with heart failure were randomly selected as HF 
plasma samples; and another twenty plasma samples of 20 cases normal people were selected as normal control 
plasma samples. The characteristics of heart failure patients (HF group) and healthy controls (C group) were dis-
played in (Table 1). As shown in Fig. 4a,b, the expression of miR-19a-3p/19b-3p was significantly down-regulated 
in HF plasma samples, P <  0.001 compared to Control group.

MiR-19a-3p/19b-3p negatively regulates multiple players in fibrosis. To investigate whether the 
differential expression of miR-19a-3p/19b-3p was correlated with cell invasion, human cardiac fibroblasts were 
transfected with miR-19a-3p/19b-3p mimics and nonspecific miRNA Control. Transwell migration assay was 
used to investigate migration activity. As shown from the images in Fig. 5a,b, when the expression of miR-19a-
3p/19b-3p was up-regulated by mimics in human cardiac fibroblasts, the cells demonstrated much low-migration 
potentiality compared to cells treated with miRNA Control. Q-PCR was used to analyze the expression of miR-
19a-3p/19b-3p when treated with mimics and nonspecific miRNA Control. The result showed that the expression 
of miR-19a-3p/19b-3p was negative correlation with the migration ability of human cardiac fibroblasts (Fig. 5c,d).

It has been reported that MMP-2 and MMP-9 play a critical role in cell invasion by stimulating degradation 
of the ECM and cell migration. To probe the possible anti-invasion mechanism of miR-19a-3p/19b-3p, we tested 
the activity protein of MMP-2/9 in miR-19a-3p/19b-3p-transfected human cardiac fibroblasts. The protein of 
MMP-2 and MMP-9 in were decreased by miR-19a-3p/19b-3p, suggesting that miR-19a-3p/19b-3p suppresses the 
invasion ability of human cardiac fibroblasts through down-regulation of the expression of MMP-2/9 (Fig. 5e,f). 

Figure 3. Coincidence of elevated autophagy, fibrosis, invasion and TGF-β RI/II in human heart valve 
tissue. The twenty heart valve tissue samples of 20 cases patients with dilated cardiomyopathy were randomly 
selected for IHC assay. Representative photomicrographs of Fibronectin, MMP-2, MMP-9, MAP-LC3, TGF-β  
R I, and TGF-β  R II expression in 20 samples of heart valve tissue from patients with dilated cardiomyopathy 
were determined by IHC staining. Image magnification: 100×  (left); 200×  (right). Scale bar of 10 mm (right) is 
equivalent to 50 μm.

Characteristics HF group C group p

N(F/M) 20 (8/12) 20 (10/10) > 0.05

Age(years) 58.1 (10.1) 54.3 (12.4) > 0.05

LVEF (%) 37.1 (8.3) 64.8 (3.8) < 0.001

Log[BNP(ng/L)] 3.41 (0.32) NA NA

Table 1.  Characteristics of heart failure patients (HF group) and healthy controls (C group). Values are 
expressed as mean (standard deviation). F/M, numbers of females and males; LVEF, left ventricular ejection 
fraction as assessed by echocardiography; BNP, plasma brain natriuretic polypeptide (ng/L), NA, not available.
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Epithelial mesenchymal transition (EMT), characterized as loss of polarity and epithelial markers (including 
junctional and cell-cell adhesion proteins), has long been known to play a role in cellular metastasis and cell inva-
sion. To further examine whether miR-19a-3p/19b-3p would inhibit EMT, consistent with metastasis ability, after 
transient transfection with miR-19a-3p/19b-3p mimics in human cardiac fibroblasts, both vimentin and α -SMA 
mRNA levels were decreased compared to miRNA Control group (Fig. 5e,f). In summary, miR-19a-3p/19b-3p 
was important in regulating reorganization of actin cytoskeleton and the maintenance of cell morphology.

MiR-19a-3p/19b-3p directly targeted TGF-β Receptor II. It is generally considered that miRNAs exert 
their function through regulating the expression of their downstream target genes. To investigate the target of 
miR-19a-3p/19b-3p in human cardiac fibroblasts, systemic bioinformatic publicly available algorithms were used 
to analyze and identify potential targets. We found that human TGFBR2 (TGF-β  Receptor II) 3′ -UTR contained 
putative miR-19a-3p/19b-3p complementary sites predicted using TargetScan 7.0 (http://www.targetscan.org) 
(Fig. 6a). To explore whether the TGF-β  Receptor II was the target gene of the miR-19a-3p/19b-3p, we con-
structed the luciferase reporter vector with the putative TGF-β  Receptor II 3′  UTR target site for the miR-19a-
3p/19b-3p downstream of the luciferase gene (pGL3- TGF-β  R II -3′ -UTR). Luciferase reporter vector together 
with the miR-19a-3p/19b-3p mimics or the miRNA mimic control were transfected into HCF, respectively. In 
HCF, significant decrease in relative luciferase activity was noted when pGL3- TGF-β  R II -3′ -UTR was cotrans-
fected with the miR-19a-3p/19b-3p mimics but not with the miRNA mimic control, respectively. These results 
showed that TGF-β  R II was the target gene of the miR-19a-3p/19b-3p (Fig. 6b). To further identify the miR-
19a-3p/19b-3p putative target gene TGF-β  R II that might be involved in autophagy-related fibrosis, transfection 
and Q-PCR analysis was conducted to determine the mechanism by which miR-19a-3p/19b-3p inhibited TGF-β  
Receptor II mRNA. Figure 6c indicates that transfection of human cardiac fibroblasts from controls with miR-
19a-3p/19b-3p mimics induced significant decrease in TGF-β  Receptor II mRNA expression levels compared 
to miRNA Control transfection. Western blotting revealed that the protein level of TGF-β  Receptor II but not 
TGF-β  Receptor I was markedly reduced in the cells over-expressing miR-19a-3p/19b-3p compared to the non 
transfected cells (Fig. 6d,e).

We further evaluated whether miR-19a-3p/19b-3p modulation altered the activation of Smad/Akt pathway 
proteins after TGF-β 1 treatment. Western blotting analyses for total and phosphorylated forms of Smad 2 and Akt 
(p-Smad 2, p-Akt) expression in human cardiac fibroblasts were carried out. The experiments were normalized 
with GAPDH at baseline level and after pro-transfection with miR-19a-3p/19b-3p mimics, miR Control and stim-
ulation with TGF-β 1 (10 ng/ml) for 72 hours. As shown in Fig. 6f, the functional phosphorylation level of Smad 2 
and Akt is up-regulated by TGF-β 1 treatment in human cardiac fibroblasts. MiR-19a-3p/19b-3p modulation did 
not affect the expression of total Smad 2/3 and Akt. However, the over-expression of miR-19a-3p/19b-3p signifi-
cantly reduced the level of the phosphorylated forms of Smad 2 and Akt (Fig. 6f,g).

MiR-19a-3p/19b-3p decreases TGF-β1 induced autophagy-related fibrosis. We validated that miR-
19a-3p/19b-3p negatively regulates multiple players in autophagy and fibrosis and that TGF-β  R II was one of 
miR-19a-3p/19b-3p targets was also validated in previous results. To further explore whether miR-19a-3p/19b-3p 
inhibited autophagy-mediated fibrosis induced by targeting TGF-β 1, pharmacological induction of autophagy 
was applied. It was shown in Fig. 7 that we got an expected inhibition effect after transfected with miR-19a-
3p/19b-3p for 72 h. The invasion potential of human cardiac fibroblasts was examined by transwell invasion assay 
with co-treatment of miR-19a-3p/19b-3p mimics and TGF-β 1 (10 ng/ml). The treatment with miR-19a-3p/19b-3p 
mimics led to significantly decreased invasion cells compared to the treatment of Control group (Fig. 7a,b). 
Further we investigated the relationship between autophagy and invasion potential in human cardiac fibroblasts 
by SNLYSO autophagy detection assay with co-treatment of miR-19a-3p/19b-3p mimics and TGF-β 1 (10 ng/ml). 
It was shown in Fig. 7c,d, the autophagy induction of TGF-β 1 was significantly reduced by miR-19a-3p/19b-3p 
mimics (16.8% to 2.37% and 2.99%). Confocal fluorescence images of endogenous MAP-LC3 and SNLYSO 
sensor-labeled compartment in human cardiac fibroblasts also verified the above results. The results showed that 
miR-19a-3p/19b-3p reduced the accumulation of both the yellow and red puncta induced by TGF-β 1 (Fig. 7e). 

Figure 4. MiR-19a-3p/19b-3p expresses with low levels in heart failure patients. (a,b) The plasma expression 
levels of miR-19a-3p/19b-3p in heart failure (HF) and Control groups. The y-axis represents the miRNA’s 
concentration (1 ×  10−4 nM) calculated after normalization to ath-miR-156a, which served as external 
reference. P <  0.001.

http://www.targetscan.org
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The vacuoles assumed to be autophagosomes, would be expected to undergo acidification after maturation and 
finally, fuse with lysosomes so that their content is digested by lysosomal hydrolases. The large endosomes subse-
quently recruit multiple autophagosomes.

We next determined whether the expression of autophagy and fibrosis related proteins would be modulated by 
miR-19a-3p/19b-3p. Human cardiac fibroblasts were pre-transfected with miR-19a-3p/19b-3p and miR Control. 
Then cells were treated with TGF-β 1 (10 ng/ml) for the indicated duration. LC3-I, LC3-II, p62/SQSTM1, collagen 
Iα 2, fibronectin, MMP-9, and MMP-2 levels were measured in whole-cell lysates. Protein loading was confirmed 
using GAPDH. The conversion from LC3-Ito LC3-II and degradation of p62/SQSTM1 induced by TGF-β 1 were 
significantly restored by miR-19a-3p/19b-3p (Fig. 8a,b). Consistently, the increased synthesis of collagen type 
Iα 2 and fibronectin and expression of MMP-2 and MMP-9 induced by TGF-β 1 were also significantly restored 
by miR-19a-3p/19b-3p (Fig. 8a,c). To determine whether autophagy activation rescued the inhibition effect of 
miR-19a-3p/19b-3p on autophagy-related fibrosis, rapamycin was applied for autophagy inducer. As is shown 
in Fig. 8d–f, rapamycin could further increase LC3-II level, synthesis of collagen type I α 2 and fibronectin and 
expression of MMP-2 and MMP-9 in human cardiac fibroblasts with miR-19a-3p/19b-3p and TGF-β 1. Taken 
together, these results demonstrated that autophagy mediated the regulation of miR-19a-3p/19b-3p on fibrosis in 
human cardiac fibroblasts.

Figure 5. MiR-19a-3p/19b-3p negatively regulates multiple players in fibrosis. (a) Photographs of the cell 
invasion through the polycarbonate membrane stain by crystal violet. The migratory cell numbers of human 
cardiac fibroblasts transfected with miR-19a-3p/19b-3p mimics were significantly more than that of cells 
transfected with miR Control respectively. (b) The inhibitory effect of miR-19a-3p/19b-3p on the invasion of 
the cells was quantified. **P <  0.01 compared with control. Data were presented as the mean ±  SEM of three 
separate experiments. (c,d) The Q-PCR analyses of the expression of miR-19a-3p/19b-3p in human cardiac 
fibroblasts transfected with miR-19a-3p/19b-3p mimics, NC and untranfected one. −△△Ct =  − (Ctx-CtU6x)-
(CtNCx-CtU6NC). Data were present as mean ±  SEM, n =  3, **P <  0.01 vs. NC group. (e) Human cardiac 
fibroblasts were transfected with miR-19a-3p/19b-3p mimics, miR Control. Expression of MMP-2, MMP-9, 
Vimentin and α -SMA after 72 hours were detected by western blotting. Protein loading was confirmed using 
GAPDH. (f) Quantitative data of densitometric analyses. The ratio of MMP-2, MMP-9, Vimentin and α -SMA 
to GAPDH were displayed as mean ±  SEM, n =  3, *p <  0.05, **p <  0.01 vs. NC group.
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Discussion
HF is characterized by left ventricular (LV) remodeling and dilatation, with activation of a fetal gene program 
that triggers pathological changes in the myocardium associated with progressive dysfunction55. Tissue biopsy 
and cardiac radionuclide scan showed that there was no necrosis of cardiac muscle cells in the early stage of HF, 
but the degeneration, apoptosis and interstitial fibrosis of myocardial cells56–61. Therefore, most of the early HF 
patients firstly exhibit heart cavity expansion without obvious cardiac function insufficiency. With the continued 

Figure 6. MiR-19a-3p/19b-3p directly targets TGF-β Receptor II. (a) The miR-19a/b directly target on 
human TGF-β  Receptor II were predicted using TargetScan 7.0. (b) Dual luciferase assay performed in HCF 
cells suggested that TGF-β  Receptor II was the target gene of the miR-19a-3p/19b-3p. In HCF cells, significant 
decrease in relative luciferase activity was noted when pGL3- TGF-β  R II -3′ -UTR was cotransfected with 
the miR-19a-3p/19b-3p mimics but not with the miRNA mimic control, respectively. **p <  0.01. (c) TGF-β  
Receptor II mRNA levels were determined by Q-PCR and normalized to GAPDH. Human cardiac fibroblasts 
were transfected with miR-19a-3p/19b-3p mimics, miR Control. The gene expression of TGF-β  Receptor II was 
detected after 48 hours. Data were present as the mean ±  SEM, n =  3, **p <  0.01 vs. miR Control group.  
(d) Human cardiac fibroblasts were transfected with miR-19a-3p/19b-3p mimics, miR Control. TGF-β  Receptor 
I/II protein and GAPDH after 72 hours were detected by western blotting. (e) Quantitative data of densitometric 
analyses. MiR-19a-3p/19b-3p mimic treatment was not associated with any significant changes in TGF-β  
Receptor I expression. The ratio of TGF-β  Receptor II protein to GAPDH were displayed as mean ±  SEM, 
n =  3, **p <  0.01 vs. miR Control group. (f) Western blotting analyses for total and phosphorylated forms of 
Smad 2 and Akt (p-Smad 2, p-Akt) expression in human cardiac fibroblasts. The experiments were normalized 
with GAPDH at baseline level and after pro-transfection with miR-19a-3p/19b-3p mimics, miR Control and 
stimulation with TGF-β 1 (10 ng/ml) for 72 hours. Results are the means from three independent experiments 
using cells from three different donors. (g) Densitometric analysis of Smad2 and Akt phosphorylation levels 
in human cardiac fibroblasts. Each bar represents the mean ±  SEM calculated from three independent 
experiments. *p <  0.05 compared with miR Control and TGF-β 1 group; **p <  0.01 compared with miR Control 
and TGF-β 1 group.
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Figure 7. MiR-19a-3p/19b-3p regulates human cardiac fibroblasts autophagy-mediated fibrosis induced  
by TGF-β1. (a) Effects of miR-19a-3p/19b-3p and TGF-β 1 on cell invasion in human cardiac fibroblasts  
in vitro. Photographs of the cell invasion through the polycarbonate membrane stained with crystal violet.  
(b) The inhibitory effect of miR-19a-3p/19b-3p and TGF-β 1 on the invasion of the cells was quantified. 
Data were presented as the mean ±  SEM of three separate experiments. *p <  0.05, **p <  0.01, group of pro-
transfected with miR-19a-3p/19b-3p mimics and stimulation of TGF-β 1 compared with control. (c,d) Human 
cardiac fibroblasts were pro-transfected with miR-19a-3p/19b-3p and then treated with 10 ng/ml TGF-β 1 for 
72 h. Cells were then probed by SNLYSO sensor and autolysosomes were analyzed and quantitated by flow 
cytometer. Results from three independent experiments are shown as means ±  SEM. **p <  0.01, group of pro-
transfected with miR-19a-3p/19b-3p mimics and stimulation of TGF-β 1 compared with control. (e) Confocal 
fluorescence images of endogenous MAP-LC3 and SNLYSO sensor-labeled compartment in human cardiac 
fibroblasts. Human cardiac fibroblasts were pro-transfected with miR-19a-3p/19b-3p and then treated with 
10 ng/ml TGF-β 1. MAP-LC3 (green) was labeled with primary anti-MAP-LC3 polyclonal antibody. Goat 
anti-rabbit IgG/FITC were used as secondary antibody. Cells were simultaneously imaged in the presence of 
SNLYSO sensor (red) to visualize autophagy. Nuclei (blue) were labeled by DAPI. Confocal microscopy images 
were obtained. Bar =  30 μm.
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existence of pathological matrix, necrosis of myocardial cells and extracellular matrix edema begin to appear, 
and then the heart function reduces till heart failure. Therefore, further study on the internal mechanism of HF 
pathology and explore the effective means to block the mechanism, will provide valuable basic research infor-
mation for clinical treatment of HF. Indeed, certain mutations often induce HF with cardiac arrhythmia that is 
considered as the potential trigger of sudden cardiac death62,63. Thus, both the effective prognostic determination 
and appropriate cardiac care depend on accurate molecular and genetic diagnoses and therapy.

In this study, we have shown that TGF-β 1 treatment simultaneously induced autophagy and fibrosis in 
human cardiac fibroblasts (Fig. 1). Either inhibition or induction of autophagy reduces and increases fibrotic 
characteristic in TGF-β 1-induced fibrosis (Fig. 2). These findings highlighted a linking between autophagy 
and elevated matrix protein synthesis by human cardiac fibroblasts and strongly supported the hypothesis that 
TGF-β 1-induced fibrosis was depending on its autophagy induction. In the present study we showed that the 
over-expressions of TGF-β  Receptor I and TGF-β  Receptor II are accompanied with hallmarks of autophagy, 
fibrosis, and ECM production in human cardiac tissues from heart valve (Fig. 3). Although miRNAs are essen-
tial to the regulation of cardiac remodeling, many of the mechanisms have not been well characterized45–47,64. 
The miR-19a-3p/19b-3p expression is specifically decreased in patients with DCM, especially in the end stage of 

Figure 8. MiR-19a-3p/19b-3p decreases expression of autophagy-related fibrosis members induced by 
TGF-β1. (a) Human cardiac fibroblasts were pre-transfected with miR-19a-3p/19b-3p and miR Control. Then 
cells were treated with TGF-β 1 (10 ng/ml) for the indicated duration. LC3-I, LC3-II, p62/SQSTM1, collagen I 
α 2, fibronectin, MMP-9, and MMP-2 levels were measured in whole-cell lysates. Protein loading was confirmed 
using GAPDH. (b,c) Quantitative data of densitometric analyses. The ratios of LC3-I, LC3-II, p62/SQSTM1, 
collagen I α 2, fibronectin, MMP-9, and MMP-2 to GAPDH were present as mean ±  SEM, n =  3, *p <  0.05, 
**p <  0.01 vs. group of miR Control and TGF-β 1 co-treatment. (d) Rapamycin reverses the inhibition effect of 
miR-19a-3p/19b-3p on TGF-β 1-induced autophagy-related fibrosis. Human cardiac fibroblasts were transfected 
with miR-19a-3p/19b-3p and miR Control. Then cells were pretreated with rapamycin (4 hours, 1 μM) and 
co-treated with TGF-β 1 (10 ng/ml) for the indicated duration. LC3-I, LC3-II, p62/SQSTM1, collagen Iα 2, 
fibronectin, MMP-9, and MMP-2 levels were measured in whole-cell lysates. Protein loading was confirmed 
using GAPDH. (e,f) Densitometry analysis showed that rapamycin (1 μM) significantly reversed the inhibition 
of miR-19a-3p/19b-3p on TGF-β 1-induced autophagy-related fibrosis in human cardiac fibroblasts. *p <  0.05, 
**p <  0.01 vs group of miR Control and TGF-β 1 co-treatment; ##p <  0.01 vs group of miR 19a-3p and TGF-β 1 
co-treatment; $$p <  0.001 vs group of miR 19b-3p and TGF-β 1 co-treatment.
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DCM (Fig. 4). Herein we demonstrated that the cardiac-specific over-expression of miR-19a-3p/19b-3p resulted 
in inhibition of interstitial fibrosis, invasion potential, and epithelial mesenchymal transition (EMT) (Fig. 5). 
Furthermore, we confirmed and extended our previous discoveries, revealing that miR-19a-3p/19b-3p is a neg-
ative regulator of TGF-β 1/Smad2 signaling via directly targeting TGF-β  Receptor II (Fig. 6). To elucidate that 
miR-19a-3p/19b-3p is the important regulator of cardiac homeostasis and remodeling for potential therapeutic 
strategy for heart failure, we therefore demonstrated the miR-19a-3p/19b-3p inhibited the fibrosis through auto-
phagy inhibition by targeting TGF-β  R II in human cardiac fibroblasts (Figs 7 and 8).

Autophagy basically exists in most cells and can be rapidly activated as an adaptive response to renew intra-
cellular substances and nutrition under cellular stimulation65,66. Autophagy (macro-autophagy) is a highly con-
served process that is tightly regulated by various biological mechanisms and has important roles in many events, 
such as cellular remodeling during differentiation, development, adapt to environmental stress31,67. In contrast, 
autophagic cell death can drive cells towards type II programmed cell death, which is morphologically distinct 
from type I programmed cell death (apoptosis). However, a growing body of evidences points that autophagy 
is more important for cell survival. The accumulation of autophagosomes and autolysosomes exhibit survival 
response to deadly stress in order to rid the cell of harmful proteins or damaged organelles33,65. Autophagy is 
required to maintain cardiac homeostasis and function. Conversely, disrupted autophagy may contribute to car-
diac remodeling37. TGF-β 1 has been demonstrated to induce both autophagy and fibrosis in many tissues35,68. 
The coincidence of elevated autophagy marker and fibronectin induction in many diseases has been previously 
observed35. In the present study, our results demonstrate that autophagy is necessary for induction of fibrosis in 
human cardiac fibroblasts.

After TGF-β 1 binding to the TGF-β  R II, the phosphorylated TGF-β  R I recruits and phosphorylates 
receptor-regulated Smad proteins (Smad2/3 complex). Thus, we have evaluated the functional phosphoryl-
ated form of Smad 2 and Smad 3 after TGF-β 1 treatment and miR-19a-3p/19b-3p modulation. Our data show 
that the phosphorylated activated form of Smad 2 and Smad 3 after miR-19a-3p/19b-3p over-expression. 
Therefore the down-regulation of TGF-β  R II and phosphorylated form of Smad 2 and Smad 3 are modulated by 
miR-19a-3p/19b-3p.

MiRNAs are considered as important regulators of gene expression, suppressing the expression of target genes 
through translational repression or degradation of a target transcript39,53. Because of the difficulty to obtain clini-
cal HF heart tissue, we could not verify the miRNA expression in HF heart tissues. However, an important study 
on heart tissues of 25 patients with HF has shown the abnormal expression of various miRNA. Among them, the 
decreasing ratio of miRNA-19a/b is the most distinct48. Here, we focused on the regulation of miR-19a-3p/19b-3p 
on the autophagy-related fibrosis in human cardiac fibroblasts and the mechanisms of regulation of its target 
genes. We examined miR-19a-3p/19b-3p expression in human cardiac tissues and human cardiac fibroblasts by 
Q-PCR assay, as previously described. We integrated Targetscan 7.0 predictions and the resulting candidate func-
tions and found that the TGF-β  R II gene had the highest recurrence rate as a potential target gene of miR-19a-
3p/19b-3p. MiRNAs are likely to bind partially to homologous sequence of a target gene in the 3′ UTR53. We found 
that over-expression of miR-19a-3p/19b-3p could significantly reduce TGF-β  R II gene expression. Furthermore, 
we detected the TGF-β /Smad2 signaling transduction undergoing the over-expression of miR-19a-3p/19b-3p. 
These results suggested that miR-19a-3p/19b-3p can directly and negatively regulate TGF-β  R II gene expression 
and inhibit the TGF-β /Smad2 signaling transduction activated by TGF-β 1.
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