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α-Synuclein (α-Syn) is a major component of protein inclusions known as Lewy bodies, which are hallmarks of synucleinopathies
such as Parkinson’s disease (PD). The α-Syn gene is one of the familial PD-causing genes and is also associated with an increased
risk of sporadic PD. Numerous studies using α-Syn expressing transgenic animals have indicated that α-Syn plays a critical
role in the common pathogenesis of synucleinopathies. Drosophila melanogaster has several advantages for modeling human
neurodegenerative diseases and is widely used for studying their pathomechanisms and therapies. In fact, Drosophila models
expressing α-Syn have already been established and proven to replicate several features of human PD. In this paper, we review
the current research on synucleinopathies using α-Syn Drosophila models and, moreover, explore the possibilities of these models
for comprehensive genetic analyses and large-scale drug screening towards elucidating the molecular pathogenesis and developing
therapies for synucleinopathies.

1. Introduction

Protein inclusions known as Lewy Bodies (LBs) are one of the
hallmarks of Parkinson’s disease (PD), in which the major
component is now known to be α-synuclein (α-Syn) [1, 2].
LBs are found in the substantia nigra in PD and also more
extensively in other brain regions in other synucleinopathies
including multiple system atrophy and dementia with Lewy
bodies (DLB) [3, 4]. The α-Syn encoding gene, SNCA, is the
first gene in which missense mutations such as A30P and
A53T were found to cause familial PD [5, 6]. Furthermore,
the multiplication mutations of α-Syn gene were also found
to cause familial PD [7]. Most importantly, single nucleotide
polymorphisms (SNPs) of α-Syn have been reported to asso-
ciate with an increased risk of sporadic PD, which comprises
the majority of PD patients [8–11]. α-Syn expression has
been experimentally shown to mimic several aspects of PD
in transgenic animals, such as motor dysfunction, α-Syn
aggregation/accumulation, and neurodegeneration [12–14].
These phenotypes are manifested not only by mutations in
the α-Syn gene but also by overexpression of wild-type α-Syn

[15], indicating that α-Syn plays a critical role in the common
pathogenesis of synucleinopathies.

Drosophila melanogaster, commonly known as the fruit
fly, has been recognized as a powerful organism for modeling
human neurodegenerative diseases [16]. At least ∼75% of
human disease genes have Drosophila homologues [17].
Using Drosophila for modeling human neurodegenerative
diseases has various advantages as follows: (1) analysis of
gene functions in vivo, (2) rapid generation cycle (10–14
days) with a short life span (50–60 days), (3) suitability for
genetic analysis, (4) abundant genetic information, and (5)
little labor and cost-effective to maintain fly stocks (Table 1).
In fact, Drosophila models of several neurodegenerative
diseases including PD, Alzheimer’s disease, and the polyg-
lutamine diseases have already been established and have
successfully provided valuable insights into the elucidation
of pathomechanisms and development of therapies for these
diseases.

Feany and Bender first developed transgenic Drosophila
models expressing either wild-type or familial PD-linked
mutants (A53T and A30P) of human α-Syn [12]. These
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Table 1: Advantages of using Drosophila for modeling human
neurodegenerative diseases.

(1) Analysis of gene functions in vivo

At least ∼75% of human disease genes have Drosophila
homologues.

(2) Rapid generation cycle with a short life span

10–14 days from embryo to adults.

Average life span is ∼50–60 days.

(3) Suitable for genetic analyses

Stock centers maintain a variety of mutant fly libraries as public
resources.

Various genetic screening methods have been established.

(4) Abundant genetic information

Whole genome sequence is available.

(5) Little labor and cost-effective to maintain fly stocks

Transgenic flies can be established at low cost.

Mutant flies are available from public stock centers at low cost.

Only small space is required for their maintenance.

α-Syn expressing flies replicate several features of human PD,
including (1) locomotor dysfunction, (2) LB-like inclusion
body formation, and (3) age-dependent loss of dopaminergic
neurons and are therefore widely used for studying the
molecular pathogenesis of α-Syn-induced neurodegenera-
tion in not only PD but also synucleinopathies. In this paper,
we will discuss what has been revealed in the pathogenesis of
synucleinopathies using α-Syn Drosophila models, focusing
on “misfolding and aggregation of α-Syn”, “posttranslational
modifications of α-Syn”, and “oxidative stress” (Table 2).

2. Misfolding and Aggregation of α-Synuclein

Recent accumulating evidence has implicated that misfolding
and subsequent aggregation of α-Syn play a central role
in the pathogenesis of synucleinopathies [37]. Indeed, α-
Syn has been demonstrated to be aggregated and deposited
as inclusion bodies in flies expressing either wild-type
or mutant α-Syn (A53T and A30P), the latter of which
has accelerated aggregation propensity. Recently, Karpinar
et al. showed that structurally-engineered α-Syn mutants
with an increased propensity to form soluble oligomers
exhibit enhanced neurotoxicity in Drosophila [18]. Moreover,
a recent study demonstrated that histone deacetylase 6
(HDAC6) suppresses α-Syn-induced dopaminergic neuron
loss and locomotor dysfunction by reducing α-Syn oligomers
and instead promoting inclusion formation in α-Syn flies,
further supporting a critical role of toxic oligomers in
α-Syn-induced neurodegeneration in the pathogenesis of
synucleinopathies [19].

Protein quality control systems function as a defense
mechanism against protein misfolding and aggregation,
which consist of molecular chaperones and protein degra-
dation systems [38]. Molecular chaperones assist proper
protein folding and hence are considered as essential proteins
for protecting cells against the detrimental effects of the

misfolding and aggregation of proteins such as α-Syn.
Most molecular chaperones are induced upon heat stress
to promote the refolding of misfolded proteins, and hence
they are called heat shock proteins (HSPs) [39]. On the
other hand, once proper protein folding has been altered,
the resulting misfolded and aggregated proteins must be
eliminated by their degradation. Two major protein degra-
dation systems are the ubiquitin-proteasome system (UPS)
and the autophagy-lysosome system [40]. UPS degrades
short-lived and misfolded proteins through selective deu-
biquitination of substrate proteins and their targeting to
the proteasome, whereas the autophagy-lysosome system is
a nonselective bulk degradation system for long-lived and
misfolded proteins, which involves engulfment of substrate
proteins into the autophagosome and their delivery to the
lysosome. The role of molecular chaperones and protein
degradation systems in protecting against α-Syn misfolding
in the pathogenesis of synucleinopathies has been investi-
gated using α-Syn Drosophila models.

2.1. Molecular Chaperones. As molecular chaperones are
expected to protect against protein misfolding and aggre-
gation, their roles in the pathogenesis of PD have been
investigated so far [41]. Extensive colocalization with LBs
has been demonstrated for several HSPs [42], and expression
levels of HSPs have been reported to be elevated in synucle-
inopathy brains [43]. HSP70 has been shown to inhibit α-
Syn aggregation in vitro [44], and HSPs, such as HSP27 or
HSP70, have been reported to protect against α-Syn-induced
neurotoxicity in cultured cells and transgenic mice [45, 46],
suggesting an important role of HSPs in PD pathology.

Indeed, Auluck et al. demonstrated that coexpression of
HSP70 ameliorated the toxicity of α-Syn to dopaminergic
neurons without changing the number of inclusions [20].
They also confirmed that coexpression of Hsc4.K71S, a
dominant negative form of Drosophila HSP70, accelerated
dopaminergic neuron loss in α-Syn expressing flies. Fur-
thermore, they subsequently showed that geldamamycin,
an Hsp90 inhibitor and heat shock transcription factor 1-
activator compound, protects against neurotoxicity through
induction of Hsp70 in α-Syn flies [21]. Taken together,
these results confirmed that the molecular chaperone HSP70
suppresses α-Syn toxicity in vivo by using the Drosophila
system.

2.2. Protein Degradation. The UPS and the autophagy-
lysosome system can degrade misfolded proteins, and
impairment of these systems has been reported to cause
neurodegeneration [40, 47]. Furthermore, the UPS has
been suggested to coordinate with the autophagy system
to eliminate misfolded proteins. Lee et al. have shown
protective effects of the UPS on α-Syn-induced toxicity using
cell culture and Drosophila models [22]. A cell culture-
based study indicated that K48-linked polyubiquitination
is protective against α-Syn-induced toxicity in a UPS-
dependent manner. In α-Syn flies, coexpression of ubiquitin
has been shown to suppress loss of dopaminergic neurons
and locomotor dysfunction and to extend life-span. These
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Table 2: Summary of studies on α-Syn-induced neurodegeneration using Drosophila models.

Mechanisms/modifiers of α-Syn
toxicity

Effect Findings References

α-Syn expression
α-Syn expression causes dopaminergic neuron loss, LB-like
inclusion body formation and locomotor dysfunction in
Drosophila (wild-type < familial PD-linked mutants).

[12]

Misfolding and aggregation

α-Syn oligomer formation Enhance
α-Syn mutants which tend to form oligomers enhance α-Syn
toxicity.

[18]

HDAC6 Suppress
Expression of HDAC6 reduces α-Syn oligomers and suppresses
α-Syn toxicity.

[19]

HSP70 Suppress
Expression of HSP70 reduces α-Syn toxicity, and a dominate
negative form of HSP70 enhances toxicity.

[20]

Geldanamycin Suppress
Geldanamycin induces HSP70 expression and suppresses α-Syn
toxicity.

[21]

Ubiquitin Suppress Expression of ubiquitin reduces α-Syn toxicity. [22]

Cathepsin D Suppress
Deficiency of cathepsin D enhances α-Syn-induced
neurodegeneration.

[23]

Posttranslational modifications

α-Syn phosphorylation at Ser129 Enhance
A phosphomimic S129D α-Syn mutant enhances α-Syn toxicity
and a phospho-resistant S129A α-Syn mutant reduces toxicity.

[24]

α-Syn phosphorylation at Tyr125 Suppress
Expression of shark increases α-Syn Y125 phosphorylation and
reduces α-Syn toxicity. Blocking of Y125 phosphorylation
enhances toxicity.

[25]

α-Syn C-terminal truncation Enhance
Expression of C-terminal truncated α-Syn (1–120) enhances α-Syn
aggregation and toxicity.

[26]

α-Syn cleavage by Calpain I Enhance
Calpain I-cleaved α-Syn fragments were identified in the brains of
α-Syn flies as well as PD/DLB patients.

[27]

Oxidative stress

Reactive oxygen species Enhance
Hypoxia-induced oxidative stress enhances α-Syn toxicity, and
expression of superoxide dismutase suppresses toxicity.

[28]

Dopamine Enhance
Decreased dopamine levels by tyrosine hydroxylase RNAi reduces
α-Syn toxicity.

[29]

Glutathione metabolism Suppress
Defect of glutathione metabolism genes enhances α-Syn toxicity
and expression of glutathione metabolism genes suppresses
toxicity.

[30]

Nicotinamide Suppress
Nicotinamide suppresses α-Syn toxicity through improvement of
oxidative mitochondrial dysfunction.

[31]

Polyphenols Suppress
Grape extracts containing various polyphenols suppress α-Syn
toxicity.

[32]

Other PD-causing genes

Parkin Suppress Expression of Parkin suppresses α-Syn toxicity. [33–35]

PINK1 Suppress Expression of PINK1 suppresses α-Syn toxicity. [36]

results suggest that UPS-mediated degradation of α-Syn
is a potential therapeutic approach for synucleinopathies
including PD.

Cathepsin D (CathD) is a major lysosomal aspartyl
protease and its defect results in fatal neurodegenerative
diseases [48]. CathD has been shown to efficiently degrade
recombinant α-Syn in in vitro experiments, and knockdown
of CathD in cultured cells increased α-Syn levels, indicating
a role of CathD in α-Syn degradation [49]. Using α-Syn
expressing flies, Cullen et al. demonstrated that a CathD
defect enhanced α-Syn-induced neurodegeneration in vivo
[23]. CathD knock-out mice have also been shown to

facilitate insoluble α-Syn accumulation and α-Syn-induced
neurotoxicity, confirming that CathD may protect neurons
against α-Syn-induced toxicity through degradation.

3. Posttranslational Modifications of
α-Synuclein

Posttranslational modifications including phosphorylation,
ubiquitination, or C-terminal truncation of α-Syn have been
observed in LBs in the postmortem brain of synucleinopathy
patients [37]. In vitro studies suggest that these modifications
can accelerate oligomerization or aggregation of α-Syn.



4 Parkinson’s Disease

Accordingly, the role of posttranslational modifications of α-
Syn on toxicity has been studied using α-Syn expressing flies.

3.1. α-Synuclein Phosphorylation. Phosphorylation at Ser129
has been identified in α-Syn deposited as LBs in synucle-
inopathy brains [50]. To explore the pathological role of this
phosphorylation in vivo, accumulation and phosphorylation
of α-Syn was studied in flies expressing wild-type or
mutant α-Syn. Indeed, α-Syn accumulated in these flies was
phosphorylated at Ser129 as reported in human patients, and
the order of the degree of phosphorylation was A53T > A30P
> wild-type [51]. Mutagenesis studies demonstrated that the
phosphomimic S129D mutant increases α-Syn-induced tox-
icity, whereas the phospho-resistant S129A mutant reduces
the toxicity accompanied with an increased number of inclu-
sion bodies [24]. Furthermore, GPRK2 has been shown to
be responsible for the α-Syn phosphorylation in Drosophila.
These studies revealed that Ser129 phosphorylation plays
an important role for α-Syn-induced neurotoxicity and
inclusion body formation.

Chen et al. recently reported that Tyr125 of α-Syn is
also phosphorylated in α-Syn expressing flies [25]. This
phosphorylation occurs at a young age but diminishes during
the aging process in both humans and flies. They showed that
soluble oligomers of α-Syn were increased by phosphoryla-
tion at Ser129 and decreased by phosphorylation at Tyr125.
In addition, blocking Tyr125 phosphorylation increased α-
Syn toxicity. Taken together, these studies suggest that α-
Syn toxicity in synucleinopathies results from an imbalance
between the detrimental action of Ser129 phosphorylation
by accelerating toxic oligomer formation and a neuropro-
tective action of Tyr125 phosphorylation by suppressing
oligomer formation.

3.2. α-Synuclein Truncation. Truncated small species of α-
Syn have been detected in purified LBs and insoluble
fractions from synucleinopathy brains [52, 53], suggesting
that truncation of α-Syn contributes to aggregation and
LB formation. Several studies have implicated that C-
terminal truncation of α-Syn accelerates its aggregation [54,
55], and the NAC domain (residues 61–95) of α-Syn has
been demonstrated to be essential for α-Syn aggregation
in vitro [56, 57]. Indeed, flies expressing α-Syn with an
NAC domain deletion (α-Syn Δ71–82) did not show any
loss of dopaminergic neurons with no evidence of α-Syn
aggregation, confirming an essential role of the NAC domain
in α-Syn aggregation and toxicity in vivo [26]. On the
other hand, expression of C-terminal truncated α-Syn (α-
Syn 1–120) resulted in increased α-Syn aggregation and
significantly greater loss of dopaminergic neurons than wild-
type in Drosophila, suggesting a potential role of the C-
terminal region of α-Syn in suppressing aggregation.

α-Syn has been shown to be a substrate for proteolytic
cleavage by calpain in vitro, which is one of a family
of intracellular calcium-dependent proteases [58, 59]. The
calpain-cleaved α-Syn species exhibit a similar molecular
size to truncated α-Syn fragments that have been shown to
promote aggregation and to enhance toxicity [54, 55, 60].

Dufty et al. have identified calpain I-cleaved α-Syn fragments
in the brains of human PD/DLB patients as well as α-
Syn expressing flies using a specific antibody [27]. These
results suggest that calpain I-mediated cleavage of α-Syn may
be involved in the disease-linked aggregation of α-Syn in
synucleinopathies.

4. Oxidative Stress and Antioxidants

Oxidative stress has been believed to play a central role in
the progression of neurodegenerative diseases although its
relationship with α-Syn toxicity has not been well eluci-
dated. Dopaminergic neurons of α-Syn expressing flies have
been shown to be sensitive to hyperoxia-induced oxidative
stress [28]. Importantly, overexpression of Cu/Zn superoxide
dismutase rescued both the dopaminergic neuron loss and
locomotor dysfunction in mutant α-Syn flies. The same
group also demonstrated that reduction of dopamine levels
by RNAi silencing of the tyrosine hydroxylase gene decreases
the neurotoxicity in α-Syn expressing flies, implying that
dopamine which produces reactive oxygen species might
be involved in the α-Syn-induced neurotoxicity through
oxidative stress [29]. These results suggest that oxidative
stress plays a significant role in the pathogenesis of PD in
vivo.

Trinh et al. examined the involvement of the phase II
detoxification pathway, specifically glutathione metabolism,
in α-Syn-induced neurotoxicity in Drosophila models [30].
They found that the loss-of-function gene mutations affect-
ing glutathione metabolism pathways enhance dopamin-
ergic neuron loss in α-Syn expressing flies. Moreover,
the dopaminergic neuron loss can be rescued by genetic
or pharmacological interventions that increase glutathione
biosynthesis or glutathione conjugation activity, suggesting
that oxidative stress is involved in α-Syn-induced neurotoxi-
city and that induction of the phase II detoxification pathway
may be a potential therapy for synucleinopathies.

In addition, feeding Nicotinamide, the principal form of
niacin (vitamin B3), has been shown to improve the motor
dysfunction in α-Syn expressing flies through improvement
of oxidative mitochondrial dysfunction [31]. Grape extracts,
which contain various polyphenols and exhibit scavenging
effects on reactive oxygen species, also showed a significant
improvement in locomotor function and average lifespan in
α-Syn flies [32].

5. Association with Other PD-Causing Genes

Loss of function gene mutations of Parkin, an E3 ubiq-
uitin ligase, is responsible for a rare familial form of PD,
autosomal recessive juvenile Parkinsonism, which develops
typical Parkinsonian symptoms as a result of midbrain
dopaminergic neuron loss, but usually lacks LBs [61].
Although a direct molecular interaction between Parkin and
α-Syn remains controversial, several studies have shown that
coexpression of Parkin rescues α-Syn-induced dopaminergic
neurodegeneration and motor dysfunction in α-Syn flies.
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These studies suggest that up-regulation of Parkin expression
may provide a novel therapy for PD [33–35].

Mutations in the PTEN-induced putative kinase 1
(PINK1) gene cause another form of autosomal recessive PD
[62]. PINK1 has been shown to be located in mitochondria
and is thought to be involved in cellular protection. Overex-
pression of PINK1 has been shown to rescue loss of climbing
ability and neurodegeneration induced by α-Syn expression
in Drosophila [36]. Furthermore, it has been suggested
that Parkin and PINK1 function in a common pathway
in maintaining mitochondrial integrity and morphology, as
demonstrated using Drosophila models [63, 64].

6. Genomics and Proteomics Studies

One of the advantages of using Drosophila models in
studying human diseases is the easiness to handle numerous
samples at one time, which can provide us with reliable
amounts of data for unbiased statistical analyses. In addition,
shortness of their life span makes it convenient to perform
time course analyses in relatively short time periods.

Scherzer et al. performed expression profiling analysis of
α-Syn A30P flies at different disease stages using microar-
ray and found that expression of genes involved in lipid
processing, energy production, and membrane transport is
significantly altered by α-Syn expression [65]. Xun et al.
performed proteomic analysis of α-Syn flies at different
disease stages using liquid chromatography coupled with
mass spectrometry [66, 67]. They found cytoskeletal and
mitochondrial protein changes in the presymptomatic and
early disease stages in the α-Syn A30P expressing flies [66].
They further reported dysregulated expression of proteins
associated with membrane, endoplasmic reticulum, actin
cytoskeleton, mitochondria, and ribosome in the presymp-
tomatic α-Syn A53T flies, consistent with the α-Syn A30P
flies [67]. These unbiased genomics and proteomics studies
especially in the presymptomatic α-Syn flies will provide us
with further insight into pathomechanisms and potential
therapeutic targets of synucleinopathies.

7. Concluding Remarks

As described above, α-Syn Drosophila models have been
widely employed to uncover the molecular pathogenesis of
synucleinopathies (Table 2). Most of the results reviewed
here have indeed been confirmed in transgenic mouse mod-
els expressing α-Syn. As we described in the introduction,
Drosophila is a powerful in vivo model to study human neu-
rodegenerative diseases with various advantages (Table 1),
especially its short life span since human neurodegenerative
diseases gradually appear and progress in middle-late ages.

Genetic analyses using α-Syn expressing flies have
revealed pathological associations between α-Syn and var-
ious synucleinopathy-related genes and have provided
novel insights into the molecular pathogenesis of synucle-
inopathies. Drosophila models of other neurodegenerative
diseases such as the polyglutamine diseases have also been

established, and numerous comprehensive genetic screen-
ings have been conducted and have elucidated previously
unknown pathomechanisms, taking advantage of the charac-
teristics of Drosophila [68]. Similarly, comprehensive genetic
screenings using Drosophila models will further lead to the
elucidation of the pathomechanisms of synucleinopathies
including PD in the future.

On the other hand, Drosophila models are also suited
for drug screening. Indeed, L-DOPA and dopamine agonists
have been shown to exert therapeutic effects against α-Syn-
induced neurotoxicity using α-Syn flies [69]. In addition,
HDAC inhibitors such as sodium butyrate or SAHA, and
SIRT2 inhibitors have been identified as novel therapeutic
agents that protect against α-Syn-induced neurotoxicity
using Drosophila [70, 71]. In the future, novel therapeutic
candidates for synucleinopathies are expected to be devel-
oped by extensive large-scale drug screening using Drosophila
models.
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