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Lung adenocarcinoma (LUAD) is a major subtype of lung cancer with a relatively poor prognosis, requiring novel therapeutic
approaches. Great advances in new immunotherapy strategies have shown encouraging results in lung cancer patients. This
study is aimed at elucidating the function of SLC2A5 in the prognosis and pathogenesis of LUAD by analyzing public
databases. The differential expression of SLC2A5 in various tissues from Oncomine, GEPIA, and other databases was obtained,
and SLC2A5 expression at the protein level in normal and tumor tissues was detected with the use of the HPA database. Then,
we used the UALCAN database to analyze the expression of SLC2A5 in different clinical feature subgroups. Notably, in both
PrognoScan and Kaplan-Meier plotter databases, we found a certain association between SLC2A5 and poor OS outcomes in
LUAD patients. Studies based on the TIMER database show a strong correlation between SLC2A5 expression and various
immune cell infiltrates and markers. The data analysis in the UALCAN database showed that the decreased promoter
methylation level of SLC2A5 in LUAD may lead to the high expression of SLC2A5. Finally, we used the LinkedOmics database
to evaluate the SLC2A5-related coexpression and functional networks in LUAD and to investigate their role in tumor
immunity. These findings suggest that SLC2A5 correlated with immune infiltration can be used as a candidate diagnostic and
prognostic biomarker in LUAD patients.

1. Introduction

Lung cancer is considered to be one of the most common can-
cers worldwide with high incidence rate and high mortality
rate [1]. Non-small-cell lung cancer, including lung adenocar-
cinoma (LUAD) and lung squamous cell carcinoma, is the
main type of lung cancer, accounting for nearly 85%; among
them, LUAD is the most common histological subtype [2].
LUAD generally originates from the surrounding lung tissue
[3] and is characterized by the formation of glands or ducts
and the production of a large amount of mucus, with obvious

cellular and molecular characteristics [4]. Due to the high
metastasis, recurrence, and drug resistance of LUAD, the cura-
tive effect of conventional treatment including surgery, radio-
therapy, and chemotherapy is not so satisfactory, and the
incidence of this aggressive disease is still surprisingly high
[5, 6]. Therefore, it is urgent to find reliable biomarkers for
the diagnosis and prognosis prediction of LUAD, which will
contribute to the effective treatment of LUAD.

SLC2A5, namely, fructose transporter GLUT5 gene, is
one of the key genes in the process of tumor development,
whose regulation mechanism is the regulation of fructose
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uptake and absorption and carbon absorption in cells [7].
Studies have found that the expression of SLC2A5 is closely
related to the metabolism of tumor cells and tumor progres-
sion, especially the increase of SLC2A5 coding GLUT5 pro-
tein seems to be associated with the development and
metastasis of LUAD [7]. According to recent reports,
SLC2A5 is involved in the progression of a variety of can-
cers, including pancreatic cancer, breast cancer, small intes-
tine carcinoma, and LUAD [7]. SLC2A5 can increase the
flux of pentose phosphate pathway and protein synthesis
by increasing fructose synthesis, thus promoting the growth
of pancreatic cancer [8]. Jiang et al. [9] demonstrated that
SLC2A5 can increase the risk of breast cancer development
and metastasis by promoting fructose synthesis, which could
induce lipoxygenase-12 and related fatty acid 12-HETE in
breast cancer cells [9]. A study on acute myeloid leukemia
(AML) showed that SLC2A5 upregulation occurs in AML,
and blocking the pharmacological process of SLC2A5 regu-
lating fructose uptake could improve the phenotype of leu-
kemia [10]. Moreover, studies have shown that SLC2A5
are significantly upregulated in LUAD patients and that
their overexpression is highly correlated with poor survival
in LUAD patients [7]. However, whether SLC2A5 is a pow-
erful biomarker of LUAD has not been given a clear answer.
Also, the biological functions of SLC2A5 in LUAD remain to
be determined.

As is known to us, inflammation is one of the major con-
tributors to the tumor microenvironment [11], and the risk
of cancer is greatly increased by viral and bacterial infection
[12]. Previous studies have found increases in the expression
of indoleamine 2,3-dioxygenase 1 (IDO1) associated with
intestinal flora and the differentiation of gut secretion cells
is related to inflammation, injury, infection, changes in flora,
and so on, but with reduced SLC2A5 levels [13]. This may
indicate that changes in SLC2A5 levels are associated with
inflammation, viruses, flora changes, infection, etc., thus
affecting tumor occurrence and/or progression. The above
thinking may provide promising foundations and analysis
for studying the role that SLC2A5 plays in lung cancer.

To better explore the role of SLC2A5 in LUAD, we
learned the research ideas of Luo et al. in this study [14].
We first explored the differential expression of SLC2A5 in
different organizations using databases like Oncomine and
GEPIA. Meanwhile, the Human Protein Atlas (HPA) data-
base was used to detect SLC2A5 expression in normal and
tumor tissues. Moreover, we used the UALCAN database
to analyze the expression of SLC2A5 in different clinical fea-
ture subgroups. PrognoScan database and Kaplan-Meier
plotter were used to assess the relationship between SLC2A5
and prognosis of LUAD patients comprehensively. Tumor
immunoassay resource (TIMER) database was used to fur-
ther investigate the association between SLC2A5 expression
levels and immune cell infiltration, different immune cell
subsets markers in LUAD, and the UALCAN database was
used to analyze the promoter methylation level of SLC2A5
in LUAD and the correlation between SLC2A5 expression
level and different subgroups of LUAD patients. Finally, we
used the LinkedOmics database to evaluate the SLC2A5-
related coexpression and functional network of SLC2A5 in

LUAD and to investigate their role in tumor immunity.
Our results provide a novel insight into the function of
SLC2A5 in LUAD and a theoretical basis for the early diag-
nosis, prognosis, and targeted therapy of LUAD.

2. Materials and Methods

2.1. Oncomine Database Analysis. The web-based Oncomine
database, whose data includes a microarray database of most
human cancers, aims at facilitating cancer-related factor dis-
covery from genome-wide expression analyses [15, 16]. In
this study, following the methods of Ma et al. [17], we con-
ducted Oncomine database analysis to assess SLC2A5
expression level based on the following criteria: (1) “gene:
SLC2A5”; (2) “analysis type: cancer vs. normal”; (3) “cancer
type: lung cancer”; (4) “data type: mRNA”; and (5) threshold
settings: folding change = 2, P value = 0.05.

2.2. TIMER Database Analysis. By studying the research
ideas of Luo et al. [14], the TIMER database is an effective
tool to analyze the abundance of tumor-infiltrating immune
cells from the target gene expression data [18–20]. Thus, this
study analyzed the expression of SLC2A5 in LUAD patients
and six types of infiltration of immune cells (B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages, and dendritic
cells). At the same time, the correlation between SLC2A5
expression and the genetic markers of tumor-infiltrating
immune cells was also discussed.

2.3. GEPIA Database Analysis. The GEPIA (Gene Expres-
sion Profiling Interactive Analysis) web server has been a
valuable and highly cited resource for gene expression anal-
ysis based on tumor and normal samples from TCGA and
the GTEx databases [21–23]. So the expression of SLC2A5
in tumor and normal tissues of this study was further used
to conduct with GEPIA, as shown in the box diagram.

2.4. UALCAN Database Analysis. In this study, UALCAN,
an interactive web portal based on TCGA3RNA-seq and
clinical data of 31 cancer types [24], was used to analyze
the correlation between SLC2A5 expression and different
clinical factors.

2.5. Kaplan-Meier Plotter Analysis. The Kaplan-Meier plot-
ter is an online database including gene expression data
and clinical data, which offers a means of exploring the
impact of a wide variety of genes on patient survival in 21
different types of cancer [25, 26]. Therefore, this database
was used to evaluate the prognostic value of SLC2A5 and
explore the association between SLC2A5 expression and
outcome in LUAD patients, as well as the impact of both
clinicopathological factors and SLC2A5 on the outcome of
patients with LUAD.

2.6. Human Protein Atlas Database Analysis. The Human
Protein Atlas (HPA) [27, 28] provides a powerful platform
to evaluate protein localization and expression in human
cells, tissues, and organs [29]. Therefore, we used the data-
base to analyze the protein expression and immunohisto-
chemistry (IHC) of SLC2A5 in normal and LUAD tissues.
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2.7. PrognoScan Database Analysis. The PrognoScan data-
base offers a valuable tool for researchers assessing the bio-
logical relationship between gene expression and prognosis,
which is of great help to accelerate our cancer research [30,
31]. This database was used to assess the relationship
between SLC2A5 expression and patient outcome.

2.8. Meta-Analysis. Meta-analysis can evaluate the evidence
and the effect indicators more accurately and objectively,
so as to explain the heterogeneity of different research results
[32, 33]. Therefore, meta-analysis was used to evaluate the
overall prognostic significance of SLC2A5 in LUAD patients.
HR and 95% CI were calculated to evaluate the correlation
between SLC2A5 expression and the prognosis of LUAD
patients. With the random effects model, the heterogeneity
across multiple datasets was assessed by the Q test (I2

statistics).

2.9. LinkedOmics Database Analysis. The LinkedOmics data-
base contains multiomic cancer datasets for 32 cancer types
and a total of 11,158 patients from TCGA project. This com-
prehensive and functional database also provides three key
analysis modules including LinkFinder, LinkCompare, and
LinkInterpreter [34] and an analysis toolkit (WebGestalt)
[35, 36], which were applied in this study. Thus, LinkedO-
mics was used to sign and rank the data which was selected
for GSEA to perform GO (BP, CC, and MF) and KEGG
analysis in this study.

3. Results

3.1. High SLC2A5 Expression in LUAD. Oncomine and
TIMER databases were used to evaluate the mRNA
expression of SLC2A5 in multiple tumor tissues and nor-
mal tissues. Oncomine analysis results showed that in sev-
eral solid tumors, the expression of SLC2A5 was more
significant in lung cancer, lymphatic cancer, brain and
CNS cancer, and breast cancer, while the expression rate
of SLC2A5 in other cancers such as gastric cancer, ovarian
cancer, and other cancers was lower (Figure 1(a)). Mean-
while, Oncomine analysis of LUAD and normal samples
also showed that in different patient datasets (SLC2A5
expression in Su’s dataset, Hou’s dataset, Stearman’s data-
set, and Okayama’s dataset), the expression of SLC2A5 in
LUAD was higher than that in normal lung gland tissue
(Figures 1(c)–1(f)). TIMER database analysis results
revealed the SLC2A5 expression differences in all tumor
tissues and adjacent normal tissues (Figure 1(b)): SLC2A5
expression in COAD (colon adenocarcinoma), KICH
(renal cell carcinoma), KIRP (renal cell carcinoma), PRAD
(prostate adenocarcinoma), and READ (rectal adenocarci-
noma) was significantly lower than that in adjacent nor-
mal tissues; in contrast, SLC2A5 expression in LUAD
(lung adenocarcinoma), UCEC (endometrial carcinoma),
CHOL (cholangiocarcinoma), KIRC (renal clear cell carci-
noma), LIHC (hepatocellular carcinoma), LUSC (lung
squamous cell carcinoma), and ESCA (esophageal carci-
noma) was significantly higher. Data mining of GEPIA
and UALCAN databases was further confirmed. On the

one hand, GEPIA analysis confirmed that the expression
of SLC2A5 in LUAD tissues was significantly upregulated
compared with normal lung gland tissues (P < 0:05)
(Figure 1(g)). On another, analysis in UALCAN examined
the protein expression of SLC2A5 and found it was highly
expressed in tumor tissues (Figure 1(h)). In addition, we
also carried out immunohistochemistry (IHC) in the
HPA database. As can be seen from Figure 1(i), the pro-
tein expression of SLC2A5 in normal tissues decreased sig-
nificantly, while the protein level in tumor tissues
increased significantly. According to the results of differen-
tial analysis of SLC2A5 above, SLC2A5 is highly expressed
in LUAD, suggesting that abnormal expression of SLC2A5
may be closely related to the development, metastasis, and
prognosis of LUAD.

3.2. Distribution of SLC2A5 Expression in Clinical
Characteristic Subgroups. Using the UALCAN database to
detect the distribution of SLC2A5 in different histological
subtypes of LUAD, it was found that the expression of
SLC2A5 in lung adenocarcinoma-not otherwise specified
(NOS), lung adenocarcinoma mixed subtype (Mixed), lung
clear cell adenocarcinoma (ClearCell), lung bronchioloalve-
olar carcinoma nonmucinous (LBC-Nonmucinous), lung
solid pattern predominant adenocarcinoma (SolidPattern-
Predominant), lung acinar adenocarcinoma (Acinar), lung
bronchioloalveolar carcinoma mucinous (LBC-Mucinous),
mucinous (colloid) carcinoma (Mucinous), lung papillary
adenocarcinoma (Papillary), lung mucinous adenocarci-
noma (Mucinous), lung micropapillary adenocarcinoma
(Micropapillary), and lung signet ring adenocarcinoma (Sig-
netRing) was significantly higher than that of normal LUAD
(Figure 2(a)). Subgroup analysis based on sex, age, race, dif-
ferent lymph node metastasis status, and tumor stage
showed that the expression level of SLC2A5 in LUAD
patients increased relative to normal samples
(Figures 2(b)–2(f)). At the same time, UALCAN analysis
showed that there was statistical difference between SLC2A5
expression and each tumor stage (P < 0:05). And the distri-
bution of SLC2A5 increased in all stages of tumor; however,
the expression of SLC2A5 did not increase with the increase
of tumor stage, that is to say, there was no linear relationship
between the expression of SLC2A5 and tumor stage
(Figure 2(f)). Moreover, as shown in Figure 2(e), SLC2A5
expression increased in LUAD patients with different lymph
node metastasis status (N classification). Nevertheless, there
is no significant difference in the distribution of SLC2A5 in
N0, N1, and N2 classification, and it was highly expressed
in N3. Notably, SLC2A5 expression is increased in different
genders of LUAD patients, and different genders were also
associated with SLC2A5 expression.

3.3. Prognosis Analysis of SLC2A5 Expression and LUAD and
Meta-Analysis of SLC2A5 Overexpression and OS of LUAD.
Next, we used the PrognoScan database to explore the rela-
tionship between SLC2A5 expression and the prognosis of
LUAD patients. It is found that there was a significant corre-
lation between the prognosis of LUAD patients and the
expression of SLC2A5 (P < 0:05) (Figures 3(a)–3(d)).
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Figure 1: Continued.
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Interestingly, there are many other cancer types showing
certain correlation between prognosis and SLC2A5 expres-
sion, including blood cancer, breast cancer, colorectal can-
cer, and eye cancer (Figures 3(e)–3(h)). To strengthen the
persuasive power of association between SLC2A5 high
expression and poor survival analysis results of LUAD
patients, we conducted a meta-analysis of different datasets.
Meta-analysis results have shown that the combined HR and
95% CI of survival analysis results associated with high
SLC2A5 expression were 1.14 (1.06, 1.23), and no significant
heterogeneity was observed in the 21 datasets (I2 = 36%, P
= 0:05) (Figure 3(i)). Therefore, through the meta-analysis,
we can safely conclude that high expression of SLC2A5 is a
powerful predictor of adverse prognosis in LUAD patients.

Kaplan-Meier plotter was further used to validate
SLC2A5 high expression prognosis. According to the
median level of SLC2A5 expression in each group, the
patients were divided into two groups. It was found that
the increased expression of SLC2A5 was associated with
the prognosis of LUAD patients (P < 0:05), and overall sur-
vival and first progression (FP) were also highly affected by
the increased expression of SLC2A5 mRNA (OS: HR =
1:39, log-rank P = 0:0055; FP: HR = 1:77, log-rank P =
0:00037) (Figures 3(j) and 3(k)), suggesting that SLC2A5
may be a reliable biomarker for the prognosis of LUAD.
Since SLC2A5 expression has an impact on the prognosis
of LUAD patients, we next evaluated the correlation between
SLC2A5 expression level and different clinical features of
LUAD by using the Kaplan-Meier plotter database to
explore its potential mechanism. The results are shown in
Table 1, which showed that high SLC2A5 expression did
not correlate with OS and FP in female (OS: HR = 1:15, P
= 0:4656; FP: HR = 1:35, P = 0:199), stage 2 (OS: HR =
0:75, P = 0:2407; FP: HR = 1:15, P = 0:6103), AJCC stage
T2 (OS: HR = 0:93, P = 0:7933; FP: HR = 0:86, P = 0:6515),
AJCC stage N0 (OS: HR = 1:5, P = 0:097; FP: HR = 1:63, P
= 0:2142), and AJCC stage N1 (OS: HR = 0:73, P = 0:4358;
FP: HR = 1:06, P = 0:8979). However, in male (OS: HR =

1:46, P = 0:0232; FP: HR = 1:94, P = 0:0028), stage 1 (OS:
HR = 1:62, P = 0:0156; FP: HR = 2:33, P = 0:0007), and
exclude those never smoked (OS: HR = 2:68, P = 6:7e − 05;
FP: HR = 2:05, P = 0:0013), high SLC2A5 mRNA expression
correlated with both OS and FP. In conclusion, it is proved
that most other factors can independently predict the prog-
nosis of LUAD. Therefore, SLC2A5 may be a potential inde-
pendent risk factor in LUAD.

3.4. Correlation between SLC2A5 Expression and Immune
Cell Infiltration in LUAD. The TIMER database was used
to analyze whether SLC2A5 high expression in LUAD tissues
was associated with several major infiltrating immune cells. As
the analysis results showed, the SLC2A5 expression level is
correlated with B cell (Rho = 0:268, P = 1:59e − 09), CD8 T
cell (Rho = 0:264, P = 2:63e − 09), CD4 T cell (Rho = −0:184,
P = 3:84e − 05), neutrophil (Rho = −0:121, P = 7:34e − 03),
dendritic cell (Rho = 0:105, P = 2:00e − 02), macrophage M1
(Rho = 0:171, P = 1:38e − 04), macrophage M2 (Rho = 0:194,
P = 1:40e − 05), Tregs (Rho = 0:245, P = 3:45e − 08), and T
cell follicular helper (Tfh) (Rho = −0:152, P = 6:81e − 04). As
shown in the scatter plot (Figure 4(a)), SLC2A5 expression
level was positively correlated with immune cells including B
cell, CD8 T cell, Tregs, macrophage M2, macrophage M1,
and DC cell and was negatively correlated with immune cells
like neutrophil, Tfh, and CD8 T cell, suggesting that SLC2A5
expression level was closely correlated with LUAD immune
infiltration. To further investigate the relationship between
immune cell infiltration and SLC2A5 expression in LUAD,
we further conducted Kaplan-Meier maps by using the
TIMER database to evaluate the prognostic value of each of
the six types of cells of the immune cells mentioned above
(Figure 4(b)). We found that the expression of B cells (log-
rank P = 0) and dendritic cells (log-rank P = 0:048) was signif-
icantly correlated with the prognosis of LUAD, which indi-
cated that SLC2A5 plays an important role in regulating the
infiltration of immune cells in LUAD, especially in the infiltra-
tion of B cells and dendritic cells.

Normal

Tumor

(i)

Figure 1: SLC2A5 is highly expressed in LUAD. (a) The expression level of SLC2A5 in different types of tumor tissues and normal tissues in
the Oncomine database. (P value is 0.05, data type is mRNA, and gene ranking of all.) (b) The expression level of SLC2A5 in different types
of tumor tissues and normal tissues in the TIMER database (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). (c–f) The expression of SLC2A5 in
LUAD is higher than that in normal tissues in different databases (SLC2A5 expression in Su’s dataset, Hou’s dataset, Stearman’s dataset,
and Okayama’s dataset) in Oncomine. (g) High expression of SLC2A5 mRNA in LUAD tissues (n = 483) compared with the normal
tissues (n = 347) in the GEPIA database. (h) High protein expression of SLC2A5 in LUAD tissues (n = 111) compared with the normal
tissues (n = 111) in the UALCAN database. (i) Immunohistochemistry (IHC) of SLC2A5 expression in LUAD tissues and corresponding
normal tissues based on HPA.
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3.5. Correlation Analysis between SLC2A5 mRNA Levels and
Different Subgroup Markers of Immune Cells. Next, based on
the set of immunologic markers in LUAD, the TIMER data-
base was used to further search the association between
SLC2A5 expression and immune cell infiltration level. Spe-
cifically, targeting the special cell subsets (including CD8+
cells, T cells (general), B cells, monocytes, TAM, M1 macro-
phages, M2 macrophages, neutrophils, natural killer cells,
and democratic cells), we evaluated the correlation between
SLC2A5 expression and levels of parkers. At the same time,
we also analyzed different subsets of T cells, namely, T
helper 1 (Th1), T helper 2 (Th2), follicular helper T
(TFH), T helper 17 (Th17), regulatory T (Tregs), and T cell
exhaustion. Since the tumor purity of clinical samples affects

the immune osmotic analysis, we adjusted the results
according to the tumor purity. The results showed that the
expression of SLC2A5 in LUAD tissues was significantly
related to the expression of most marker genes in immune
osmotic cells (Table 2).

It was found that the expression of SLC2A5 in LUAD
was significantly correlated with the expression of immune
marker genes in CD8+ T cells, T cells, B cells, monocytes,
TAM, and M2 macrophages. In particular, CD8A and
CD8B of CD8+ T cells; CD3D, CD3E, and CD2 of T cells;
CD19 and CD79A of B cells; CSF1R of monocytes; CCL2,
CD68, and IL10 of TAMs; IRF5 of M1 macrophage; and
CD163, VSIG4, and MS4A4A of M2 macrophage were all
closely related to SLC2A5 level in LUAD (P < 0:0001).
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Figure 2: SLC2A5 expression in subgroups of clinical characteristics. (a) Expression of SLC2A5 in LUAD based on histological subtypes. (b)
Expression of SLC2A5 in LUAD based on patient’s gender. (c) Expression of SLC2A5 in LUAD based on patient’s age. (d) Expression of
SLC2A5 in LUAD based on patient’s race. (e) Expression of SLC2A5 in LUAD based on nodal metastasis status. (f) Expression of
SLC2A5 in LUAD based on individual cancer stages.
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Figure 3: Continued.
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Moreover, high expression of SLC2A5 is associated with
dense natural killer cell infiltration in LUAD. The expression
of marker genes of natural killer cells (KIR2DL3, KIR2DL4,
KIR3DL2, KIR3DL3, and KIR2DS4) was all significantly
correlated with SLC2A5 expression, which suggests a close
relationship between SLC2A5 expression and natural killer
cell infiltration. In addition, for neutrophils, SLC2A5 expres-
sion was positively correlated with ITGAM and negatively
correlated with CEACAM8. We also found that SLC2A5
expression is closely associated with TH1, Treg, and T cell
failure marker genes (e.g., TBX21, STAT4, STAT1, IFNG,
TNF, FOXP3, CCR8, STAT5B, TGFB1, PDCD1, LAG3,

havcr2, and GZMB), which further supports the close rela-
tionship between SLC2A5 expression and LUAD immune
infiltration.

3.6. Analysis of SLC2A5 Promoter Methylation Levels in
LUAD. A significant increase in SLC2A5 expression was
found in LUAD through the above analysis. Consequently,
we would conduct further studies to explore the causes of
SLC2A5 elevation. Methylation is a significant event in epi-
genetic modification of the genome, and particularly, low
global methylation can result in genomic instability and
changes in gene transcription which may have an impact
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Figure 3: SLC2A5 is associated with survival outcome. (a–d) There was a significant correlation between prognosis in LUAD patients and
expression of SLC2A5. (e–h) Several other types of cancer show a correlation between the patient’s prognostic period and the expression of
SLC2A5. (i) Forest plot of survival analysis results associated with high SLC2A5 expression. (j, k) Survival analyses of SLC2A5 by the
Kaplan-Meier plotter web tool. (j) Overall survival (OS) of LUAD (P < 0:5) on SLC2A5 gene expression. (k) First progression (FP) of
LUAD (P < 0:5) on SLC2A5 gene expression. Survival differences are compared between patients with high and low (grouped according
to median) expression of SLC2A5. The numbers below the figures denote the number of patients at risk in each group.
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on normal cell growth and increase the likelihood of tumor-
igenesis [37]. Therefore, we used the UALCAN database to
verify the methylation level of SLC2A5 promoter in LUAD.
As shown in Figure 5, the promoter methylation level of
SLC2A5 in normal tissues is slightly lower than that in
LUAD. Moreover, we conducted subgroup analyses of pro-
moter methylation based on the patient’s race, age, sex,
tumor stage, and TP53 mutation status. The results showed
that the promoter methylation was associated with gender,
tumor stage, and TP53 mutation status in LUAD patients
(Figures 5(b), 5(d), and 5(e)); however, there was no correla-
tion between promoter methylation and LUAD patients who
aged 21-40 or 81-100 and patients of African ethnicity
(Figures 5(c) and 5(f)). These findings suggest that lower
promoter DNA methylation may lead to high expression
levels of SLC2A5 in LUAD.

3.7. Gene Enrichment Analysis and Gene Coexpression
Network Construction. To better understand the biological
implication of SLC2A5 in LUAD, the “LinkFinder” module
in LinkedOmics database was used to examine the SLC2A5
coexpression pattern. As shown in Figure 6(a), it is indicated
that 11,085 genes (red dots) were positively correlated with
SLC2A5, while 8903 genes (green dots) were negatively cor-
related (P < 0:05). As shown in Figure 6(b), the first 50 pos-

itive and negative genes associated with SLC2A5 are shown
in the form of heat map, and the network of them is also
shown. SLC2A5 expression is strongly positively correlated
with the expression of genes such as IL4I1 (positive rank
#1, r = 0:716, P = 3:59E − 82), FCGR2B (positive rank #2, r
= 0:708, P = 1:45E − 79), and GPR84 (positive rank #3, r =
0:692, P = 1:49E − 74), but negatively correlated with the
expression of genes such as TOB1 (negative rank #1, r = −
0:430, P = 1:40E − 24), SELENBP1 (negative rank #2, r = −
0:420, P = 2:15E − 23), and IL17RE (negative rank #3, r = −
0:416, P = 6:06E − 23). The annotation of gene set enrich-
ment analysis (GSEA) indicates that SLC2A5-coexpressed
genes are mainly involved in adaptive immune response,
interferon-gamma production, positive regulation of cell
activation, response to chemokine, myeloid dendritic cell
activation, and other biological processes (Figure 6(c)).
KEGG analysis results show that the genes are mainly
enriched in Staphylococcus aureus infection, malaria, osteo-
clast differentiation, chemokine signaling pathway, NF-
kappa B signaling pathway, and other pathways. In contrast,
genes enriched in butanoate metabolism, ribosome, fatty
acid degradation, propanoate metabolism, glycosylphospha-
tidylinositol (GPI) anchor biosynthesis, or others were
inhibited (Figure 6(d)). Besides, we plotted the survival heat
map of the genes significantly associated with SLC2A5

Table 1: Correlation of SLC2A5 mRNA expression and clinical prognosis in LUAD with different important clinical characteristics by
Kaplan-Meier plotter.

Factor
Overall survival (n = 719) Progression-free survival (n = 461)

N HR P value N HR P value

Sex

Female 317 1.15 (0.79-1.68) 0.4656 235 1.35 (0.85-2.12) 0.199

Male 344 1.46 (1.05-2.03) 0.0232 226 1.94 (1.25-3.03) 0.0028

Stage

1 370 1.62 (1.09-2.39) 0.0156 283 2.33 (1.41-3.86) 0.0007

2 136 0.75 (0.46-1.22) 0.2407 103 1.15 (0.67-2) 0.6103

3 24 1.46 (0.54-3.95) 0.4495 10 — —

4 4 — — 0 — —

AJCC stage T

1 123 2.06 (1.11-3.83) 0.0188 47 1.37 (0.31-6.11) 0.6808

2 105 0.93 (0.54-1.6) 0.7933 93 0.86 (0.46-1.62) 0.6515

3 4 — — 2 — —

4 0 — — 0 — —

AJCC stage N

0 184 1.5 (0.93-2.42) 0.097 102 1.63 (0.75-3.55) 0.2142

1 44 0.73 (0.34-1.6) 0.4358 38 1.06 (0.43-2.62) 0.8979

2 3 — — 2 — —

AJCC stage M

0 231 1.55 (1.04-2.31) 0.0315 142 1.77 (0.99-3.18) 0.0514

1 1 — — 0 — —

Smoking history

Exclude those never smoked 246 2.68 (1.62-4.44) 6:70E − 05 243 2.05 (1.31-3.2) 0.0013

Only those never smoked 143 1.77 (0.78-4.06) 0.1686 143 2.32 (1.22-4.41) 0.0081

Bold values indicate P < 0:05.
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expression in Figures 6(e) and 6(f). As shown in the figure,
only 4 of the first 50 positively related genes have lower risk
ratios (HR), compared with 12/50 negative related genes
which have low HR (P < 0:05). And all of these genes have
a high probability of becoming risk ratio markers of LUAD.

4. Discussion

Lung cancer (LC) is a major health problem and one of the
most common causes of tumor-related deaths. Its rapid
growth requires excessive catabolism of major metabolic
fuels [38]. In the presence of metabolic fuels in vivo, fructose
can be easily used as a glucose substitute by LC cells in vivo
by upregulating SLC2A5 [38]. This can be explained by the
study of Norimichi et al. [39]. Therefore, SLC2A5-
mediated fructose utilization in vivo must play an important
role in the control of LC growth, especially in LUAD. How-
ever, if there is too much fructose in the gut, the unabsorbed
fructose may lead to bacterial fermentation, leading to irrita-
ble bowel syndrome, resulting in inflammatory damage,
flora disorders, bacterial infections, and other harmful con-
sequences, which may affect the progress of tumor [40].
Although LUAD treatment strategies have improved signif-
icantly in recent decades, survival rates still remain unsatis-
factory. Therefore, it is necessary to develop new
prognostic biomarkers and therapeutic targets. In our study,

we explored the expression, prognostic role, and biological
function of SLC2A5 in LUAD.

Results of our study found that SLC2A5 is highly
expressed in LUAD tumor tissues and is also significantly
associated with its prognosis. Moreover, each tumor stage
also has high expression, at the same time, the correlation
between SLC2A5 expression and prognosis based on differ-
ent clinical characteristics indicates that SLC2A5 may be a
potential independent biomarker for LUAD prognosis.
Then, we analyzed the correlation between SLC2A5 and
immune infiltration and the correlation between SLC2A5
and different subsets of immune cells. And it is also found
that SLC2A5 is related to the major infiltrating immune cells
and has a particularly strong effect on B cell and dendritic
cell infiltration. Therefore, SLC2A5 infiltration in B cells
and dendritic cells may be one of the factors of its prognostic
ability. And then, we analyzed the effect of SLC2A5 expres-
sion on promoter methylation. Finally, we studied the
SLC2A5 coexpression and regulatory networks. All the work
above we do is aimed at guiding LUAD future research.

It is worth noting that different lymph node metastasis
statuses (N classification) are highly correlated with SLC2A5
expression and SLC2A5 high expression occurred more sig-
nificantly in N3 than in N0, N1, and N2, which suggests that
SLC2A5 is mainly involved in the N3 stage of LUAD [17, 41]
and that there may be a relationship between SLC2A5
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Figure 4: Correlation analysis between SLC2A5 expression and the infiltrating immune cells in LUAD. (a) Correlation of SLC2A5
expression with 12 types of immune infiltration cells obtained from TIMER (purity-corrected Spearman test). (b) Overall survival curve
of the six types of cells produced by Kaplan-Meier estimator from TIMER. Survival differences are compared between patients with high
and low (grouped according to median) infiltration of each kind of immune cells.
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Table 2: Correlation analysis between SLC2A5 and related genes and markers of immune cells in TIMER.

Description Gene markers
LUAD

None Purity
Cor P value Cor P value

CD8+ T cell
CD8A 0.403 0 0.286 ∗∗∗

CD8B 0.343 ∗∗∗ 0.249 ∗∗∗

T cell

CD3D 0.402 ∗∗∗ 0.279 ∗∗∗

CD3E 0.41 ∗∗∗ 0.28 ∗∗∗

CD2 0.408 ∗∗∗ 0.283 ∗∗∗

B cell
CD19 0.391 ∗∗∗ 0.279 ∗∗∗

CD79A 0.45 0 0.351 ∗∗∗

Monocyte
CD86 0.599 0 0.538 0

CSF1R 0.525 ∗∗∗ 0.456 ∗∗∗

TAM

CCL2 0.427 0 0.361 ∗∗∗

CD68 0.469 0 0.398 ∗∗∗

IL10 0.424 ∗∗∗ 0.346 ∗∗∗

M1 macrophage

NOS2 0.153 ∗∗ 0.085 5:89E − 02
IRF5 0.36 ∗∗∗ 0.287 ∗∗∗

PTGS2 0.075 8:85E − 02 0.081 7:35E − 02

M2 macrophage

CD163 0.517 0 0.458 ∗∗∗

VSIG4 0.435 0 0.375 ∗∗∗

MS4A4A 0.438 0 0.368 ∗∗∗

Neutrophils

CEACAM8 -0.134 ∗ -0.158 ∗∗

ITGAM 0.479 0 0.414 ∗∗∗

CCR7 0.255 ∗∗∗ 0.113 1:23E − 02

Natural killer cell

KIR2DL1 0.189 ∗∗∗ 0.143 ∗

KIR2DL3 0.256 ∗∗∗ 0.187 ∗∗∗

KIR2DL4 0.464 ∗∗∗ 0.41 ∗∗∗

KIR3DL1 0.178 ∗∗∗ 0.129 ∗

KIR3DL2 0.288 ∗∗∗ 0.23 ∗∗∗

KIR3DL3 0.245 ∗∗∗ 0.241 ∗∗∗

KIR2DS4 0.253 ∗∗∗ 0.201 ∗∗∗

Dendritic cell

HLA-DPB1 0.209 ∗∗∗ 0.084 6:35E − 02
HLA-DQB1 0.189 ∗∗∗ 0.081 7:33E − 02
HLA-DRA 0.252 ∗∗∗ 0.139 ∗

HLA-DPA1 0.226 ∗∗∗ 0.109 1:52E − 02
CD1C -0.062 1:57E − 01 -0.166 ∗∗

NRP1 0.187 ∗∗∗ 0.163 ∗∗

ITGAX 0.561 ∗∗∗ 0.482 ∗∗∗

Th1

TBX21 0.366 ∗∗∗ 0.247 ∗∗∗

STAT4 0.307 ∗∗∗ 0.184 ∗∗∗

STAT1 0.468 0 0.397 ∗∗∗

IFNG 0.443 ∗∗∗ 0.361 ∗∗∗

TNF 0.303 ∗∗∗ 0.207 ∗∗∗

Th2
GATA3 0.325 ∗∗∗ 0.213 ∗∗∗

STAT6 -0.138 ∗ -0.135 ∗
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expression and LUAD disease outcomes, that is to say, the
overexpression of SLC2A5 enhances the proliferation,
migration, invasion, and tumorigenicity of cells and then
closely affects the progress of LUAD [7]. Therefore, we used
the PrognoScan database and its related data to carry out
survival analysis and meta-analysis and found that high
SLC2A5 expression may be associated with poor OS progno-
sis of LUAD. Additionally, analysis in the Kaplan-Meier
plotter showed the correlation between SLC2A5 expression
level and the different clinical features of the LUAD, which
further demonstrated that SLC2A5 is an independent risk
factor of LUAD. Therefore, our results suggest that SLC2A5
upregulation occurs in LUAD and is worthy of further clin-
ical validation as a potential diagnostic and prognostic
marker.

Our study found that SLC2A5 expression level was
closely related to B cell and dendritic cell infiltration. Subse-
quently, Kaplan-Meier analysis found certain correlation
between B cells and LUAD prognosis and between dendritic
cells and LUAD prognosis. These findings suggest that B cell
and dendritic cell infiltration may be key factors in SLC2A5
with prognostic value. Next, in the correlation analysis
between SLC2A5 and several immune characteristics, we
found that most of the marker genes in immune-
infiltrating cells were also associated with high SLC2A5
expression. As the most important prognostic factors of
SLC2A5, the gene markers of B cells and dendritic cells were
associated with SLC2A5 (correlation between these genes
and SLC2A5: P < 0:0001). It is worth noting that all the
marker genes of natural killer cell (KIR2DL1, KIR2DL3,
KIR2DL4, KIR3DL1, KIR3DL2, KIR3DL3, and KIR2DS4)
are correlated with the high expression of SLC2A5. These

marker genes may affect the occurrence and development
of LUAD by regulating the activity and effector function of
NK cells. In conclusion, this analysis provides a detailed
description of the relationship between SLC2A5 and
immune characteristics in LUAD patients, indicating that
SLC2A5 is a key factor of immune escape in the tumor
microenvironment. In addition, the correlation between
SLC2A5 and B cells and dendritic cells and their related
markers is also very important for the prognosis of LUAD
patients. For example, as the literature [42] shows, SLC2A5
could inhibit the development of human normal adjacent
lung adenocarcinoma cytoplasmic pre-B cells. The network
mechanism includes Golgi apparatus of AP1M2_1; cell cycle
of CUL7, SAC3D1; protein amino acid dephosphorylation of
STYXL1; pro-B cell–cell differentiation of SOX4_3; and FAD
biosynthesis of FLAD1. Therefore, the correlation between
SLC2A5 and B cells and their related markers is very impor-
tant for the prognosis of LUAD patients. At the same time, it
is worth noting that SLC2A5 may be a key factor in mediat-
ing dendritic cell therapy, which needs further study.

To investigate the reasons for the increase of SLC2A5 in
LUAD, we studied the methylation level of SLC2A5 in the
LUAD and found that the methylation level of promoters
in the LUAD decreased. Therefore, SLC2A5 may be acti-
vated and upregulated by its hypomethylation, which may
explain a certain degree elevation of SLC2A5 in LUAD.
Among the results of gene enrichment analysis, we found
that the biological processes of SLC2A5 and its related genes
mainly belong to the immune response of the body, such as
adaptive immune response, lymphocyte activation, leuko-
cyte activation, differentiation and migration, and other pro-
cesses related to immunity. Therefore, SLC2A5 may play a

Table 2: Continued.

Description Gene markers
LUAD

None Purity
Cor P value Cor P value

STAT5A 0.39 ∗∗∗ 0.291 ∗∗∗

IL13 0.057 1:99E − 01 -0.019 6:71E − 01

Tfh
BCL6 0.098 2:65E − 02 0.092 4:14E − 02
IL21 0.361 ∗∗∗ 0.314 ∗∗∗

Th17
STAT3 0.104 1:80E − 02 0.115 1:07E − 02
IL17A 0.201 ∗∗∗ 0.13 ∗

Treg

FOXP3 0.48 0 0.389 ∗∗∗

CCR8 0.434 ∗∗∗ 0.351 ∗∗∗

STAT5B 0.209 ∗∗∗ 0.196 ∗∗∗

TGFB1 0.308 ∗∗∗ 0.219 ∗∗∗

T cell exhaustion

PDCD1 0.508 ∗∗∗ 0.415 ∗∗∗

CTLA4 0.485 0 0.388 ∗∗∗

LAG3 0.499 0 0.413 ∗∗∗

HAVCR2 0.572 0 0.507 ∗∗∗

GZMB 0.567 ∗∗∗ 0.491 ∗∗∗

TAM: tumor-associated macrophage; Th: T helper cell; Tfh: follicular helper T cell; Treg: regulatory T cell; Cor: R value of Spearman’s correlation; none:
correlation without adjustment; purity: correlation adjusted by purity. ∗P < 0:01; ∗∗P < 0:001; ∗∗∗P < 0:0001.
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vital role in the immune microenvironment of LUAD by
participating in the immune response and possibly regulat-
ing immune cells such as B cells and T cells and interferon
γ, interleukin-10, interleukin-12, and other immune regula-
tory factors. Last but not least, in the construction of the
gene coexpression network, we can see that the expression
of IL4I1, FCGR2B, and GPR84 has the strongest positive
correlation with the expression of SLC2A5, while the expres-
sion of TOB1, SELENBP1, and IL17RE has the strongest
negative correlation with the expression of gene coexpres-
sion. According to some relevant paper, the role of IL4I1
in escaping tumor immune response can be achieved by par-
ticipating in the fine control of adaptive immune of B and T
cells [43]. The mouse model of CD8T cell-FCGR2B deletion
established by Anna et al. demonstrated the intrinsic coinhi-
bitory function of FcγRIIB (FCGR2B) in regulating the
immunity of CD8 T cells [44]. As a member of the metabolic

G protein-coupled receptor family, results of Recio et al.
have shown that when the body is in an inflammatory state,
GPR84 could act as an enhancer of inflammatory signals in
macrophages, resulting in increased expression of key
inflammatory cytokines and chemokines [45]. The evidence
above may explain that SLC2A5 and its related genes are
mainly enriched in KEGG pathways related to inflammatory
response such as NF-kappa B signaling pathway and Toll
receptor signaling pathway. With regard to genes negatively
associated with SLC2A5, a previous study showed that over-
expression of TOB1 significantly inhibited the proliferation
and metastasis of lung cancer cells [46]. TOB1 could inhibit
the proliferation and metastasis of lung cancer cells through
a series of downstream regulators, including cyclin D1, AKT
signal transduction, BCL-2, BCL-XL, and SMAD4 [47].
SELENBP1 is a direct target for transcription factor Nkx2-
1, which can inhibit tumor clonal growth and migration
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Figure 5: Promoter methylation levels of SLC2A5 in LUAD. Promoter methylation levels of SLC2A5 were low in (a)–(f). LUAD: (a) sample
type, (b) gender, (c) race, (d) TP53 mutation status, (e) individual cancer stages, and (f) age (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001).
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Figure 6: Continued.
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and inhibit malignant progression of LUAD in vivo. Thus,
SELENBP1 is an important inhibitor of lung tumor growth
and plays a role in the positive feedback loop of Nkx2-1
[48]. The loss of the expression of this gene may be associ-
ated with poor prognosis in lung cancer patients. As a
marker cytokine for TH17 cell subsets [49], IL17RE may
help to reshape tumor microenvironment and tumor
growth/survival [50]. These evidences prove that when the
expression of SLC2A5 increases, the body may regulate some
biological processes by affecting the expression of positive
and negative related genes, thus affecting the condition of
patients with lung adenocarcinoma. However, in this study,
all the analyses in this paper are based on servers or data-
bases, which may be different in specific experiments. It will
be important to verify the analysis results through experi-
ments in our future research.

5. Conclusions

In conclusion, this study provides comprehensive evidence
for the value of SLC2A5 in lung cancer progression and its
potential as a biological target and prognostic predictor of
LUAD. Our findings suggest that the upregulation of
SLC2A5 in LUAD predicts adverse outcomes in the overall
survival of patients, possibly due to multiple physiological
processes affecting SLC2A5 expression. Furthermore, we
found a significant correlation between SLC2A5 and most
immune features. Nevertheless, attention needs to be paid
to the link among SLC2A5 and B cells and dendritic cells
and their associated markers, which may be a new direction
for future LUAD research.
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