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Conventional drug discovery is long and costly, and suffers from high attrition rates, often
leaving patients with limited or expensive treatment options. Recognizing the
overwhelming need to accelerate this process and increase success, the ATOM
consortium was formed by government, industry, and academic partners in October
2017. ATOM applies a team science and open-source approach to foster a paradigm shift
in drug discovery. ATOM is developing and validating a precompetitive, preclinical, small
molecule drug discovery platform that simultaneously optimizes pharmacokinetics,
toxicity, protein-ligand interactions, systems-level models, molecular design, and novel
compound generation. To achieve this, the ATOM Modeling Pipeline (AMPL) has been
developed to enable advanced and emerging machine learning (ML) approaches to build
models from diverse historical drug discovery data. This modular pipeline has been
designed to couple with a generative algorithm that optimizes multiple parameters
necessary for drug discovery. ATOM's approach is to consider the full pharmacology
and therapeutic window of the drug concurrently, through computationally-driven design,
thereby reducing the number of molecules that are selected for experimental validation.
Here, we discuss the role of collaborative efforts such as consortia and public-private
partnerships in accelerating cross disciplinary innovation and the development of open-
source tools for drug discovery.

Keywords: artificial intelligence, machine learning, drug discovery and development, data science
in silico modeling
INTRODUCTION

Preclinical drug discovery typically takes five and a half years and accounts for about one third of the
cost of drug development (Paul et al., 2010). The process is largely empirical with a sequential,
iterative approach to optimizing key drug discovery parameters—efficacy, pharmacokinetics (PK),
safety, and developability. Millions of molecules are tested, thousands are produced, and most fail to
progress in preclinical or clinical settings (Shannon Decker and Atkinson, 2007; Mohs and Greig,
2017). Furthermore, translation from R&D to the clinic is insufficient with a success rate of less than
10%, and safety liabilities and poor efficacy cited as the main causes of attrition (Miller et al., 2017;
Lowe, 2019).
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Patients are waiting for the field of drug discovery to innovate
new processes that will help improve the success rate of
pharmaceutical development, lower drug costs, and get medicines
to the clinic more quickly. With the average cost of developing a
newmolecular entity at over $2 billion, in large part due to the costs
of failures, researchers are challenged to work outside the
conventional slow, sequential, and costly drug development
paradigm to better meet the urgent needs of patients (Kramer
et al., 2007; Munos, 2009; Mullin, 2014; DiMasi et al., 2016). To
increase the generation of successful new molecular entities, a
number of groups have called for more innovation around the
culture of and approach to drug discovery (Munos, 2006; Papadaki
and Hirsch, 2013; Parekh et al., 2015). In particular, because so
much of the cost of development stems from the cost of failures,
approaches that improve our ability to distinguish early which
molecules will ultimately succeed can have a disproportionate
impact on improving the output of new medicines illustrate the
potential for accelerating drug discovery through artificial
intelligence (AI)-driven approaches (Ringel et al., 2013).

The demonstrations of ML for polypharmacological drug
design, deep neural nets for predicting quantitative structure-
activity relationships (QSAR), and generative molecular design
through the use of variational autoencoders and generative
adversarial networks (Besnard et al., 2012; Ma et al., 2015;
Blaschke et al., 2018) hold great promise. To this end,
significant interest has been raised in the application of
approaches that combine AI, simulation, and experimentation
to drug discovery (Vamathevan et al., 2019). Recognizing the
compelling need for a paradigm shift in drug development, the
ATOM consortium was established in October 20171. ATOM's
founders, the Frederick National Laboratory for Cancer Research
(FNLCR, on behalf of the National Cancer Institute), Lawrence
Livermore National Laboratory (LLNL, on behalf of the
Department of Energy), GSK (GlaxoSmithKline), and the
University of California, San Francisco (UCSF), have joined
forces to leverage resources toward the common goal of
benefiting patients. ATOM is applying an integrated approach
to combine capabilities such as high-performance computing,
human-relevant in vitro experimentation, data-driven and
mechanistic modeling, and curation of pharmacological data
toward the development of a novel preclinical drug discovery
and development platform.

Drug Discovery Consortia
As the complexity of biomedical research questions has
increased, so too has the need to bring together expertise and
resources from multiple disciplines and organizations (Cooke
et al., 2015). Consequently, several articles by thought leaders
have called for more collaboration in the drug development
process (Altshuler et al., 2010; Dahlin et al., 2015; Alteri and
Guizzaro, 2018; Takebe et al., 2018; Chaturvedula et al., 2019).
Open innovation and open-source research strategies which
emphasize the value of collaboration and use of both internal
and external information, are creating the opportunity for the
drug research and development industry to leverage know-how
1atomscience.org
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from across organizations (Munos, 2006; Hunter and Stephens,
2010; Owens, 2016). Cross-industry collaboration is particularly
important in the application of computational approaches to
drug discovery, where for instance, most companies have one or
fewer drugs approved per year, far too small a sample size to
support these approaches (Munos, 2009). The advantages of
bringing together organizations into public-private partnerships
(PPP) and consortia include not just scale, but also new-found
agility and increased creativity alongside risk reduction and cost
sharing (Papadaki and Hirsch, 2013; Slusher et al., 2013;
Rosenberg, 2017; Kuchler, 2019). In fact, the US Food and
Drug Administration (FDA), acknowledges the critical role of
PPPs and consortia with respect to the innovation and
modernization of medical product development (Maxfield
et al., 2017).

One notable example of cross-sector collaboration is the Merk
Molecular Activity Challenge2 where the pharmaceutical
company provided contestants with a training set of molecular
descriptors and activities and a test set of descriptors only, and
spurred the development of innovative ML methods for QSAR
(Ma et al., 2015). In the last 2 years, new academic-industry
consortia projects have emerged, focusing on applications of ML
in drug discovery. The Machine Learning for Pharmaceutical
Discovery and Synthesis Consortium, with membership from
three Massachusetts Institute of Technology departments and
several leading pharmaceutical companies, focuses on the
application of ML to automate drug discovery and synthesis3.
Summer 2019 saw the start of a new Innovative Medicines
Initiative collaborative project led by Janssen, dubbed Machine
Learning Ledger Orchestration for Drug Discovery (MELLODDY)4

(Kuchler, 2019). With a 3-year timeframe, the MELLODDY project
focuses on employing federated ML to foster sharing data
insights while preserving organizational intellectual property.
Pharmaceutical industry participants will train models on their
own proprietary data and share those models to increase the impact
of AI and ML in the industry.

As an open consortium backed by major public entities, the
Department of Energy, the National Cancer Institute, and the
University of California Office of the President, as well as
pharmaceutical leader GSK, the Accelerating Therapeutics for
Opportunities in Medicine consortium (ATOM) is committed to
creating new tools for drug discovery that can be shared broadly
and benefit the public good. Computational approaches to drug
design hold the potential to drastically improve the field's ability
to generate novel drugs for patients in need. Harnessing
advances in computational power and AI, ATOM is building a
new, comprehensive, integrated platform for efficient molecular
property prediction, optimization, and design. Drawing from
team science, open innovation, and open-source concepts, the
ATOM platform combines ML, simulation, and experimentation
to generate novel drug candidates more rapidly than traditional
approaches. ATOM's current scope focuses within the area of
pharmaceutical-industry-0517
4www.imi.europa.eu/projects-results/project-factsheets/melloddy
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preclinical drug discovery, but its outcomes aim to benefit not
only the member organizations and their immediate
stakeholders, but the biomedical community at large including
academicians, start-ups, private industry, clinicians, and patients.

AI-Driven Drug Discovery
Drug discovery is relying increasingly on computational and AI-
driven methods. Collaborative efforts that combine scientific know-
how and computational power are being stood up to incubate
innovative methods while sharing risk and accelerating progress. In
the past decade significant advances have been made to accelerate
the drug discovery process such as the development of
computational and AI-based methods for virtual screening and in
silico drug design. Moving beyond structure-based approaches and
virtual screens, several seminal publications have demonstrated the
use of generative adversarial networks and variational autoencoders
for de novo drug design (Kadurin et al., 2017; Olivecrona et al., 2017;
Gómez-Bombarelli et al., 2018; Merk et al., 2018; Polykovskiy et al.,
2018; Putin et al., 2018; Segler et al., 2018; Ståhl et al., 2019; Hong
et al., 2020). For example, a recently published deep generative
model demonstrated the design of small-molecule drug candidates
for discoidin domain receptor 1 prioritizing synthetic feasibility,
efficacy, and uniqueness with respect to known small molecules,
showcasing the ability to rapidly discover drugs at low cost
(Zhavoronkov et al., 2019).

Collaborative AI-Driven Drug Discovery at ATOM
The promise of AI-driven drug design carries with it, several
challenges—the need for appropriate datasets, ability to generate
and test evolving biological hypotheses, multi-parameter
optimization, reduction in design-make-test-analyze cycle times,
and adaptability of research culture (Schneider et al., 2020). ATOM
is tackling these challenges through the collaborative development
of a preclinical, open-source, small-molecule drug discovery
platform (Chaturvedula et al., 2019). The initial stages have
focused on building computational infrastructure, curating
preclinical data from both GSK and public sources, and creating
and testing data-driven modeling capabilities.

ATOM has developed a data-driven modeling pipeline capable
of rapidly building and optimizing ML models for bioassay activity
and molecular property predictions. This modeling pipeline is
important for developing predictive models for public and private
pharmaceutical assay datasets. While ML-based techniques to
predict drug properties from structures are regularly used in the
field of computational drug design, there remains a need for an
automatedmodular pipeline for commonmodeling tasks. Some key
features for such a software package are to enable reproducibility,
incorporate new models, support a variety of chemical
representations, allow for hyperparameter optimization, and
validate predictive performance (Dahl et al., 2014; Gilmer et al.,
2017; Feinberg et al., 2018; Yang et al., 2019).

Existing commercial pipeline tools such as BIOVIA Pipeline
Pilot are limited in their customizability and can be cost prohibitive
to small academic research groups and start-up companies5. On the
other end of the spectrum, open-source pipeline tools such as
5www.3dsbiovia.com/products/ collaborative-science/ biovia-pipeline-pilot/
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KNIME are useful as GUI-based platforms for data processing,
model fitting, and analysis, (Berthold, 2008) but have yet to
demonstrate the suitability for large scale model generation.

The ATOM Modeling Pipeline (AMPL)
AMPL6, or the ATOM Modeling Pipeline, extends the popular
DeepChem7 library and supports ML and molecular featurization
tools (Minnich et al., 2020). AMPL is implemented as a Python
library that integrates with existing data science ecosystems and
utilities. AMPL automates and optimizes many common ML
model fitting tasks that are performed for pharmaceutical
datasets including model fitting, validation, and prediction.
AMPL allows researchers to reproducibly train and test models,
incorporate new models, and provide utilities for automated
dataset characterization, model validation, and uncertainty
quantification. AMPL is designed to be a versatile library that
can interface with many services and tools.

AMPL allows users to build in silicomodels based onmolecular
properties to aid in drug discovery. With an initial focus on safety
and pharmacokinetic modeling, AMPL has been extensively tested
on activity and property assay datasets. In preparation for the
initial release of the pipeline, 11,552 regression and classification
models were built to evaluate data splitting algorithms, model
types, and feature types (Minnich et al., 2020). AMPL supports a
wide variety of dataset splitting algorithms for validation and
testing, including random splits, Butina clustering, scaffold splits,
and temporal splits. AMPL uses models from scikit-learn and
DeepChem including random forest, XGBoost, fully connected
neural network, and graph convolution neural network models.
Small molecules were represented as SMILES strings using the
RDKit cheminformatics library and the molecule validation and
standardization tool, MolVS. AMPL's data curation module was
applied to datasets to filter out compound assay values with wide
variability, and to characterize the datasets with Tanimoto
distances between chemical fingerprints or Euclidean distances
between descriptor feature vectors. Several featurization
approaches were compared including Extended Connectivity
Fingerprints (ECFP), DeepChem graph convolution latent
vectors, Mordred chemical descriptors, and Molecular Operating
Environment (MOE) descriptors. Due to the modular nature of
AMPL's implementation, extensions to the pipeline are available
for additional splitting algorithms, model types, and feature types.

Hyperparameter optimization is an important task for
cheminformatics ML model fitting that may improve model
predictive performance. AMPL supports basic hyperparameter
optimization functions including searches using basic linear grids,
logistic grids, random searches, and user-specified searches. Model
fitting for safety and pharmacokinetic parameters used AMPL's
hyperparameter optimization module to explore model parameter
combinations. Generally, hyperparameter optimization improved
predictive performance on properties of external test sets except for
certain cases with limited data or ECFP featurization.

AMPL automatically calculates standard model performance
metrics for regression and classification models. The regression
6github.com/ATOMconsortium/AMPL
7github.com/deepchem/deepchem
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performance statistics include R2, mean absolute error, and mean
square error to evaluate the level of agreement between the model
predicted values and actual experimental ground truth values.
AMPL also includes classification performance metrics such as
precision and recall, area under the precision-recall curve (PRC-
AUC), negative predictive value, cross entropy, and accuracy
metrics. As previously described, model prediction uncertainty was
calculated for several of PK datasets for comparison with model
prediction error (Minnich et al., 2020). AMPL enables this type of
uncertainty quantification analysis toward better understanding
model predictions, uncertainty, and error.

AMPL is open-source, modular, and flexible, allowing for
additions or extensions as needed. This makes data-driven
modeling using modern ML libraries accessible to the wider
scientific community including academic or government
laboratories and small companies. AMPL is now available for
download on Github8. The website includes detailed library
documentation as well as example Jupyter notebooks to learn to
use the pipeline.

AMPL Validation
Bioassay data, specifically the half-maximal effective drug
concentration (EC50), and the half-maximal inhibitory drug
concentration (IC50), of known hepatic, central nervous system,
cardiovascular, and cellular toxicity safety liabilities were used to
benchmark safetymodels.Modelswerefit for assays suchasBSEP,b2
adrenoceptor, muscarinic acetylcholine receptor, dopamine D2,
voltage-gated potassium channels, and phospholipidosis induction.
Foreachassay type,modelhyperparameterswereoptimizedresulting
in 2,130 classificationmodelswith thresholds appropriate set for each
assay. As described by Minnich et al, the predictive performance of
the classification models was evaluated using common validation
statistics including receiver operating characteristic area under the
curve (ROC AUCs) built on safety datasets. Predictive performance
variedbasedonassay type, dataset size, dataset split type, feature type,
and model type, but overall produced many useful models for
pharmaceutical safety properties (Minnich et al., 2020).

A diverse set of pharmacokinetic data including blood-to-plasma
ratio, plasma protein binding, in vivo clearance, volume of
distribution, hepatocyte clearance, and microsomal clearance,
logD was used to fit predictive models with AMPL (Minnich
et al., 2020). Nine thousand four hundred twenty-two regression
models were fit for all the assay types and corresponding model
parameters were evaluated for improvements to predictive
performance as described by Minnich et al. General trends
between different training and test splits, feature types, and model
types were examined. When using neural network models with
calculated descriptors for many of these PK datasets, model
predictions with MOE descriptors were slightly better than
predictions with open-source Mordred descriptors. Several PK
datasets with larger numbers of measurements (10,000 or more)
benefitted from DeepChem's graph convolutional neural network
models with better predictions compared to experiment than ECFP
or calculated descriptors. For smaller PK datasets, random forest
8github.com/ATOMconsortium/AMPL
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models with MOE descriptors had slightly better performance than
other feature and model combinations (Minnich et al., 2020).

AMPL is designed to automatically and rapidly build and
evaluate cheminformatics models. Automation of deep learning
model training, parallelized hyperparameter search, performance
benchmarking, and data and model storage are essential for
reproducible ML predictions in drug discovery. Given the wide
range of activity and property assay types, the validation
performed by Minnich et al. demonstrate there is no single
best model fitting approach for every dataset. This underscores
the need to rapidly search and fit predictive models for new
datasets enabled by the AMPL software suite.

Two examples of model fitting on publicly accessible datasets
are available with the AMPL repository. Each example describes
a general method of curating datasets, fitting a ML model, and
using the created model for new predictions. Example code is
included to download the datasets from their original source,
perform basic curation on the datasets, train a model on the
curated datasets, and then load the fitted model for prediction on
a withheld test set. In the first example, AMPL mimicked a
DeepChem example model by fitting a model to a public aqueous
solubility dataset using DeepChem's graph convolutional neural
network model (Delaney, 2004). In a second example, AMPL was
used to fit a predictive neural network model using Mordred
descriptors for human liver microsomal clearance from a public
PK dataset (Wenzel et al., 2019). The entire process of data
curation to analysis and visualization for these sample datasets is
automated and reproducible with the AMPL library and tools.

AMPL models can be applied toward related compounds to
rapidly predict bioassay activity or safety and pharmacokinetic
properties. In the context of ATOM, AMPL is a key component
in the overall mission to accelerate the drug discovery process.
CONCLUSIONS

Given heavy reliance on expensive and lengthy experimentation, the
field of drug discovery is increasingly integrating both
computational and AI-driven methods for virtual screening and
in silico drug design. Further, the application of deep neural network
architectures in generative design in conjunction with data-driven
and mechanistic modeling for functional property prediction and
an in silico framework for rapid lead optimization will drastically
change how drug discovery is done.

Collaborative efforts have been employed in recent efforts to
develop new capabilities where risks and required investment
have been high. ATOM provides an avenue for collaborative AI-
driven drug discovery that results in an open-source framework
that broadens availability and an opportunity to raise the level of
collaborative drug discovery efforts.

The AMPL serves as the initial step toward the development
of an open-source preclinical drug design platform that will
accelerate the process of getting more effective therapies to
patients. Future efforts involve extending the modeling
capability of AMPL toward the development of an open-source
pre-clinical drug discovery platform (Figure 1).
June 2020 | Volume 11 | Article 770
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Future Efforts
At ATOM, efforts are underway to integrate current and emerging
computational capabilities with active learning in an AI-driven
platform. ATOM is creating a generative molecular design
framework that integrates predictive models from AMPL and
initiates cycles of generative molecular design and multiparameter
optimization. The goal of ATOM's generative molecular design
framework is to propose novel small-molecule drug candidates with
optimized properties based on design criteria such as potency,
selectivity, cardiotoxicity, hepatoxicity, solubility, clearance, and
synthetic accessibility9. New experimental and molecular
simulation data will be selectively acquired to support the ML-
based approach and will be integrated into the computational
pipeline to kick start additional cycles of the molecular design and
optimization. The integration of active learning will streamline
time-consuming and costly experimentation and will guide the
design of novel drug candidates (Figure 1). Collectively, these efforts
usher in a paradigm shift in drug discovery that emphasizes
collaboration, innovation, and the development of open-
source tools.
9 atomscience.org/abstracts-and-presentations/2019/9/25/generative-lead-
optimization-of-de-novo-molecules-case-study-in-discovery-of-potent-selective-
aurora-kinase-inhibitors-with-favorable-secondary-pharmacology
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FIGURE 1 | The ATOM preclinical drug discovery workflow. ATOM is developing an active learning drug discovery framework that uses a compound library as
input to a property prediction pipeline. The pipeline begins with historic data collected on a working compound library to train machine learning-based models for
property prediction. Next, multi-level and systems-level models of efficacy, safety, and pharmacokinetics as well as developability are integrated to generate a set
of drug design criteria. These parameters are simultaneously optimized for the generation of novel molecules by the generative molecular design framework. The
multi-parameter optimization loop, in grey, can be run for numerous cycles. An active learning approach is used to decide whether a molecular simulation or
experiment is needed to improve or validate the models. Data that result from these simulations and experiments are then used to re-train the property prediction
models. The result of this workflow is a set of optimized drug candidates.
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