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Abstract

Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a
power-law with increasing spatial frequency (1/f2 characteristics), which implies that the power spectra have scale-invariant
properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics
and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine
whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of
natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal
component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the
different image categories. The differences between the image categories were studied in more detail by analyzing whether
the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the
power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with
no systematic difference between the two types of images. However, the slope of the power gradients showed a lower
degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in
photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic
novels possess relatively uniform 1/f2 characteristics across all orientations. In conclusion, the man-made stimuli studied,
which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset
of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or
sufficient to induce aesthetic perception remains to be investigated.
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Introduction

The basis of aesthetic judgment remains elusive. Properties that

can be expressed in scientific or mathematical terms and are

common and unique to most (or possibly all) aesthetic images,

including visual art, have yet to be identified. Indeed, it is still

controversial whether such universal criteria for aesthetic judg-

ment exist at all. On the one hand, it has been argued that the

appreciation of aesthetic artworks relies on cultural variables that

differ substantially between styles of art and cultural provenance

(for example, see [1,2]). On the other hand, some artists,

philosophers, and, more recently, neuroscientists have postulated

that aesthetic judgment is based on principles, which are shared by

human beings, independent of their cultural background [3–9].

As a first step in the search for properties that distinguish

aesthetic images from other image categories, we and other

researchers have studied statistical properties of subsets of aesthetic

images and found that they possess, on average, scale-invariant

statistical properties in the Fourier domain [10–13]. Specifically,

the radially averaged spectral amplitudes in art images fall

according to a power-law with increasing spatial frequency,

similar to 1/f noise (or according to 1/f2, if spectral power is

plotted instead of amplitude, as done in the present study; f =

spatial frequency). 1/f2 characteristics have been found previously

in images of natural scenes [14–17]. These findings imply that

both art images and natural scenes possess fractal-like properties,

i.e., the amplitudes of the spatial frequencies remain constant if

one zooms in and out of the images (for reviews, see [18,19]).

Because the processing of information in the human visual system

is efficiently adapted to viewing natural scenes [20–23], it has been

argued that artists use 1/f2 characteristics in their artworks

because these properties confer inherent aesthetic value [24] or are

a corollary of aesthetic features in artworks [9].

1/f2 characteristics apply, on average, to a wide range of

artworks, including art of different techniques and styles, both

abstract and figurative, from the Western hemisphere [10–12] and

of Eastern provenance [25]. Fractal-like properties have been

demonstrated also for special types of abstract art, notably for the

drip paintings of Jackson Pollock [26–28]. In the present study, we

asked whether other categories of man-made images that are

presumably created to evoke pleasant or enjoyable visual

perception in humans also display 1/f2 characteristics in the
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Fourier domain. To answer this question, we extended our

previous analysis [11,12] to political cartoons and graphic novels

(Japanese mangas and comics of Western provenance).

While computing the radially averaged (1D) power spectrum

was in line with previous research and results by others [10,14–

17], 1/f2 characteristics are neither necessary nor sufficient to

induce aesthetic perception [11]. Notably, images with 1/f2

characteristics that are not necessarily aesthetic can be produced

artificially [29,30]. Hence, such a property cannot be interpreted

as an exclusive feature of aesthetic images. Because radially

averaging the power spectrum of an image means loss of

information, the next natural step taken in our investigation is to

study the complete (2D) Fourier spectrum and to search for

properties that are common to visually pleasing images in such a

representation. In order to define the relation between 2D Fourier

spectral properties and different categories of man-made images

more closely, we compared man-made images with photographs of

real-world objects (natural scenes, plants, simple objects and faces).

Currently, we are looking for common second-order properties

of different categories of images in general and restrict our

investigation to the power spectrum. The phase information of an

image was excluded from the analysis. Higher-order statistics

should be studied in future investigations of the different image

categories.

Results

Experiment 1: Analysis of radially averaged (1D) Fourier
power spectra of cartoons, comics and mangas

Previous studies have shown that the radially averaged spectral

amplitudes of monochrome art images fall roughly according to a

power-law with increasing spatial frequency (1/f2 characteristics,

see Introduction). In the present study, we extended this type of

analysis to political cartoons, Japanese mangas and comics of

Western provenance. Examples for the log-log plots of radially

averaged power spectra are shown in Figure 1. Mean slope values

for the three image categories are given in Table 1 and

demonstrate that, like visual art and natural scenes, all three

image categories possess 1/f2 characteristics in their power spectra.

The mean slope values of the three image categories are

significantly different from those of scientific illustrations

(p,0.001), face photographs (p,0.001) and household objects

(p,0.001) (Table S1). These results demonstrate that other man-

made images that are produced to evoke pleasant perception in

humans, also possess 1/f2 characteristics.

Experiment 2: Principal component analysis of the 2D
Fourier power spectra

As a next step in our analysis, we asked whether differences exist

between the 2D power spectra of the man-made and real-world

image categories.

The basis for our analysis is a generative model of the 2D power

spectrum. We assume that the 2D power spectrum F (represented

as a vector f) of an individual image is generated by a linear model

f = WT s. Thus, the 2D power spectrum of an image is

represented by a point s in the space spanned by a given set of

basis spectra W. Examples of the calculated 2D power spectra for

each image category are given in Figures S1 and S2.

Principal component analysis is used to reconstruct the ‘‘basis

power spectra’’, as done before for the space of images [31] or the

so-called Eigenfaces as a representation of the space of face images

[32,33]; it is widely used in visual studies on the representation of

shape and structural appearance in images. For example, such an

approach has been successfully used to categorize photographs of

urban and natural scenes [34]. Given such a linear model of the

generative process for 2D power spectra, we can investigate

whether images of different categories are located in different

subspaces of the spanned space of the 2D power spectrum. For

technical reasons, we restrict our investigation to the first 15 basis

vectors given by the 15 largest eigenvalues of the PCA analysis.

Because high frequencies (.126–181 cycles/image) as well as

horizontal and vertical orientations likely contained artifacts, we

neglected them in the initial PCA (see Methods and Fig. 2C).

Although the number of images available in our data set for

PCA is not sufficient for a full rank covariance matrix

computation, we were able to demonstrate that the power

Figure 1. Examples of log-log plots of radially averaged 1D
power spectra. One example each is given for the image categories of
cartoons, comics and mangas (thin colored lines). Note that log power
falls nearly linearly with increasing log frequency. The squares represent
the binned points (10–256 cycles/image) that were used for fitting the
straight lines (thick colored lines) for each image. The slope of the lines
was 22.09, 21.93, and 21.85 for the cartoon, comic and manga,
respectively.
doi:10.1371/journal.pone.0012268.g001

Table 1. Slope of fitted line in log-log plot of radially
averaged spectral power and deviation of the data from the
fitted line.

Image category n Slope Deviation

Monochrome art1 200 22.0760.37 0.01560.018

Monochrome portraits2 306 22.1260.30 0.01860.019

Natural scene photographs1 208 22.0360.33 0.01060.010

Face photographs2 3313 23.5460.15 0.01660.021

Scientific illustrations1 209 21.5760.32 0.01960.021

Object photographs1 179 22.7560.28 0.01060.010

Plant photographs1 206 22.9060.38 0.01060.013

Cartoons3 230 21.9960.24 0.01760.016

Comics3 247 22.0460.25 0.02160.024

Mangas3 244 22.0860.18 0.01060.008

Values represent mean 6 SD (n, number of images analyzed for each category).
For pairwise significance testing, see Table S1.
1Data from Redies et al. (2007a).
2Data from Redies et al. (2007b).
3Slopes were calculated without lanczos/sinc function (see Methods), according
to previously used methods of calculation (Redies et al., 2007a,b).

doi:10.1371/journal.pone.0012268.t001
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spectrum exhibits differences between image categories, including

man-made images. With the procedure, we are in line with current

investigations in this area, like the work by Torralba et al. [34],

who did a PCA of the power spectrum using 5000 images of size

2566256.

Figure 3 displays the mean power spectrum (Fig. 3A) and the

first 15 principal components (PCs; Fig. 3B) for all 1500 spectra

analyzed (150 randomly selected images per image category). The

mean power spectrum displays a smooth gradient from high

frequencies to low frequencies that is rather uniform across

angular directions. The PCs show a higher degree of anisotropy of

gradients across orientations. A similar set of PCs has been

obtained previously for a large set of natural and urban scenes

[34].

Because the number of images available for principal compo-

nent analysis was not sufficient for a full rank covariance matrix

computation, we also calculated the first 15 PCs for 2D power

spectra that were reduced in their resolution from 2566256 pixels

to 16616 pixels, to obtain a more complete covariance matrix.

The first eight PCs had a similar appearance in both calculations,

but the ninth to fifteenth PCs displayed an increasingly noisy

structure in the 16616 pixel calculation (data not shown).

In order to quantify how close two image categories are in the

15D eigenspace, the covariance matrix was extracted and the

mean Mahalanobis distance [35] was calculated for each pair of

image categories (Table S2). Thereby, the covariance matrix and

the mean of all coefficients of one image category define the

specific distance metric of this category. Hence, the columns of

Table S2 represent the distance of the mean coefficients of every

category to one specific distance metric of a single category.

The Mahalanobis distance does not take into account the angle

between the coefficient vectors for each image in the 15D space.

To obtain a better idea of the differences in the coefficients

between image categories, Figure 4 visualizes the mean coefficients

of the first 15 PCs of all categories as radar plots for the analysis at

a high resolution (2566256 pixels) of the Fourier spectra. We

chose to plot positive and negative coefficients separately to obtain

a better impression of the variance of the coefficients. The

resulting plots show large differences in the first 15 PCs between all

image categories, except for graphic art and portraits, which are

more similar to each other than to most of the other image

categories.

The mean number of coefficients that differ significantly

(p,0.001) between all pairs of image categories was smaller for

the original images (4.062.5 S.D.) than for their respective power

spectra (6.162.2 S.D.), suggesting that the Fourier spectra allow

for a better separation of the image categories than the original

images.

Taken together, the results from the PCA demonstrate that the

monochrome art images (graphic art and portraits) occupy

subspaces in the 15D eigenspace. This implies that they exhibit

specific features in their Fourier spectra that allow separating

them, at least in part, from the other image categories. In future

studies, a greater understanding of the higher-order geometry of

Figure 2. Analysis of the power spectrum. (A) Example of a photograph of a plant and its corresponding power spectrum (B). (C) Mask used for
PCA analysis. To remove artifacts in the power spectrum, black parts containing high frequencies (larger than 128–181 cycles/image) and horizontal/
vertical orientations were ignored in the PCA analysis. (D) Illustration of the sectors used to calculate gross anisotropy in the images. Corresponding
sectors of the symmetric power spectrum are displayed in the same color. Sector numbers correspond to those shown in Figure 5.
doi:10.1371/journal.pone.0012268.g002

Figure 3. Principal components of the power spectra of all image categories. The mean power spectrum for all categories (A) and the first
15 principal components are shown with image normalization for each image (B). To avoid artefacts, the power spectra were analyzed only in the
parts that were left uncovered by the mask displayed in Fig. 2C.
doi:10.1371/journal.pone.0012268.g003
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each image category may eventually lead to a more complete

separation in feature space.

Experiment 3: Analysis of isotropy in the 2D Fourier
power spectra

In view of the obtained differences between the image

categories, we next attempted to define specific properties of the

Fourier spectra for each image category. In preliminary experi-

ments, we observed that one key difference between the power

spectra of the different image categories is their general shape,

which can be classified as isotropic vs. anisotropic in the Fourier

domain (Figs. 2B; 5B,G,L,Q,V,A’; S1, S2). In the present work, we

determined anisotropy both of mean power and of power

gradients.

For mean power, anisotropic implies that power averaged

across frequencies varies with the orientation in the power

spectrum of an image (‘‘power anisotropy’’). This value was

determined because natural scenes generally contain higher

proportion of power at cardinal orientations (horizontal and

vertical) than at oblique orientations, although orientational power

can vary considerably between individual images [36]. We asked

whether artists mimic or change this bias in their artworks. The

antonym, isotropic, implies that spectral power is uniform across

all orientations in the power spectrum.

For power gradients, anisotropic means that the gradients from

low to high frequencies vary in their steepness (or slope) with the

orientation in the power spectrum of an image (‘‘slope anisotro-

py’’). This value was determined in order to assess whether the

observed scale-invariant power spectra of natural scenes and

aesthetic images varied with regard to different orientations.

Our next step was to look for a representation of the power

spectrum that makes classification into isotropic/anisotropic

possible. In contrast to some previous work by others, for example

the frequency signature approach of Torralba and Oliva [34], we

did not fit a specific model to the averaged power spectra of a class

of images in our work, but we computed mean power and the

Figure 4. The mean positive and negative coefficients of the first 15 principal components. Results for each image category are displayed
in a radar plot. Sector length represents the coefficient strength normalized across all coefficients. The numbers of the sectors at the bottom left of
the figure indicate the order number of the principal components. Radar plots are similar for B/W graphic art and B/W portraits, but show relatively
large differences for all other image categories.
doi:10.1371/journal.pone.0012268.g004
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slope of a straight line fitted to the log-log power spectrum, across

different orientations for individual images, as previously done for

natural scenes by van der Schaaf and van Hateren [36]. To do

this, we divided the power spectrum into 32 equal sectors (Fig. 2D).

However, because upper and lower parts of the Fourier spectra are

identical, the analysis was restricted to the upper 16 sectors. The

average mean power and the average slope value for each sector

were calculated. Directional slope values were calculated in the

same way as the rotational averages (see Methods; compare to

Fig. 1). To assess how well a line can approximate the shape of the

log-log power spectrum for the individual sectors, we computed

the error of the fit for individual sectors.

We then plotted the resulting power and the slope values over

the sectors and call this representation the frequency signatures of

an individual image. For an ideal isotropic spectrum, the

frequency signature will be a constant function. For an anisotropic

one, it will be a function that depends on the change of the power

or the slope over different orientations in the power spectrum.

The frequency signatures of individual images from one image

category were used as the basis to compute the average frequency

signatures of this category. In Figure 5, different sample images

(first column in Fig. 5) and the average signatures for power (third

columns) and slope values (forth columns) are given for each image

category. The reader can observe that the frequency signatures

correspond to the visual appearance of the 2D power spectra

(compare to examples in Figs. S1, S2) with respect to isotropy vs.

anisotropy of power and slope values.

Results reveal that photographs of natural scenes (Fig. 5F–J),

faces (Fig. 5K–O) and objects (Fig. 5U–Y) contain a higher

proportion of power in cardinal orientations (horizontal: sectors 1

and 16; vertical: sectors 8 and 9; compare to numbering in Fig. 2D)

than in oblique orientations. Similar observations were made for

real-world photographs of natural and urban scenes [34,36,37]. A

bias of mean power for cardinal orientations was also observed for

the aesthetic image categories (monochrome graphic art [Fig. 5A–

E] and cartoons [Fig. 5Z–D’]) and scientific illustrations (Fig. 5P–

T). Plants that were photographed from above are the only image

category that shows similar mean power values in all directions of

the power spectrum (Fig. 5E’–I’), as expected from the lack of a

viewpoint bias in these images.

The mean standard deviation over all image sectors of an image

was taken as a measure of anisotropy. Figure 6 displays mean

anisotropy values for the different image categories. For power

anisotropy (Fig. 6A), there is no systematic difference between the

categories of real-world photographs (faces, plants, objects, natural

scenes) and the man-made image categories (monochrome art and

portraits, cartoons, graphic novels and illustrations). For the

different subcategories of art images, mean power isotropy values

are similar for different centuries, countries of origin and

techniques (Table S3, left column). However, power anisotropy

is significantly higher for artworks depicting buildings than for

other subject matters.

We next studied anisotropy of the slopes of the power gradients.

For natural scenes and photographs of faces, slope values are

significantly higher for horizontal orientations and vertical

orientations than for oblique orientations (p,0.001; Fig. 5I,N).

Differences between mean slopes in cardinal and oblique

orientations are less prominent or absent in the other image

categories, including monochrome graphic art (Fig. 5D), mono-

chrome portraits, cartoons (Fig. 5C’), comics and mangas (data not

shown).

The mean anisotropy of the slope values is plotted in Figure 6B

for each image category (for results of pairwise significance testing,

see Table S1). Slope anisotropy was higher for photographs of

natural scenes, objects and faces, as well as scientific illustrations

than for art images, cartoons, comics, and mangas (p,0.05).

Photographs of faces showed slightly higher slope anisotropy

values (0.2060.05 S.D.) than portraits by artists (0.1860.05 S.D.,

p,0.001). For the monochrome art dataset analyzed in this study,

slope anisotropy values are generally similar across different

centuries, country of origin, techniques and subject matters, with

few exceptions (etchings, drawings and living matters; Table S3).

The differences in anisotropy between the image categories may

be due to viewpoint bias or differences in stationarity. For

example, photographs of natural scenes are often captured at eye

level and display large areas of horizon. These features induce

stronger power anisotropies [34,36,37] but can potentially

introduce also stronger slope anisotropy. The photographs of the

Dutch countryside taken by van Hateren and van der Schaaf [38]

lack large vistas but include bodies of water or plants at close

range, which may also cause the anisotropic spectra. In contrast,

artists are free to choose any angle of perspective and,

consequently, their works may be more isotropic. Despite this

freedom, the power anisotropy of aesthetic images resembles that

of natural scenes (Fig. 6A). In contrast, slope anisotropy in visually

pleasing images (artwork, cartoons, and graphic novels) is

generally lower than in the other image categories (Fig. 6B). To

assess the potential influence of viewpoint choice on the measured

slope isotropy values, we carried out three additional types of

analyses.

First, we determined slope anisotropy for a novel set of 198

large-vista photographs of Rocky Mountain and Norwegian

landscapes (dataset 3 in Fig. 6C, D) and confirmed that mean

slope anisotropy in these photographs (0.2260.08 S.D.) was

significantly larger than in artworks (0.1760.07 S.D., p,0.001),

although it was smaller than for the Groningen database

(0.2560.10 S.D.; p,0.001; dataset 1 in Fig. 6D).

Second, for the dataset of graphic art, we compared 50 images

of artworks that contained strong perspective lines and depth cues

(dataset 7 in Fig. 6C, D), to 50 images of artworks that contained

no or only weak perspective and depth cues (dataset 8 in Fig. 6C,

D). Results revealed that slope anisotropy values did not differ

significantly between the two types of artworks (Fig. 6D).

Third, we compared the Groningen database of natural scenes

(dataset 1 in Fig. 6C, D) to 104 monochrome drawings and prints

of Dutch landscapes (dataset 4 in Fig. 6C, D). Slope anisotropy

values for the landscape images painted by artists were

significantly lower (0.1860.06 S.D.) than values for the Groningen

natural scenes database (0.2560.10 S.D.; p,0.0001) and

resembled those of the other art categories. Because the type of

scenery contained in the two datasets did not match completely,

30 images with similar content were selected from the two

databases. The 30 matched images from the database of Dutch

landscape paintings (mean anisotropy 0.1760.05 S.D.; dataset 5 in

Fig. 6D) had lower slope anisotropy values than the 30 matched

images from the Groningen database (0.2760.09 S.D.; p,0.0001;

dataset 2 in Fig. 6D), in accordance with the overall difference

between the two image databases. Differences in power anisotropy

showed similar overall tendencies (Fig. 6C).

Taken together, these results indicate that the lower degree of

slope anisotropy found in artworks cannot be explained on the

basis of viewpoint bias or less use of perspective cues alone.

Rather, they suggest that artists use Fourier spectra in their

artworks that tend to be more isotropic with respect to the ratio

between high and low frequency power than those of correspond-

ing real-world images. In contrast to this result from the slope

anisotropy measurements, no systematic differences between the

two types of images were found in the power anisotropy

Statistics of Art Images
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Figure 5. Frequency signature analysis of samples from different image categories. The first column displays a sample image of monochrome
graphic art (A), natural scenes from the Groningen database (F), face photographs (K), scientific illustrations (P), object photographs (U), cartoons (Z) and plant
photographs (E’). The second column shows the corresponding power spectra (B, G, L, Q, V, A’, F’). The low spatial frequencies are represented at the center and
darker shades represent higher power. The sector parts shown schematically in Fig. 2D were analyzed. For all images in the same category, the three columns
on the right side represent the mean power for each sector of the power spectrum (C, H, M, R, W, B’, G’; for numbering of the sectors, refer to Fig. 2D); the mean
sector slope values (D, I, N, S, X, C’, H’); and the mean sector error of the line approximation (E, J, O, T, Y, D’, I’). The whisker plots represent mean values and their
standard deviation. The image shown in A is an engraving by the 15th century artist Martin Schongauer and was reproduced with permission from ‘‘Das
Berliner Kupferstichkabinett’’, Akademischer Verlag, Berlin, 1994 (inventory number: 916-2; � Staatliche Museen zu Berlin, Kupferstichkabinett). F displays an
example from the Groningen database of natural scenes [38]. K is a photograph similar to those of the AR face database [45] and shows one of the authors
(M.K.), to avoid conflicts with the rights of the persons photographed for the AR database. The scientific illustration in P, the object photograph in U, and the
plant photograph in E’ are from the study by Redies et al. [12]. Images are reproduced with permission from the authors. Z displays a propaganda cartoon from
the Japan Times (from the year 1942; downloaded from Wikimedia Commons).
doi:10.1371/journal.pone.0012268.g005
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measurements. The significance of this discrepancy remains to be

explored further.

Discussion

Scale invariance in the power spectra of man-made
images

In an attempt to define statistical properties of aesthetic visual

art, we and others have described previously that, on average, art

images of different techniques, style, subject matter and cultural

background (Western and Eastern provenance) share scale-

invariant (fractal-like) statistics in their radially averaged Fourier

spectra [10–13,25]. Scale invariance is suggested if slope values of

log-log plots of radially averaged Fourier power versus spatial

frequency are around 22 (1/f2 characteristics). In this respect, art

images resemble natural scenes, which also possess 1/f2 charac-

teristics (see Introduction). Similar findings were published for

images of architecture (for a review, see [39]), American sign

language [40] and music [41,42].

In the present study, we extend these observations to other

categories of monochrome man-made images, cartoons and

graphic novels (Japanese mangas and comics of Western origin).

Like art, these images are created for viewing by humans and most

of them are designed to evoke pleasing or enjoyable perception

upon viewing. It is therefore noteworthy that the slopes of cartoons

and graphic novels are around 22 as well (Table 1). Scientific

illustrations, which are primarily produced to convey content and

are not necessarily aesthetic or pleasing, have slope values

Figure 6. Quantitative results of measuring power and slope anisotropy in the power spectra of the different image categories. For
each category, mean power anisotropy values (A, C) and mean slope anisotropy values (B, D) were calculated on the basis of the standard deviations
of the mean power values and of the slope values, respectively, for the 16 radial sectors in each image (compare to Figs. 2D, 5). In A and B, results are
plotted as a function of the radially averaged slope values for each image category (see Tab. 1). In C and D, data for the following datasets are plotted:
Dataset 1, the Groningen database of natural scenes; dataset 2, the 30 images of the Groningen database, matched in image content to 30 images of
the Dutch landscape drawing and print database (dataset 5); dataset 3, large-vista natural scene database (Jena); dataset 4, 104 Dutch landscape
drawings and prints; dataset 5, the 30 images of the Dutch landscape drawing and print database, matched in image content to the 30 images of the
Groningen database (dataset 2); dataset 6, monochrome graphic art; dataset 7, 50 images from the monochrome graphic art database with strong
perspective or depth cues; and dataset 8, 50 images from the monochrome graphic art database with weak or no perspective or depth cues. The
whisker plots represent mean values and their standard deviation.
doi:10.1371/journal.pone.0012268.g006
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significantly higher than 22 [12]. Photographs of faces, simple

objects and plants have slope values significantly lower than 22

(Table 1) [12,34]. Fernandez and Wilkins (2008) showed that the

spectral components of comfortable images resemble those of

natural scenes while uncomfortable images have energies that are

disproportionately higher within two octaves of 3 cycles per degree

[43]. Taken together, these results suggest that a wide variety of

visually pleasing images share specific statistics in their radially

averaged power spectra [13].

Discrimination of image categories by principal
component analysis

As a next step in our analysis, we asked whether the full 2D

power spectra of each image category have a characteristic

structure that allows distinguishing them from other image

categories. After extracting the first 15 principal components

(PCs) of the power spectra by principal component analysis (PCA

[44]) from all 1500 images analyzed in the present study, we found

that each image category occupies a disjunct subspace (eigenspace)

in the space spanned by the 15 PCs, with the exception of

monochrome art and art portraits, which had largely overlapping

eigenspaces. It should be noted that PCA is a linear transformation

and we neglected the phase part in our analysis. Future work with

non-linear transformations that explicitly take account of struc-

tural (phase) information may elucidate further properties that

characterize aesthetic and other visually pleasing images and

possibly allow a better distinction between this type of man-made

images and real-world photographs. Our study should thus be

viewed as a first step in this type of analysis.

Anisotropy of the 2D power spectra
Because the PCA indicated that the different image categories

each have characteristic power spectra, we next asked what these

differences might be. Preliminary inspections of the power spectra

indicated that those of art images may be more isotropic. We

therefore measured two types of anisotropy directly in the

individual power spectra by a sector analysis (Figs. 5, 6). First,

we determined the anisotropy of mean directional power. Results

reveal that in both visually pleasing images (artworks, cartoons,

comics, and mangas) and real-world photographs (natural scenes,

faces and objects) power is concentrated in cardinal orientations.

Thus, artists do not take advantage of their freedom to deviate

from having higher power in cardinal orientations.

In contrast, slope anisotropy is generally lower in art images,

cartoons and graphic novels than in most of the other real-world

and man-made categories (face photographs, natural scenes,

scientific illustrations, and photographs of objects; Fig. 6B). Low

slope anisotropy in art images is independent of cultural variables,

such as century, techniques, country of origin and subject matter

(Tab. S3). However, not all images of natural objects display a

high degree of slope anisotropy. For example, the power spectra of

plant photographs are relatively isotropic, both for mean power

and power slopes. Because these images are not necessarily

aesthetic, low slope anisotropy alone does not seem to be sufficient

to induce aesthetic perception.

One possible reason for a higher degree of slope anisotropy in

natural scenes is a bias for horizontal and vertical orientations due

to the viewpoint taken by the photographer. However, viewpoint

bias alone cannot explain the higher slope isotropy in art images,

for the following reasons: (1) artistic portraits display higher slope

isotropy than face photographs; (2) landscape paintings are, on

average, more isotropic than landscape photographs, and (3)

artworks, which are composed with strong perspective and depth

cues, are as isotropic as artworks with weak or no perspective cues

(Fig. 6D).

We conclude that, in addition to 1/f2 characteristics, artists tend

to shift the power spectra of real-world images to more isotropic

ones in their artworks. Other types of visually pleasing man-made

images, such as cartoons and graphic novels, also show a tendency

towards higher slope isotropy.

It remains to be investigated in a more systematic way whether

isotropic 1/f2 characteristics represent a universal property of all

aesthetic or visually pleasing images and whether they are

necessary or sufficient to elicit an aesthetic response in human

observers. Also, the statistical properties measured by us should be

directly related to aesthetic ratings by human observers within a

category of images (e.g., photographs), in order to scrutinize their

relevance for aesthetic judgment. Moreover, there is significant

overlap of the image types in their common eigenspace, and the

models of directional isotropy do not achieve a complete

separation between the categories of aesthetic and non-aesthetic

images. Despite these caveats, our results provide evidence that

artworks constitute a subset of all images with specific properties

that tend to deviate from real-world objects and scenes. Moreover,

artists seem to produce aesthetically pleasing images by making

preferential use of specific statistical properties that can be

extracted by lower-level perceptual mechanisms, similar to object

categorization in natural scenes by gist perception [34].

Materials and Methods

Image data
For analysis, we used sets of previously analyzed image

databases [11,12] and novel image databases of cartoons, graphic

novels (comics and mangas), large-vista natural scenes, and Dutch

landscape drawing and prints. The previously analyzed data

include the following databases:

Photographs of faces. 3313 images from the AR face

database [45]. The AR face database contains color images of 126

people with different facial expressions, illumination conditions

and occlusions, photographed on a uniformly bright background.

Image size was 7686576 pixels. Images were converted to

grayscale values. Centered passport-type details of 5766576

pixels (AR face database) were cut from each image for analysis.

Natural scene database. A dataset of 208 images selected

from the Groningen natural scene database [38]. The selected

photographs did not contain buildings and other man-made

structures. As described previously [12], centered details of

102461024 pixels were cut from the original monochrome

images of size 153661024 pixels.

Monochrome graphic art databases. Datasets of 200

monochrome graphic art images [12] and 306 monochrome

portraits by artists [11]. The artworks were of Western provenance

and represented a large variety of graphic styles, subject matters,

techniques, centuries and artists. The vast majority was created by

well-known artists and collected by prestigious museums. Images

were scanned from high quality art books by a calibrated scanner

in 8-bit grayscale. Largest possible square details from the art

images or the complete images padded according to square ones

by adding a uniform gray border were reduced to a resolution of

102461024 pixels by appropriate software (Photoshop, Adobe,

Mountainview, CA).

Photographs of landscapes, objects and plants. 179

photographs of household or laboratory objects and 206

photographs of plants or parts of plants. The generation of these

datasets was described previously [12]. The photographs were

obtained with a 4-megapixel digital camera (Digital Ixus 400,
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Canon, Tokyo, Japan). Square details of maximal possible size

were taken from the digital images and converted to grayscale

images (102461024 pixels). By the same method, a database of

198 large-vista photographs of Rocky Mountain and Norwegian

landscapes was generated for the present study.

Scientific illustrations. 209 scientific illustrations (anatomical

illustrations, schematic diagrams and recordings) from different

textbooks on genetics, anatomy or neuroscience [12]. The images

were scanned and processed in the same manner as the

monochrome graphic art images. The illustrations did not contain

photomicrographs of natural objects or scenes.

For the present study, the following sets of images were digitized

from books on a scanner that was calibrated as described

previously [11]. Monochrome images were scanned in 8-bit gray

scale. Care was taken to include a large variety of styles and artists

in each image category. For all images, square details of maximal

possible size were obtained and reduced to 102461024 pixels.

Cartoons and graphic novels (mangas and comics). 230

monochrome (grayscale) political cartoons from the 20th century

were scanned from books that contained collections of cartoons

from different countries and cartoonists. Typically, each cartoon

depicted of a single scene. 244 monochrome Japanese mangas

were scanned from 20 different contemporary manga books

purchased in Japan in the year 2007 and one review book on

mangas. 247 monochrome 20th century graphic novels of Western

provenance were scanned either from various books on work by

single artists or from collections of comics from different countries

and artists. For graphic novels, entire pages were digitized and

cropped to square details of maximal possible size. Typically, for

mangas and graphic novels, each image consisted of several panels

depicting different scenes.

Dutch landscape drawing and prints. 104 monochrome

(grayscale) images of Dutch landscape drawings and prints were

scanned from five artbooks on 15th to 19th century Dutch

landscape paintings. The database contained large-vista views of

landscapes with wide horizons, skies of bodies of water as well as

close-up views of trees and vegetation without large horizons.

Fourier transformation
Image analysis was performed using Matlab and C++. For

rotational averaging and anisotropy/model analysis, the images

were resized by bicubic interpolation to a resolution of 102461024

pixels (Matlab routine). For all PCA investigations (C++), images

were resized to 5126512 pixels, due to memory and computation

time constraints. The power spectrum (amplitude squared) of each

input image was obtained by computing the 2D Fast Fourier

Transform, an efficient algorithm for computing the discrete

Fourier transform. For all calculations, except for PCA and for

obtaining the data displayed in Table 1, images were preprocessed

with a lanczos/sinc window function to reduce spectral leakage

and wrap around effects.

Rotational averaging
The 2D power spectra were transformed to 1D power spectra

by rotationally averaging the power values for each frequency in

the 2D power spectra (Fig. 1), as described previously [12]. Briefly,

for each image, data points were binned at regular frequency

intervals in the log-log plane. A least-squares fit of a line to these

binned data points was performed. Fitting was restricted to the

frequency range between 10 and 256 cycles per image, to

minimize artifacts due to rectangular sampling, raster screen and

low-pass filtering in the image [12]. Results listed in Table 1 are

the mean slope of the fitted line and the mean deviation of the data

points from that line for each image category (6 S.D.,

respectively).

Principal component analysis
To analyze the 2D power spectra of the different image

categories in more detail, we carried out principal component

analysis (PCA) [44], whereby the power spectra of 5126512 pixel

size were used as input data. For technical reasons, the 2D power

spectrum was cropped squarely so that only the corresponding

central part of the power spectrum (2566256 pixels) was used for

PCA. Thereby, we excluded high frequencies (,128 cycles/image

for vertical and horizontal orientations, to ,181 cycles/image for

oblique orientations) from the analysis to avoid artifacts (see

above), consistent with the rotational averaging procedure.

Moreover, frequency components that covered the horizontal

and vertical orientations were ignored to exclude continuity and

discretization artifacts. The mask used for cropping the power

spectrum is illustrated in Figure 2C. The cropped power spectra

were used as input data for PCA only. For all other analyses of the

2D power spectra, the frequencies were cropped radially (Fig. 2D).

In view of memory and time constraints for computations with

high-dimensional vectors, we performed a Lanczos iteration [43]

to calculate the strongest eigenvectors and eigenvalues of the

covariance matrix, without explicitly computing the covariance

matrix itself. In contrast, the low-dimensional vector computations

used the sample covariance matrix explicitly.

PCA was performed for images from all categories together, to

reveal the components with the largest variance in the input data.

The resulting images, displayed in Figure 3, were normalized for

visualization, by linearly transforming the minimal and maximal

value of the 15 components to the minimal and maximal value of

the grayscale range (0–255). To determine the different influences

of these components on the diverse categories, a 15-dimensional

(15D) eigenspace was computed that was spanned by the

coefficients of the 15 leading eigenvectors. In order to quantify

how close two image categories are in the 15D eigenspace, the

sample covariance matrix was extracted and the mean Mahala-

nobis distance (Mahalanobis, 1936) was calculated for each pair of

image categories. To determine whether categories are distin-

guishable by the coefficients or not, ANOVA significance testing

was performed pairwise for every coefficient on the datasets that

contained the coefficients of every category.

To visualize the coefficients of all 15 principal components, the

multidimensional input data were displayed as sectors of a circle in

a radar plot (Fig. 4). We calculated the means of the positive and

negative coefficients separately to capture more of the variance in

the data. For each coefficient, data values for all image categories

were normalized to the interval [0,1]. The length of the sectors in

the radar plot corresponds to the normalized value of the

coefficient.

Determination of anisotropy in the power spectra
To measure anisotropy, the power spectrum was partitioned

into 32 radial sectors of equal width (Fig. 2D) [36]. Only the 16

sectors of the top half of the power spectrum were used because

the real-valued input images have a symmetric power spectrum.

To measure anisotropy of power, we first computed the mean

power of every sector with the frequency interval ranging from 10

to 256 cycles per image. Thereby, mean power refers to the mean

of a 1D frequency spectrum created by rotational averaging within

each sector. To avoid illumination artefacts, we normalized the

resulting sector values to a mean of zero and a variance of one.

Next, we measured the standard deviation of all sector means for

each image (Fig. 5C, H, M, R, W, B’, G’; 6A, C). To measure
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sector anisotropy, we first computed the slope of all rotationally

averaged sector spectra. We then measured the standard deviation

of all sector slopes for each image (Fig. 5D, I, N, S, X, C’, H’; 6B,

D). This value is 0 if and only if the slopes are equal in all radial

orientations (perfect isotropy), and it increases with increasing

anisotropy.

Psychological evaluation
Six male adult subjects, including two of the authors (M.K. and

C.R.), selected 50 images with the strongest perspective lines and

depth cues and 50 images with weak or no such cues from the

database of monochrome graphic art. The 50 images that were

selected most frequently in each of the two tasks were analyzed

separately.

Five adult subjects (four males and one female, including two of

the authors [M.K. and C.R.]) selected 30 pairs of images from the

Groningen database of Dutch natural scenes and from the

database of Dutch landscape paintings. The pairs of images from

the two databases were matched as closely as possible for similar

type of scenery and content. The 30 images from each database

that were matched most frequently were analyzed separately.

All subjects had corrected to normal vision. All images from the

database were presented simultaneously as prints on paper.

Supporting Information

Figure S1 Five power spectra from different image categories.

A, B/W graphic art; B, B/W portraits; C, face photographs; D,

database of Dutch landscape drawings and prints; E, Groningen

database of natural scenes; F, Jena database of natural scenes.

Examples were randomly chosen from each image database. The

low spatial frequencies are represented at the center and darker

shades represent higher power.

Found at: doi:10.1371/journal.pone.0012268.s001 (7.50 MB

TIF)

Figure S2 Five power spectra from different image categories.

A, scientific illustrations; B, object photographs; C, plant

photographs; D, cartoons; E, comics; F, mangas. Examples were

randomly chosen from each image database. The low spatial

frequencies are represented at the center and darker shades

represent higher power.

Found at: doi:10.1371/journal.pone.0012268.s002 (7.23 MB TIF)

Table S1 Pairwise significance testing of the slope value and

anisotropy value for all image categories. The p-value of a two-

sample t-test is shown for the slope values (upper right half of the

table) and the sector anisotropy values (lower left half of the table).

Abbreviations: n.s., not significant.

Found at: doi:10.1371/journal.pone.0012268.s003 (0.04 MB

DOC)

Table S2 Mean Mahalanobis distances between the image

categories in a space spanned by the first 15 principal components

of 178 spectral features representing each category. Each column

represents the distance to one category with the same distance

measure.

Found at: doi:10.1371/journal.pone.0012268.s004 (0.04 MB

DOC)

Table S3 Mean power and sector anisotropies for different

subgroups of monochrome art images, calculated separately for

different cultural variables. Results for all monochrome art images

(art and art portraits) were analyzed together. Values represent

mean 6 SD (n, number of images analyzed for each category).

Found at: doi:10.1371/journal.pone.0012268.s005 (0.05 MB

DOC)
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