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Subtractive proteomics to identify 
novel drug targets and reverse 
vaccinology for the development 
of chimeric vaccine against 
Acinetobacter baumannii
Vandana Solanki & Vishvanath Tiwari   

The emergence of drug-resistant Acinetobacter baumannii is the global health problem associated with 
high mortality and morbidity. Therefore it is high time to find a suitable therapeutics for this pathogen. 
In the present study, subtractive proteomics along with reverse vaccinology approaches were used to 
predict suitable therapeutics against A. baumannii. Using subtractive proteomics, we have identified 
promiscuous antigenic membrane proteins that contain the virulence factors, resistance factors and 
essentiality factor for this pathogenic bacteria. Selected promiscuous targeted membrane proteins 
were used for the design of chimeric-subunit vaccine with the help of reverse vaccinology. Available 
best tools and servers were used for the identification of MHC class I, II and B cell epitopes. All selected 
epitopes were further shortlisted computationally to know their immunogenicity, antigenicity, 
allergenicity, conservancy and toxicity potentials. Immunogenic predicted promiscuous peptides used 
for the development of chimeric subunit vaccine with immune-modulating adjuvants, linkers, and 
PADRE (Pan HLA-DR epitopes) amino acid sequence. Designed vaccine construct V4 also interact with 
the MHC, and TLR4/MD2 complex as confirm by docking and molecular dynamics simulation studies. 
Therefore designed vaccine construct V4 can be developed to control the host-pathogen interaction or 
infection caused by A. baumannii.

Acinetobacter baumannii, an ESKAPE pathogen, has gained the attention of medical fraternity worldwide due 
to its nosocomial infection in hospital setup mainly ICUs and emergence of multi-drug resistance mechanism 
in it1–6. A. baumannii have developed MDR, XDR, and PDR strain7. Bacterial pathogen interacts with the host 
and has also developed several strategies to evade the host immune system. Therefore, it is high time to develop 
suitable therapeutics or vaccine against the A. baumannii.

Previous studies reveal that outer membrane proteins OmpA, biofilm-associated protein, poly-N-acetyl-β-(1–
6)-glucosamine8, trimeric autotransporter protein, K1 capsular polysaccharide, outer membrane vesicles (OMV) 
and formalin-inactivated whole cells could serve as vaccine candidates and provide partial immunity against 
lethal doses in various mouse models9. Recently, it is shown that subtractive genomics and reverse vaccinology as 
a powerful tool to identify drug target and vaccine candidates. Although both these approaches have been used 
separately to design the novel drugs and vaccines against Gram-negative bacteria10,11. Currently, vast information 
about genomes and proteomes of A. baumannii strains are available and promising vaccine candidates, or novel 
proteins can be identified using the computational tools12. Subtractive genomics approach subtracts pathogen 
genes that are required the survival of pathogen but not present in the host13. This is important to find druggable 
protein, which may be considered for the therapeutics development. The selected druggable proteins may be used 
for the development of the chimeric-subunit vaccine or multi-subunit vaccine that appears as a very promising 
and effective treatment option to control the diseases caused by this pathogen14. Once shortlisted, these candi-
dates can be cloned and over-expressed in E. coli and purified by affinity chromatography. Their immunogenicity 
can be validated in-vivo in suitable animal models.
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In addition to essential proteins, virulence factors and resistant determinants also mediates bacterial attach-
ments that may contribute to the pathogenicity of the bacterium15. Cytoplasmic proteins are usually considered 
for small molecule drug development while membrane or secreted proteins are considered for vaccine devel-
opment16. Therefore, the present study aims to identify the druggable essential and virulence proteins from the 
different strains of A. baumannii. The identified proteins will be used for selection of promiscuous immunogenic 
non-allergenic epitopes. The selected epitopes will be used in the development of chimeric subunit vaccine. The 
designed chimeric-subunit vaccine can be developed to cure the infection caused by the A. baumannii.

Methods
Data collection of proteome.  In the present study, list of all available strains of A. baumannii have been 
downloaded from UNIPORT server. Acinetobacter species have more than 32 genospecies, which include major 
four genospecies like A. baumannii, A. calcoaceticus, A. pittil, and A. nosocomialis. A. baumannii was filtered 
out from the list and used for further analysis. Bacterial proteome redundancy is a barrier to the effective use 
of the dataset for multiple reasons, removing redundant sequences is desirable to avoid highly repetitive search 
results for queries that closely match with an over-represented sequence. Hence, all the searched strains from the 
UNIPORT proteome were separated according to their redundancy and non-redundancy. All the selected 52 
proteomes (including reference proteome) were downloaded from UNIPORT database, and 51 proteomes were 
subjected to BLASTp against reference strain (SDF). The obtained shared proteins were used for further analysis. 
The proteins having sequence length less than 100 amino acids were also considered17.

Data collection of the genome and phylogenetic analysis.  Genome data of selected 52 strains of A. 
baumannii were obtained from NCBI. INSDC (International Nucleotide Sequence Database Collaboration) num-
bers were used for the complete genome where as WGS number used for the draft sequence. The whole genome 
DNA sequence was searched for rRNA sequences using RNAmmer18. One 16S rRNA gene was randomly sampled 
per strain because there are only small sequence differences among 16S rRNA genes within the same genome 
and the same species. Phylogeny tree was constructed using MEGA6 where 16S rRNA gene sequences from the 
genome of the all A. baumannii strains were used19. The alignment program ClustalW was used for multiple 
sequence alignment of the sequences. From the alignment, a distance neighborhood joining tree was constructed, 
using 1000 bootstraps to find the best fitting distance tree20.

CD-HIT analysis.  Subtractive analysis (Fig. 1) of proteins were performed using CD-HIT to identify the 
duplicate proteins by clustering techniques. Sequence identity cut-off was kept at 0.6 (60% identity) as sequence 
having identity >60% similar/related structure and functions21. Global sequence identity algorithm was selected 
for the alignment of the amino acids. The bandwidth of 20 amino acids and default parameters for alignment 
coverage were selected.

Screening of essential proteins.  The database of essential genes (DEG) (http://tubic.tju.edu.cn/deg/) 
includes essential protein-coding genes determined by genome-wide gene essentiality analysis. DEG consists of 
experimentally identified 22,343 essential protein-coding genes and proteins, 646 non-coding RNAs, promoters, 
regulatory sequences, and replication origins from 31 prokaryotes and 10 eukaryotes22. The queried proteins 

Figure 1.  Illustration of predefined comparative and subtractive proteomics systemic workflow.

http://tubic.tju.edu.cn/deg/


www.nature.com/scientificreports/

3Scientific REPOrTS |  (2018) 8:9044  | DOI:10.1038/s41598-018-26689-7

having homologous hit in DEG are likely to be essential. BLASTp search was performed for the proteome of A. 
baumannii against DEG bacterial proteins with cut-off parameters of 1e−04 E-value, bit score of 100, BLOSUM62 
matrix and gapped alignment mode were selected to screen out the essential proteins.

Analysis of virulence factors (VF’s).  Virulence factors help bacteria to modulate or degrade host defense 
mechanism with the help of adhesion, colonization, and invasion resulted cause the disease. VFDB, a database 
consists of four categories of VFs namely offensive, defensive, non-specific and virulence-associated regulated 
proteins from 25 pathogenic bacteria were used in the present study23. The proteome of A. baumannii was sub-
jected to BLASTp search against the database of protein sequences from VFDB core dataset (R1) with default hit 
with cut-off bit score >100, and E-value was 0.0001.

Analysis of resistance proteins.  ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) is a bioin-
formatics tool that detects existing and putative new antibiotic resistance (AR) genes or proteins in bacterial 
genomes or proteome. ARG-ANNOT contains 1689 antibiotic resistant protein sequences from various classes 
including aminoglycosides, beta-lactamases, fosfomycin, fluoroquinolones, glycopeptides, phenicols, rifampicin, 
sulfonamides, tetracyclines, and trimethoprim. A local BLAST program was run for the proteome of A. bauman-
nii in Bio-edit software against antibiotic resistant sequences in ARG-ANNOT with cut-off E-value of 1e−04 24.

Selection of non-homologous proteins to host.  BLASTp search of the comprised list from the above 
three independent searches were performed against non-redundant protein sequence (nr) database of the host 
Homo sapiens (taxid: 9606). The comparison of proteins with human host protein finds the non-hit proteins lists 
that denote non-human homologous proteins of the pathogens. This will help to design the pathogen specific 
therapeutics drugs25.

Pathogen-specific pathways.  KEGG (Kyoto encyclopedia of gene and genome) is a pathway database26 
that is to find metabolic pathways of non-homologous proteins of A. baumannii. Similarly, host metabolic path-
ways were also enlisted along with their K number. The enlisted host and pathogen metabolic pathways were 
manually compared to identify the pathways that present only in the pathogen but not in the human host. The 
list of proteins that plays a role in unique pathways was enlisted. The proteins were also separated according to 
their role only in pathogen-specific unique pathways and common pathways present in both pathogen and host.

Druggability analysis.  Druggability analysis of the short-listed proteins searched against all drug targets 
present in the DrugBank database27. The drug targets with bit score >100 and E value < 0.005 were considered as 
a potential drug target. Biological location of druggable proteins was classified based on the consensus location 
predicted using various online servers like PSORTb28 and CELLO v2.5 (http://cello.life.nctu.edu.tw). The low 
molecular weights (100–110 kDa) target proteins increase the accessibility value of the targets proteins.

Prediction of antigenic protein.  From subtractive proteomics approach, outer membrane proteins were 
selected that contained the potential for vaccine development. These protein targets were used for the bioinfor-
matics study (Fig. 2) to identify the potent epitopes that can enhance the immune response. Antigenic property 
of all the selected proteins was determined using VaxiJen web server29. A threshold of 0.5 was considered as the 
potent antigenicity. Identified potent epitope containing proteins were used for afterward analysis.

Protein-protein interaction network analysis.  Protein interaction carried to find out the most 
potential metabolic functional associations among all identified proteins through protein interaction database 

Figure 2.  Illustration of reverse vaccine devolvement workflow.
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STRING (http://string-db.org). The STRING database aims to provide a critical assessment and integration of 
protein-protein interactions, including direct as well as indirect associations.

T cell MHC Class I epitope prediction.  Predictions of MHC class I epitopes were made by the NetCTL 
server30 for the selected proteins. In this server, epitopes were chosen on the basis of the high overall combinato-
rial score for each peptide’s intrinsic potential. In integrating with several predictions methods such as proteaso-
mal cleavage, TAP transporter associated efficiency with antigen processing, and MHC-I affinity predictor, scores 
of all three methods were merged together and achieved combined score for all the predicted epitopes. Prediction 
threshold value 0.75 was set for epitope identification.

At the last stage, 40 T-cell epitopes were subjected to MHC-I binding prediction, using the immune epitope 
database analysis resource (IEDB AR)31. MHC molecules represent the antigenic peptides which are recognized 
by the T-cells. IEDB recommended as a default prediction method and uses the consensus method consisting of 
ANN32, SMM33, and CombLib34 and NetMHCpan35. Identified T-cell epitopes with HLA alleles were selected by 
IC50 values and percentile rank. Lower the percentile rank the higher the interaction shown between the peptide 
and MHC molecules. IC50 values divided in three different categories: high binding affinity, IC50 value < 50 nM; 
intermediate binding affinity, IC50 value < 500 nM; and low binding affinity, IC50 value < 5000 nM36.

Class I immunogenicity prediction.  Epitope/MHC complex should have the ability to evoke an immune 
response. Hence we have used MHC I immunogenicity prediction tool using IEDB server37. Default parameters 
were selected to perform the immunogenicity prediction. The epitopes which, immunogenicity prediction gained 
the positive value were selected for further analysis. (http://tools.immuneepitope.org/immunogenicity/).

Antigenic, Conservancy and Toxicity Analysis.  All the promiscuous epitopes obtained from immuno-
genicity tool were analysed using VaxiJen version 2.0 server for their antigenic properties at a threshold value of 
0.5. This server depends on Auto Cross Covariance (ACC) transformation, and alignment-independent predicted 
antigenic epitopes by their physicochemical behaviour. To assess the epitopes conservancy level within genotype 
sequences, IEDB conservancy analysis38 was used. The sequence identity parameters were set to default. This anal-
ysis aims to calculate the degree of conservancy of epitopes within a given protein sequence39. ToxinPred (http://
www.imtech.res.in/raghava/toxinpred/index.html) online server tool analysed physicochemical properties of 
epitopes to predict the toxicity level. It confirms that the specific immune responses which are induced in the host 
cell will target only the bacteria rather than host tissue40. The parameters were set to default.

T cell MHC Class II epitope prediction.  T-cell epitopes binding to MHC Class II molecules were predicted 
using IEDB-AR server. The T-cell epitopes were computed using the consensus method41,42. The consensus pre-
diction approach uses a combination of both stabilization matrix alignment method and average relative binding 
matrix method.

Cluster analysis of the MHC restricted Alleles.  MHCcluster v2.0 server43 identified the cluster of MHC 
restricted allele with appropriate peptides to further strengthen our prediction. This is the additional crosscheck 
of the predicted MHC restricted allele analysis from the IEDB analysis resources. The output from this server is a 
graphical tree and static heat map for describing the peptides and HLAs functional relationship.

B-cell epitope prediction.  Prediction of linear B-cell epitopes for proteins was achieved by using online 
server BCPREDS, i.e., B-cell Epitope Prediction Server (http://ailab.ist.psu.edu/bcpred/predict.html)44 and 
FBCPred45 server. BCPred based on five different kernel methods having fivefold cross-validation by SVM. 
FBCPred utilizes subsequent kernel for the prediction of linear length B-cell epitopes. The cut-off score of 
BCPreds is >0.8 for prediction of linear B-cell epitopes11. The goal of B-cell epitope prediction was used to deter-
mine the antigen recognized by B lymphocytes and initiate humoral immunity. IEDB B-cell epitope prediction 
server predicted the linear epitopes using biochemical properties such as amino acid composition, hydrophobic-
ity, hydrophilicity, surface accessibility, and secondary structure. This server is consists of BepiPred linear epitope 
prediction46, Karplus-Schulz flexibility prediction47, Chou-Fasman beta-turn prediction48, Kolaskar Tongaonkar 
antigenicity49, Emini surface accessibility prediction50, and Parker hydrophilicity prediction51. ElliPro server52 
of IEDB identify the linear and conformational epitopes of B-cell. This server predicted epitopes with a score, 
defined as a Protrusion Index (PI) value averaged over epitope residues. In the method, the protein’s 3D shape 
is approximated by some ellipsoids. Residues with larger scores are associated with greater solvent accessibility. 
Discontinuous epitopes are also defined based on PI values.

Construction of model vaccine.  To construct the novel vaccine with low toxicity, allergenicity, and highly 
immunogenicity, we have analysed the different combination of sequence constructs. During this vaccine con-
struction, firstly, sequence 62–106, 359–419 of B0VMD0 (uniport ID), and epitope sequence 688–787, 79–139, 
366–382 of B0VUZ6 protein were joined with the help of amino acid linkers. Secondly, epitopes 162–204, 231–
336 of B0VMD0 protein, and epitope 174–248, 636–659 of B0VUZ6 proteins were added with the help of link-
ers. For enhancing the immunogenicity of these two sequence constructs were added with the four different 
adjuvants L7/L12 ribosomal protein, beta-defensin, HBHA protein (M. tuberculosis, accession no. AGV15514.1), 
and HBHA conserved sequence53 respectively. PADRE peptide sequences were also incorporated along with 
the adjuvants. PADRE peptide induced CD4+ T-cells that improve efficacy and potency of peptide vaccine54. 
Adjuvant HBHA and L7/L12 ribosomal protein are agonists to the TLR4/MD2 complex while beta-defensin 
adjuvant is agonist to TLR1, TLR2, and TLR4. The TLR’s interaction polarizes CTL responses which have a robust 
immuno-stimulatory effect53. HEYGAEALERAG and GGGS linkers were conjugated with HTL, CTL and B 
epitopes, whereas adjuvants sequences were linked with the help of EAAAK linkers at both N- and C-terminus. 

http://string-db.org
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Yang et al. proved that ‘GGGS linkers superior to ‘AAY’ as a ‘linkers’ of epitope-based vaccines55. The fused vac-
cine constructs were used for further analysis.

Allergenicity, Antigenicity and solubility evaluation.  Allergenicity was predicted using AlgPred pro-
gram56. AlgPred uses all these parameters (IgE epitope + ARPs BLAST + MAST + SVM) combined to predict 
the allergenicity of peptide with the accuracy of 85%. A threshold score of prediction has been considered to 
be −0.40. Prediction score less than threshold value point towards the non-allergic behaviour of the peptide. 
For identification of vaccine antigenicity, ANTIGENpro program57 (accuracy of 76%) and VaxiJen v2.0 pro-
gram were used. SOLpro program58, predicts the propensity of vaccine to be soluble upon over-expression in 
E. coli. Two-stage SVM architecture was employed based on multiple representations of the primary amino acid 
sequence. The final result was summarizing the predictions with overall accuracy of 74% at corresponding prob-
ability (≥0.5).

Secondary structure prediction.  The PSIPRED v3.3 program was used59 for the secondary structure 
analysis (http://bioinf.cs.ucl.ac.uk/psipred/). Psi-Blast was performed to identify and select the related sequences 
showing significant homology to the vaccine protein. An average Q-3 score of PSIPRED 3.2 server is 81.6%.

Prediction of various physicochemical properties.  Vaccine sequences were functionally characterized 
using Expasy ProtParam server (http://expasy.org/cgi-bin/protpraram). This server is widely used for determin-
ing the physicochemical characteristics like the number of amino acids, molecular weight, PI values, hydro-
pathicity GRAVY values, instability index, aliphatic index, and estimated half-life of the protein of a generated 
protein model. It can compute various physicochemical properties on the basis of pK values of different amino 
acids. Instability index of protein predicts whether it is stable or unstable. Instability index value is <40 for stable 
protein and >40 for unstable protein. The volume occupied by the aliphatic side chains is known as the aliphatic 
index of protein. Grand average of hydropathicity was calculated by the sum of hydropathicity obtained for all of 
the amino acid residues divided by the total number of amino acid residues present in the protein.

Molecular Docking and Molecular Dynamics Simulation.  With the help of the Phre2 online tool, 
we have made models of all the four vaccine constructs. PDB ID of all HLA alleles were downloaded from pro-
tein data bank, RCSB. Molecular docking of the final four vaccine constructs were performed with six different 
HLA alleles i.e. 1A6A(HLA-DR B1*03:01), 3C5J(HLA-DR B3*02:02), 1H15(HLA-DR B5*01:01), 2FSE(HLA-DR 
B1*01:01), 2Q6W(HLA-DR B3*01:01), and 2SEB(HLA-DRB1*04:01) were performed using PatchDock to 
show HLA-peptide interactions. For more, refinement and re-scoring of rigid body molecular docking score, 
FireDock (Fast Interaction Refinement in Molecular Docking) server was used. It gives best 10 solutions for final 
refinement. The refined models were based on the binding score and global binding energy. Similarly, docking of 
vaccine construct (V4) with TLR 4/MD2 complex (PDB ID 2Z65) was performed by PatchDock server. The gen-
erated top 10 models were refined and re-scored by FireDock server. The refined candidates were ranked by their 
respective binding energy. Molecular dynamics simulation of V4-TLR4 complex was performed using Gromacs 
v5.1.2 as published method60.

Codon optimization of the vaccine construct and In-silico cloning.  Java Codon Adaptation Tool 
(JCAT) was performed to adapt the codon usage of vaccine to E. coli host strain61. Vaccine amino acid sequence 
was back-translated to DNA, and subsequently adapted for codon usage to E. coli. The adaptation was based on 
Codon Adaptation Index values (CAI), that were computed by employing an algorithm. The rho-independent 
transcription terminators, prokaryotic ribosome binding sites and cleavage sites of some restriction enzymes were 
avoided. Moreover, to clone the adapted gene sequence of final vaccine construct in E. coli pET28a vector, using 
Snapgene tool to ensure the vaccine construct expression.

Data availability.  All data generated or analysed during this study are included in this published article and 
its Supplementary Information files.

Ethical approval.  The present study does not involved human or animal samples.

Results
Subtractive proteomics approach shortlisted A. baumannii strains.  We have downloaded the list 
of 1753 different strains of Acinetobacter genospecies from the UNIPORT. A total of 1578 strains of Acinetobacter 
baumannii were filtered from the lists and used for further analysis. All the 1578 strains of A. baumannii were man-
ually separated according to their redundancy and non-redundancy. In this manual comparison, we have made 29 
different groups of non-redundant strains that contain the list of redundant strains. Twenty-three strains of A. bau-
mannii did not show any redundancy with the other Acinetobacter strains. Therefore a total number of 52 (29 + 23) 
strains were selected for the analysis. Proteome of A. baumannii SDF strain was considered as reference proteome 
that contains most representative and best annotated set of proteins of all A. baumannii strains. The proteomes of 
all 52 A. baumannii strains were retrieved from UNIPORT database. With the help of BLASTp, we have found the 
similar protein present in the all 51 proteomes of A. baumannii with respect to reference proteome SDF.

Phylogenic analysis of selected 52 A. baumannii strains showed their inter-relation.  INSDC 
numbers or WGS numbers of all 52 strains of A. baumannii were downloaded from NCBI (Supplementary Table 
ST-1). The results of RNAmmer analysis yielded no rRNA sequences for five genomes (A. baumannii 118362, 
855125, 940793, ABBL059 and ABBL059). These five genomes would have some unknown base stretches that 
prevent RNAmmer from identifying rRNA sequences20. Genome sequence lack 16S rRNA sequences that might 
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be a result of sequence assembly. Since ribosomal RNA sequences often are repeated sequences, the assembly pro-
cess might not be able to conclusively place the rRNA in the DNA and might discard the sequences all-together62. 
Distance-based phylogenic analysis measured dissimilarity observe between pairs of sequence alignment. 
Length of branch represented an amount genetic change of 0.05. The sum of branch length (SBL) value 0.437 was 
observed (Supplementary Figure SF1) in the analysis of distance based phylogenic tree.

Identification of essential proteins of A. baumannii.  From the DEG result, 811 proteins of A. bau-
mannii were found to be essential, and rest of them were known as non-essential proteins. These 811 essential 
proteins are necessary for the survival of A. baumannii. Blocking these bacterial proteins will cause the death of 
the micro-organism, which will make the protein targets more important in drug discovery.

Identification of virulence factors of A. baumannii.  Analysis of virulence factors explored the signif-
icance of bacteria in various diseases necessitates the search for novel VFs. The VFDB result showed that 339 
proteins were found to be associated with virulence of A. baumannii. These proteins may also be considered as a 
very important target to inhibit the pathogenesis of A. baumannii.

Identification of resistant determinant in A. baumannii.  Protein involved in the resistance and drug 
efflux proteins could be act as potential therapeutic targets to inhibit the resistant strain of A. baumannii. We 
have obtained 10 antibiotic resistant proteins with cut-off E-value of 1e−04. These ten proteins are involved in the 
degradation of antibiotics and efflux of the antibiotics.

Identification of non-human homologous proteins in A. baumannii.  The manual comparative anal-
ysis of the proteins showed that 35 proteins contained the both essential and virulence property. The search of 
the non-redundant proteins of essential, virulence and resistance datasets is necessary to evaluate homology of 
these protein with human, to find non-human homologous proteins in A. baumannii that further enhances the 
specificity of the designed drug or vaccine. We have found 174 VF’s protein, 347 essential protein and 5 antibiotic 
resistance protein that are non-human homologous protein. Remaining 165 VF’s, 459 essential and 3 resistance 
proteins showed similarity with human proteins, therefore, filter out from further use. Detection of non-human 
homologous proteins to find out the proteins were likely to lead to drug development exclusively interact with 
proteins of A. baumannii.

Involvement of selected A. baumannii proteins in the unique and common pathway.  We have 
done the manual comparison between the enlisted metabolic pathways of A. baumannii and pathways of human 
(present in KEGG Database). The result showed that 33 unique pathways (Supplementary Table 2) are present 
in the A. baumannii pathogen and rest 104 pathways were common in both bacteria and host. These 33 unique 
pathways were found to possess 126 proteins. Out of 126 proteins, 34 proteins play a role in unique A. baumannii 
specific pathways while 92 proteins have a role both in unique and common pathways of pathogen and human. 
Therefore, 34 proteins have been selected for further analysis. The 358 proteins are not present in any metabolic 
pathway are considered as pathway independent protein analysis.

Identification of putative drug targets for therapeutics development.  Pathway dependent protein target.  
Druggability analysis showed that only two proteins of unique pathway were druggable in nature that include 
penicillin-binding protein 1B protein (that have role in peptidoglycan biosynthesis) and channel-tunnel spanning 
the outer membrane and periplasm segregation of daughter chromosomes protein (that have role in bacterial 
secretion system, two-component system, beta-lactam resistance and CAMP resistance pathway). The detailed 
drug name, drugbank ID, E-value and bit score value of the target proteins are mentioned in Table 1. These pro-
teins uniquely play a role in different pathways of A. baumannii thus can be targeted for vaccine or drug discovery.

Pathway independent protein target.  The 358 metabolic pathways independent proteins of A. baumannii screened 
for druggability test. The result showed the 11 druggable target that includes DNA gyrase subunit A, bifunctional 
purine biosynthesis protein PurH, ferredoxin-NADP reductase, malonyl coA-acyl carrier protein transacylase, 
dihydropteroate synthase, pyridoxine 5′-phosphate synthase, putative UDP-glucose 6-dehydrogenase (Ugd), 
putative acetyl-coA synthetase/AMP-(Fatty) acid ligase, and 3-oxoacyl-(acyl-carrier-protein) reductase proteins 
were present in the cytoplasm whereas putative D-ala-D-ala-carboxypeptidase, penicillin-binding protein, puta-
tive oxidoreductase, and short chain dehydrogenase/reductase family present at the membrane choose as drug-
gable targets on the basis of E-value and the bit score value. The detailed drug name, drugbank ID, the E value and 
bit score value mentioned in Table 1.

Identification of subcellular localization and prioritization of selected target proteins.  Although  
non-homologous proteins of the pathogen represent potential targets for therapeutic and vaccine candidates, 
prioritization and more filtration of the identified proteins could help to minimize the time, labor and resources 
for developing the therapeutic agent and optimize the success of getting the best drug and/or vaccine against 
the pathogen. Hence, additional parameters that determine the suitability of a drug and vaccine target were 
used to characterize the identified target proteins. The different characterizations of proteins like, sub-cellular 
localization by CELLO and PSORTb, molecular weights by Swiss-Prot database, and TMHMM which identify 
trans-membrane proteins. Prediction of sub-cellular localization of druggable targets using various online search 
tools showed that in the pathway dependent proteins both proteins presented in the outer membrane. In the 
pathway independent proteins, 9 proteins presented in the cytoplasm and two proteins were presented on the 
membrane. Cytoplasmic proteins can be considered for small molecule drug development while membrane or 
secreted proteins for vaccine development. On the other hand, the number of trans-membrane helices (Table 2) 
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S.No. Protein Name
Uniport 
ID Drug bank ID Drug name E value

Bit 
score

Query 
length

Metabolic pathway dependent druggable proteins

1 Penicillin-binding protein 1B OS B0VUZ6

DB01598, DB01329, 
DB01332, DB01327, 
DB01331, DB01328, 
DB01415, DB00430, 
DB00438, DB00274

Imipenem, Cefoperazone, Ceftizoxime, Cefazolin, 
Cefoxitin, Cefonicid, Ceftibuten, Cefpiramide, 
Ceftazidime, Cefmetazole

4.23297e-147 450.669 756

2
Channel-tunnel spanning the outer 
membrane and periplasm segregation of 
daughter chromosomes

B0VMD0 DB03350 Cobalt Hexammine Ion 1.65352E-39 146.362 438

Metabolic pathway independent druggable proteins

1 DNA gyrase subunit A B0VT39 DB00817, DB11943 Rosoxacin, Delafloxacin 4.1128E-130 406.757 720

2 Putative UDP-glucose 6-dehydrogenase 
(Ugd) B0VMS1 DB00157, DB09130 NADH, copper 9.79852E-31 120.939 305

3 Bifunctional purine biosynthesis protein 
PurH B0VLK7

DB01700, DB01972, 
DB02309, DB03442, 
DB04057, DB00116, 
DB00642, DB00563

AICA ribonucleotide, Guanosine-5′-Monophosphate, 
5–Monophosphate-9-Beta-D-Ribofuranosyl 
Xanthine, 2-[5-Hydroxy-3-Methyl-1-(2-Methyl-
4-Sulfo-Phenyl)−1h-Pyrazol-4-Ylazo]-4-Sulfo-
Benzoic Acid, Beta-Dadf, Msa, Multisubstrate 
Adduct Inhibitor, Tetrahydrofolic acid, Pemetrexed, 
Methotrexate

1.01028E-90 287.345 507

4 Ferredoxin–NADP + reductase B0VUY5 DB03147 Flavin adenine dinucleotide 4.86153E-40 136.732 237

5 Pyridoxine 5′-phosphate synthase B0VTM9 DB02209, DB02496, 
DB02515

Pyridoxine phosphate, 1-Deoxy-D-xylulose 
5-phosphate, 3-Phosphoglycerol 5.21185E-86 253.447 231

6 Malonyl CoA-acyl carrier protein 
transacylase B0VTY4 DB07344 3,6,9,12,15-PENTAOXAHEPTADECAN-1-OL 1.30075E-31 119.783 309

7 Dihydropteroate synthase B0VSM6

DB00576, DB01298, 
DB00263, DB00634, 
DB00259, DB01015, 
DB01581, DB01582, 
DB06729

Sulfamethizole, Sulfacytine, Sulfisoxazole, 
Sulfacetamide, Sulfanilamide, Sulfamethoxazole, 
Sulfamerazine, Sulfamethazine, Sulfaphenazole

2.42841E-79 239.58 267

8 Putative D-ala-D-ala carboxypeptidase, 
penicillin-binding protein B0VTR5 DB04647, DB01329, 

DB01331, DB00274
BOC-GAMMA-D-GLU-L-LYS(CBZ)-D-BOROALA, 
Cefoperazone, Cefoxitin, Cefmetazole 6.22477E-44 156.377 401

9 3-oxoacyl-[acyl-carrier-protein] reductase B0VTY3 DB03461 2′-Monophosphoadenosine 5′-Diphosphoribose 2.14867E-26 100.908 233

10 Putative Oxidoreductase, short chain 
dehydrogenase /reductase family B0VT18 DB00157 NADH 7.13808E-28 106.301 186

11 Putative acetyl-coA synthetase/AMP-
(Fatty) acid ligase B0VNG2 DB00131, DB00171, 

DB09395 Adenosine monophosphate, ATP, Sodium acetate 2.32E-70 236.884 568

Table 1.  Novel druggable targets involved in different metabolic dependent or independent pathways.

S.No
UNIPORT 
ID PROTEIN NAME

TMHMM 
No.

Molecular 
weight Gene LOCATION PSORTb CELLO v 2.5

Query 
length

Metabolic Pathway independent proteins

1 B0VT39 DNA gyrase subunit A 0 99.270 gyrA Cytoplasm Cytoplasm 904

2 B0VLK7 Bifunctional purine biosynthesis protein PurH 0 56.037 PurH Cytoplasm Cytoplasm 524

3 B0VUY5 Ferredoxin–NADP + reductase 0 29.361 Fpr Cytoplasm Cytoplasm 259

4 B0VTY4 Malonyl CoA-acyl carrier protein transacylase 0 34.494 fabD Cytoplasm Periplasmic, Cytoplasm 328

5 B0VSM6 Dihydropteroate synthase 0 30.848 folP Cytoplasm Cytoplasm 283

6 B0VTR5 Putative D-ala-D-ala-carboxypeptidase, penicillin-
binding protein 0 48.899 ABSDF0993 Cytoplasmic membrane Inner membrane, 

periplasmic 439

7 B0VTM9 Pyridoxine 5′-phosphate synthase 0 25.895 polxJ Cytoplasm Cytoplasm 241

8 B0VT18 Putative Oxidoreductase, short chain dehydrogenase/
reductase family 0 28.797 ABSDF0838 Cytoplasm Cytoplasm, outer 

membrane 260

9 B0VMS1 Putative UDP-glucose 6-dehydrogenase (Ugd) (Udg) 0 47.099 ABSDF0080 Cytoplasm Cytoplasm 420

10 B0VNG2 Putative acetyl-coA synthetase/AMP-(Fatty) acid ligase 0 60.541 Absdf0123 Cytoplasm Periplasmic, cytoplasmic 549

11 B0VTY3 3-oxoacyl-[acyl-carrier-protein] reductase 0 26.099 fabG Unknown cytoplasmic 244

Metabolic pathway dependent proteins

1 B0VUZ6 Penicillin-binding protein 1B OS (Peptidoglycan 
biosynthesis) 0 88.189 mrcB Unknown Outer membrane 798

2 B0VMD0
Channel-tunnel spanning the outer membrane and 
periplasm segregation of daughter chromosomes 
(Bacterial secretion system, two component system, beta 
lactam resistance and CAMP resistance)

0 50.243 tolC Outer membrane Outer membrane 448

Table 2.  Identification of durggable targets characteristics and cellular localization.
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was set to be less or not more than 1. Proteins that were identified to have more than one trans-membrane hel-
ices were excluded due to the difficulties in cloning, expression and purification of proteins exhibiting multiple 
trans-membrane spanning regions.

Selection of antigenic membrane proteins.  After the prioritization of target proteins, we found the 
four proteins (B0VUZ6, penicillin-binding protein 1B; B0VMD0, channel-tunnel spanning the outer mem-
brane and periplasm segregation of daughter chromosomes; B0VTR5, putative D-ala-D-ala carboxypeptidase 
penicillin-binding protein; and B0VT18, putative oxidoreductase, short-chain dehydrogenase/reductase family) 
were present on the membrane hence considered for vaccine candidate molecules. VaxiJen web server showed 
that B0VUZ6 and B0VMD0 were identified as the most potent antigenic protein having a maximum total pre-
diction score of 0.5541 and 0.5789 respectively (Supplementary Table ST-3). B0VMD0 is a protein involved in 
virulence while B0VUZ6 is an essential protein of A. baumannii. These two proteins with diverse role, and may 
be better situated for the development of vaccine candidates as they inhibit virulence as well as essential for the 
normal survival of A. baumannii. Hence, these two proteins are used for development of chimeric subunit vaccine 
against A. baumannii.

Intra-species interaction of selected membrane proteins with other proteins.  Penicillin  
binding protein 1A family protein (Fig. 3B) show interaction with the mrcB (murein polymerase), Dac F(serine-type  
D-Ala-D-Ala carboxypeptidase), F911_00507 (penicillin binding protein, transpeptidase domain protein),  
mrdA (penicillin binding protein 2), murG (UDP-diphospho-muramoylpentapeptide-beta-N-acetylgluco- 
saminyltransferase), mtgA(mono-functional biosynthetic peptidoglycan transglycosylase), HMPREF0010_01990 
(serine type D-Ala-D-Ala carboxypeptidase), murC (UDP-N-acetylmuramate-alanine ligase), F911_01113 
(uncharacterized proteins), and HMPREF0010_02514 (Type IV pilus assembly protein PilM). Out of these, 
murG, murC, and mtgA play role in cell wall formation and mrcB, plays a role not only in cell wall formation 
but also in the synthesis of cross-linked peptidoglycan from the lipid intermediates. Similarly, channel-tunnel 
spanning the outer membrane and periplasm segregation of daughter chromosomes protein (Fig. 3A)  
exhibited interactions with macB (macrolide export ATP binding/permease protein), F911_01966 (putative acrifla-
vine resistance protein A), acrA (acriflavine resistance protein A), bpeE (multidrug efflux pump BpeE), F911_01943 
(uncharacterized protein), F911_01944 (GH3 auxin-responsive promoter), F911_01946 (uncharacterized pro-
tein), F911_01941 (efflux pump membrane protein), F911_01014 (putative ATP synthase F0,A subunit) and bpeB 
(inner membrane multidrug efflux protein BpeB). These protein are very crucial in the survival of the A. baumannii. 
Therefore, targeting these two proteins (B0VUZ6 and B0VMD0) also influence the interacting proteins.

Selection of potent T-cell epitopes in proteins shortlisted for chimeric vaccine design.  On 
the basis of the high combinatorial score, best T-cell epitopes were predicted by NetCTL server using protein 
sequence of these two selected proteins. The software identified 17 epitopes in B0VMD0 proteins while 27 
epitopes in B0VUZ6 (Supplementary Table ST-4). Peptides with a higher score represent higher processing capa-
bilities. T-cell epitopes of both proteins were subjected to MHC-I binding prediction, using the IEDB server. 
The epitopes that elicited higher affinity (IC <200 nM) and percentile rank (≤0.2) were subjected to afterward 
analysis (Supplementary Table ST-5). These epitopes were further filtered on the basis of their interaction with 
class I MHC molecules. On the basis of MHC I molecules interaction, 10 out of 17 epitopes of B0VMD0 antigenic 
protein and 12 out of 27 epitopes of B0VUZ6 were selected for further analysis.

Selection of Immunogenicity in selected T-cell epitopes.  Besides the epitope predictions, the binding 
affinity between peptide/MHC complex and TCR was further analysed. A high immunogenicity score is deemed 
to have high ability to stimulate naive T cells and induce cellular immunity. The epitopes selected above (10 from 

Figure 3.  Protein-protein interaction diagram of (A) Channel-tunnel spanning the outer membrane and 
periplasm segregation of daughter chromosomes (B) penicillin binding protein predicted by STRING tool.
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B0VMD0 and 12 from B0VUZ6) using the above methods were subjected to IEDB immunogenicity prediction. 
The epitopes’ immunogenicity scores ranged from 0.24661 to −0.04637. In this analysis, 6 out of 10 epitopes of 
B0VMD0 protein and 8 out of 12 epitopes of B0VUZ6 contain the positive value score. These 14 (6 + 8) epitopes 
were selected for the further analysis (Supplementary Table ST-5).

Toxicity, conservancy and antigenicity prediction of selected 14 epitopes.  To confirm the specific 
immune responses induced by epitopes, ToxinPred was used to confirm epitopes non-toxicity. Epitopes toxicity 
analysis score (Table 3) confirmed that the selected 14 epitopes were non-toxic. Conservancy status of selected 
epitopes of B0VMD0 and B0VUZ6 were determined using IEDB conservancy analysis. Epitope which showed 
more than 50% conservancy status were selected for further analysis. The result showed that three epitopes of 
B0VMD0 like DVSEANAQY (70%), SSSFALDLV(60%) and HVLNVAEAY(60%) are conserved in 10 other geno-
type sequences. Similarly, in the protein B0VUZ6, all the 8 epitopes showed conservancy score more than 50% such 
as MALLIELHY (96.49%), ISTEDRNFY (96.49%), LSAIESGRY (90.35%), STFTNNLRK (85.56%), LLDRYGLNV 
(92.98%), SSGTGRAAY (85.96), GVESTIPAY (70.18) and YVHTRGFDY (60.53%) and found to be conserved in 
114 other genotype sequences. Potent epitope antigenicity of selected 11 epitopes (3 of B0VMD0 and 8 of B0VUZ6) 
were analysed using VaxiJen web server. Result showed that, a total of seven epitopes (2 of B0VMD0 such as 
DVSEANAQY, SSSFALDLV, and 5 of B0VUZ6 such as MALLIELHY, LLDRYGLNV, SSGTGRAAY, ISTEDRNFY 
and YVHTRGFDY) contained the potent antigenicity (Table 3). These 7 epitopes were selected for further study.

Selection of MHC-II epitopes in proteins shortlisted for chimeric vaccine design and their 
conservancy analysis.  In addition to MHC-I epitope predication, both the selected proteins (B0VMD0 
and B0VUZ6) were further subjected to MHC-II binding prediction, using IEDB server. The epitopes that 
elicited higher affinity (IC <200 nM) and low percentile rank were subjected to afterward analysis (Table 4). 
Conservancy analysis showed that two epitopes of B0VMD0 showed the conservancy more than 50% such 
as LEQLNMMNAKLKEGL (60%) and MVDVLLAQRNAFSAK (70%) in 10 other genotype sequences. 
Similarly, six epitopes of B0VUZ6 showed the conservancy more than 50% which include FERGIGFFALIFSIL 
(84.21%), ALSIYLIRLDNIIRE (92.11%), GRAAYNSLSPALKLA (64.04%), LSTFTNNLRKFGVES (85.96%), 
FTGFNRALDAKRQVG (78.01%), STEDRNFYHHHGISI (85.09%). These 8 epitopes (2 of B0VMD0 and 6 of 
B0VUZ6) were selected for further analysis.

MHC restriction and cluster analysis of selected epitopes.  Further, MHC class I and MHC class II 
restricted allele were further analysed on the basis of the IC50value. All the predicted epitopes were assessed for 
the MHC interaction analysis independently for 7 MHC-1 epitope and 8 MHC-II epitopes. Furthermore, the 
interacted alleles were reassessed by cluster analysis and results are shown as a heat map of MHC-1 (Fig. 4A) and 
MHC-II (4B), and dynamic tree (Supplementary Figure SF-2). Epitopes shown in Fig. 4 are clustered on the basis 
of interaction with different HLA alleles and red colour indicating strong interactions while yellow colour shows 
weaker interactions with appropriate annotation63.

Selection of B-cell epitopes in proteins shortlisted for chimeric vaccine design.  In addition to 
MHC-I and MHC-II epitopes (cellular immunity), these two proteins were also used to predict the B-cell epitope 
(humoral immunity). Humoral immunity is also required for bacterial elimination. To predict B-cell epitopes, 
firstly location of linear B-cell epitopes was identified using BCPREDS, FBCpred, and IEDB (Supplementary 
Tables ST6 and ST7). Resulted epitopes were further shortlisted on the basis of BepiPred linear epitope predic-
tion, Karplus-Schulz flexibility prediction, Chou-Fasman beta-turn prediction, Kolaskar Tongaonkar antigenic-
ity, Emini surface accessibility prediction, and Parker hydrophilicity prediction. The result of predicated B-cell 
epitopes of B0VMD0 and B0VUZ6 are shown in Figs 5 and 6 respectively. Interaction of shortlisted 10 B-cell 
epitopes (4 of B0VMD0 and 6 of B0VUZ6) with the HLA-II allele’s protein was performed using IEDB and result 

S.No Protein name Peptide Toxicity (SVM score) Antigenicity Conservancy (%)

1
B0VMD0 Channel-tunnel spanning the 
outer membrane and periplasm segregation 
of daughter chromosomes

DVSEANAQY Non toxic (−0.70) 0.9791 70.00%

SSSFALDLV Non toxic (−0.59) 0.5339 60.00%

FALDLVETY Non toxic (−1.04) 0.0302 40.00%

HVLNVAEAY Non toxic (−1.31) −0.2143 60.00%

RQQALTAAY Non toxic (−1.11) 0.3587 30.00%

QLSEYIGPY Non toxic (−0.60) −0.7155 20.00%

2 B0VUZ 6Penicillin-binding protein 1B OS

MALLIELHY Non toxic (−1.28) 1.3841 96.49%

LSAIESGRY Non toxic (−0.78) 0.0863 90.35%

STFTNNLRK Non toxic (−1.15) 0.1311 85.96%

LLDRYGLNV Non toxic (−1.23) 1.4214 92.98%

SSGTGRAAY Non toxic (−0.58) 1.7890 85.96%

GVESTIPAY Non toxic (−1.20) 0.4407 70.18%

ISTEDRNFY Non toxic (−1.51) 0.8503 96.49%

YVHTRGFDY Non toxic (−0.61) 1.7617 60.53%

Table 3.  Predicted MHC class I epitopes Toxicity, Antigenicity and conservancy analysis.
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is shown in Supplementary Table ST-8. In the result, highest binding HLA alleles were selected on the basis of 
percentile rank (<0.2) and IC50 value (<200 nM).

Comparison of all the predicted epitopes to select the final epitopes.  For the construction of final 
chimeric subunit vaccine sequence, predicted B-cell epitopes were treated as a template for MHC-I, and MHC-II 
epitopes and those epitopes whose sequences were found to be overlapping in B-cell epitopes were shortlisted and 
selected for final vaccine constructs (Supplementary Tables 9 and 10).

Construction of final vaccine with different adjuvants, linkers, and PADRE sequence.  An adju-
vant is an ingredient of a vaccine that helps create a stronger immune response in the patient’s body. Different 
adjuvants were chosen in the vaccine constructs to analyze the effects of the adjuvants on the allergenicity and 
antigenicity of the constructs. Along with adjuvants sequence, PADRE sequence was also added to overcome the 
problems caused by polymorphism of HLA-DR molecules in the worldwide population. It showed the 100-fold 
more potency than the universal T helper epitopes64, and it was explained that PADRE containing vaccine con-
struct exhibited better CTL responses and protection than the vaccine without the T helper epitope64. A total of 
eight vaccine constructs were prepared and further analyzed. All eight vaccine constructs were added with the 
respective adjuvants with the help of EAAAK linker. MHC-I, MHC-II, B-epitopes and PADRE sequence were 
joined together by HEYGAEALERAG and GGGS linkers. All the epitopes were joined together with these two 
linkers because they are reported not to alter the conformation of designed vaccine construct55. Details of the 
vaccine constructs have been mentioned in Table 5.

Allergenicity, antigenicity and solubility prediction of different vaccine constructs.  AlgPred 
server was used to predict the non-allergic behaviour of vaccine constructs. Allergenicity value of all eight vaccine 

S.N B0VMD0 epitopes Start
HLA ALLELES 
(Percentile Rank) Conservancy B0VUZ6 epitopes Start

HLA ALLELES 
(Percentile Rank) Conservancy

1 AVLRSDFIFQKPYPA 229 HLA-DRB3*01:01 (0.02) 30.00% FERGIGFFALIFSIL 3 HLA-DPA1*01:03/
DPB1*02:01(0.01) 84.21%

2 LEQLNMMNAKLKEGL 169 HLA-DRB5*01:01 (0.02) 60.00% ALSIYLIRLDNIIRE 24 HLA-DRB3*01:01 (0.02) 92.11%

3 VLRQQALTAAYLQEE 151 HLA-DQA1*04:01/
DQB1*04:02(0.04) 30.00% GRAAYNSLSPALKLA 624 HLA-DRB5*01:01 (0.02) 64.04%

4 SARQPLFRMDAWEGY 105 HLA-DRB3*01:01 (0.14) 30.00% AFKASVERLANSNPA 397 HLA-DRB1*09:01 (0.06) 37.72%

5 MVDVLLAQRNAFSAK 395 HLA-DRB1*03:01 (0.19) 70.00% LSTFTNNLRKFGVES 528 HLA-DRB1*11:01 (0.11) 85.96%

6 MKIKLMLVAGLWSFT 1 HLA-DRB4*01:01 (0.18) 30.00% FTGFNRALDAKRQVG 440 HLA-DRB5*01:01 (0.13) 78.07%

7 — — — — STEDRNFYHHHGISI 175 HLA-DRB1*07:01 (0.15) 85.09%

8 — — — — AQFYFGLPLRELNVA 274 HLA-DPA1*02:01/
DPB1*14:01(0.16) 0.88%

Table 4.  Predicted of MHC class II epitopes by IEDB server and conservancy analysis.

Figure 4.  Cluster analysis of the HLA alleles for both MHC molecules through heat map representation. 
(A) Representing the cluster of the MHC-I. (B) Representing the cluster of MHC-II molecules. Epitopes are 
clustered on the basis of interaction with HLA and shown as red colour indicating strong interaction with 
appropriate annotation. Yellow zone indicates the weaker interaction. Here, all the available alleles are shown.
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constructs were shown (Table 5). Predicted vaccine constructs score indicates that four constructs (first vaccine 
construct with HBHA adjuvant (V1), with HBHA conserved sequence (V2), with beta-defensin (V3) as well as 
second vaccine construct with beta-defensin (V4) were found to be non-allergic in nature. Antigenicity of short-
listed four non-allergenic vaccine constructs (V1, V2, V3, V4) were further predicted using ANTIGENpro and 
followed by VaxiJen 2.0. (Supplementary Table ST-11). The predicted antigenicity values were more than 0.90 
in ANTIGENpro and 0.75 in VaxiJen 2.0 that shows a good antigenic nature of these four vaccine constructs. 
SOLpro server predicts the protein solubility and corresponding probability should be ≥0.5. All four vaccine 
constructs showed the solubility more than 0.7 (Supplementary Table 11), which exhibited that vaccine construct 
will be highly soluble during its heterologous expression in the E. coli.

Physicochemical analysis of vaccine constructs.  Various physicochemical properties such as molecu-
lar weight, number of amino acid, PI value, aliphatic index, hydropathicity index and instability index, of the all 
four constructs were calculated from ProtParam server (Supplementary Table 12). The molecular weights of con-
structs were found between 41–59 kDa that shows its good antigenic properties. GRAVY (a hydropathic index) 
was found to be less than −0.5 (a negative value), which indicates hydrophilic nature of constructs. Aliphatic and 

Figure 5.  Protein ID B0VMD0 B cell epitope (A) Bepipred Linear Epitope, (B) Chou & Fasman Beta-Turn 
Prediction, (C) Emini Surface Accessibility Prediction, (D) Karplus & Schulz Flexibility Prediction, (E) Kolaskar 
& Tongaonkar Antigenicity, (F) Parker Hydrophilicity Prediction.

Figure 6.  Protein ID B0VUZ6 B cell epitope (A) Bepipred Linear Epitope, (B) Chou & Fasman Beta-Turn 
Prediction, (C) Emini Surface Accessibility Prediction, (D) Karplus & Schulz Flexibility Prediction, (E) Kolaskar 
& Tongaonkar Antigenicity, (F) Parker Hydrophilicity Prediction.
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stability value also showed that all the four vaccine constructs have good characteristics to initiate an immuno-
genic reaction.

Structure prediction of selected four vaccine constructs.  Secondary structures of final four vaccine 
constructs were identified using PSIPRED. The predicted structure of all four vaccine constructs have shown to 
have 55–60% alpha helix, 10–15% extended strand, 7–12% beta turn, and 20–30% coil structure (Fig. 7). The 
models of all four vaccine constructs were generated and the Ramachandran plot was used to validate these mod-
els. Modeled tertiary structure of vaccine 4 and Ramachandran plot have been shown in Fig. 8.

S. No.
Vaccine 
constructs

Epitope sequence position 
with adjuvant Complete sequence of vaccine construct

Allergenicity (Algpred) 
(Threshold-0.4)

1. V1

BOVMD0 (62–106, 359–419), 
and BOVUZ6 (688–787, 
79–139, 366–382) epitope 
with HBHA adjuvant and 
PADRE sequence

EAAAKMAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEETRAETRTRVEERRARL 
TKFQEDLPEQFIELRDKFTTEELRKAAEGYLEAATNRYNELVERGEAALQRLRSQTAFEDASA 
RAEGYVDQAVELTQEALGTVASQTRAVGERAAKLVGIELEAAAKAKFVAAWTLKAAAGGGS 
VTLSGNITRNRQTVKRSNFPGVDQEGLSDALVSNTSTTKQATLSAGGGSQVDTDRAKLEAR 
AAMDSSALVSQASKASYNEGLKSMVDVLLAQRNAFSAKQDYLNAQYDYLGGGSAKFVAAW 
TLKAAAGGGSTPVNLRQPDSVQWQWIDHASGDLSAQACDGAMYIPMLAHTVPHRATPCG 
APYYQVDPTYTPQSDNTIPEPEDDNTDSYIRESENQMEQDLSNNTRIISSGHEYGAEALERAG 
KTSSNYDKSGTYVAQGSNMYVHTRGFDYGDSVEPEQVLELSFANDQVVEVRSTKPSSTGVA 
HEYGAEALERAGRTEYQESDLTNQGLRIHEYGAEALERAGAKFVAAWTLKAAAGGGS

−0.6597

2 V2

BOVMD0 (62–106, 359–419), 
and BOVUZ6 (688–787, 79–
139, 366–382) epitope with 
HBHA conserved adjuvant 
and PADRE sequence

EAAAKMAENSNIDDIKAPLLAALGAADLALATVNELITNLRERAEETRRSRVEESRARLTKL 
QEDLPEQLTELREKFTAEELRKAAEGYLEAATSELVERGEAALERLRSQQSFEEVSARAEGYV 
DQAVELTQEALGTVASQVEGRAAKLVGIELEAAAKAKFVAAWTLKAAAGGGSVTLSGNITR 
NRQTVKRSNFPGVDQEGLSDALVSNTSTTKQATLSAGGGSQVDTDRAKLEARAAMDSSAL 
VSQASKASYNEGLKSMVDVLLAQRNAFSAKQDYLNAQYDYLGGGSAKFVAAWTLKAAA 
GGGSTPVNLRQPDSVQWQWIDHASGDLSAQACDGAMYIPMLAHTVPHRATPCGAPYYQ 
VDPTYTPQSDNTIPEPEDDNTDSYIRESENQMEQDLSNNTRIISSGHEYGAEALERAGKTSS 
NYDKSGTYVAQGSNMYVHTRGFDYGDSVEPEQVLELSFANDQVVEVRSTKPSSTGVA 
HEYGAEALERAGRTEYQESDLTNQGLRIHEYGAEALERAGAKFVAAWTLKAAAGGGS

−0.66619

3 V3

BOVMD0 (62–106, 359–419), 
and BOVUZ6 (688–787, 
79–139, 366–382) epitope 
with beta defensin adjuvant 
and PADRE sequence

EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKAKFVAA 
WTLKAAAGGGSVTLSGNITRNRQTVKRSNFPGVDQEGLSDALVSNTSTTKQATLSAGGGS 
QVDTDRAKLEARAAMDSSALVSQASKASYNEGLKSMVDVLLAQRNAFSAKQDYLNAQYD 
YLGGGSAKFVAAWTLKAAAGGGSTPVNLRQPDSVQWQWIDHASGDLSAQACDGAMYIP 
MLAHTVPHRATPCGAPYYQVDPTYTPQSDNTIPEPEDDNTDSYIRESENQMEQDLSNNTRI 
ISSGHEYGAEALERAGKTSSNYDKSGTYVAQGSNMYVHTRGFDYGDSVEPEQVLELSFAD 
QVVEVRSTKPSSTGVAHEYGAEALERAGRTEYQESDLTNQGLRIHEYGAEALERAGAKFV 
AAWTLKAAAGGGS

−0.5014

4 V4

BOVMD0 (162–204, 
231–336), and B0VUZ6 
(174–248, 636–659) with beta 
defensin adjuvant and PADRE 
sequence

EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKAKFVA 
AWTLKAAAGGGSLQEEKALLEQLNMMNAKLKEGLVARSDVSEANAQYQNARANRIGGGS 
LRSDFIFQKPYPAQLDEWLGLTQQQNLKIQQARLQKRYAEDQRRVEKEKAALYPQIDAVA 
SYGYTKQTPETLISTDGKFDQGVEMNWNLFNGGRTRTSIKKASVELNHEYGAEALERAG 
ISTEDRNFYHHHGISIRGTARALVSNVTGGRRQGGSSTLTQQLVKNFYLTPERTLKRKVNE 
ALMALLIELHYSKDEHEYGAEALERAGKLAGKSGTTNDTRDSWFAGYSGNHEYGAEALE 
RAGAKFVAAWTLKAAAGGGS

−0.4578

5 V5

BOVMD0 (162–204, 
231–336), and B0VUZ6 
(174–248, 636–659) with 
HBHA adjuvant and PADRE 
sequence

EAAAKMAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEETRAETRTRVEERR 
ARLTKFQEDLPEQFIELRDKFTTEELRKAAEGYLEAATNRYNELVERGEAALQRLRSQTAF 
EDASARAEGYVDQAVELTQEALGTVASQTRAVGERAAKLVGIELEAAAKAKFVAAWTLK 
AAAGGGSLQEEKALLEQLNMMNAKLKEGLVARSDVSEANAQYQNARANRIGGGSLRSD 
FIFQKPYPAQLDEWLGLTQQQNLKIQQARLQKRYAEDQRRVEKEKAALYPQIDAVASYGY 
TKQTPETLISTDGKFDQGVEMNWNLFNGGRTRTSIKKASVELNHEYGAEALERAGISTE 
DRNFYHHHGISIRGTARALVSNVTGGRRQGGSSTLTQQLVKNFYLTPERTLKRKVNEAL 
MALLIELHYSKDEHEYGAEALERAGKLAGKSGTTNDTRDSWFAGYSGNHEYGAEALE 
RAGAKFVAAWTLKAAAGGGS

−0.3

6 V6

BOVMD0 (62–106, 359–419), 
and BOVUZ6 (688–787, 
79–139, 366–382) epitope 
with L7/L12 Ribosomal 
protein adjuvant and PADRE 
sequence

EAAAKMAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVE 
AAEEQSEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEA 
KAKLEAAGATVTVKEAAAKAKFVAAWTLKAAAGGGSVTLSGNITRNRQTVKRSNFPGVD 
QEGLSDALVSNTSTTKQATLSAGGGSQVDTDRAKLEARAAMDSSALVSQASKASYNEGLKS 
MVDVLLAQRNAFSAKQDYLNAQYDYLGGGSAKFVAAWTLKAAAGGGSTPVNLRQPDSVQ 
WQWIDHASGDLSAQACDGAMYIPMLAHTVPHRATPCGAPYYQVDPTYTPQSDNTIPEPE 
DDNTDSYIRESENQMEQDLSNNTRIISSGHEYGAEALERAGKTSSNYDKSGTYVAQGSNMY 
VHTRGFDYGDSVEPEQVLELSFANDQVVEVRSTKPSSTGVAHEYGAEALERAGRTEYQESD 
LTNQGLRIHEYGAEALERAGAKFVAAWTLKAAAGGGS

0.0460

7 V7

BOVMD0 (162–204, 231–
336), and B0VUZ6 (174–248, 
636–659) with L7/L12 
Ribosomal protein adjuvant 
and PADRE sequence

EAAAKMAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAA 
VEAAEEQSEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAA 
DEAKAKLEAAGATVTVKEAAAKAKFVAAWTLKAAAGGGSLQEEKALLEQLNMMNAKLK 
EGLVARSDVSEANAQYQNARANRIGGGSLRSDFIFQKPYPAQLDEWLGLTQQQNLKIQQAR 
LQKRYAEDQRRVEKEKAALYPQIDAVASYGYTKQTPETLISTDGKFDQGVEMNWNLFNGG 
RTRTSIKKASVELNHEYGAEALERAGISTEDRNFYHHHGISIRGTARALVSNVTGGRRQGGS 
STLTQQLVKNFYLTPERTLKRKVNEALMALLIELHYSKDEHEYGAEALERAGKLAGKSGTT 
NDTRDSWFAGYSGNHEYGAEALERAGAKFVAAWTLKAAAGGGS

0.113

8 V8

BOVMD0 (162–204, 
231–336), and B0VUZ6 
(174–248, 636–659) with 
HBHA adjuvant and PADRE 
sequence

EAAAKMAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEETRAETRTRVEERRA 
RLTKFQEDLPEQFIELRDKFTTEELRKAAEGYLEAATNRYNELVERGEAALQRLRSQTAFED 
ASARAEGYVDQAVELTQEALGTVASQTRAVGERAAKLVGIELEAAAKAKFVAAWTLKAAA 
GGGSLQEEKALLEQLNMMNAKLKEGLVARSDVSEANAQYQNARANRIGGGSLRSDFIFQK 
PYPAQLDEWLGLTQQQNLKIQQARLQKRYAEDQRRVEKEKAALYPQIDAVASYGYTKQTPE 
TLISTDGKFDQGVEMNWNLFNGGRTRTSIKKASVELNHEYGAEALERAGISTEDRNFYHH 
HGISIRGTARALVSNVTGGRRQGGSSTLTQQLVKNFYLTPERTLKRKVNEALMALLIELHYS 
KDEHEYGAEALERAGKLAGKSGTTNDTRDSWFAGYSGNHEYGAEALERAGAKFVAAWT 
LKAAAGGGS

−0.32975

Table 5.  Allergenicity prediction of all vaccine construct using Algpred server.
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Molecular docking.  Docking of vaccine constructs (V1 to V4) with HLA allele’s protein.  Linear T-cell 
epitopes binds to HLA molecules and activate the adaptive immunity against pathogen. The immune response 
elicited against the epitopes may be genetically restricted or epitopes may be recognized by one individual but 

Figure 7.  Secondary structure prediction of vaccine constructs (V1 to V4) using PESIPRED server.

Figure 8.  Tertiary Structure prediction and validation of vaccine construct V4. (A) Tertiary structure of model 
construct V4. (B) Ramachandran plot of the modelled V4 showing 92.0 residues in the allowed region.
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not by other65. Hence, a vaccine construct against A. baumannii should have a potential to induce immune 
response against the number of epitopes, which can be recognized in the context of different HLA allele’s pro-
teins. Promiscuous vaccine can bind to different HLA allelic proportion of human populations. We have docked 
all four vaccine constructs with the six different HLA allele’s protein. Vaccine construct 4 (V4) have the lowest 
global binding energy value with different HLA alleles i.e. 2FSE (HLA-DR B1*01:01); −45.02, 2SEB (HLA-DR 
B1*04:01); −32.17, 1H1S (HLA-DR B5*01:01); −12.92, 1A6A (HLA-DR B1*03:01); −0.90, 3C5J (HLA-DR 

Vaccine 
constructs

HLA alleles 
PDB ID’s# SCORE AREA

HYDROGEN 
BOND energy

GLOBEL 
ENERGY ACE

V1

1A6A 18932 2545 −0.85 −11.67 11.75

3C5J 18580 2590 −2.34 −13.31 3.00

1H15 20000 3198 −0.97 4.32 1.34

2FSE 21168 3000 −3.68 −11.45 11.58

2Q6W 19340 2493 −1.98 −4.38 12.14

2SEB 18614 2527 −5.55 −15.29 7.00

V2

1A6A 18714 2898 −4.37 −10.14 6.20

3C5J 18582 2537 −3.12 −17.74 5.00

1H15 18124 2814 −5.71 −29.89 2.77

2FSE 19250 2914 −2.57 −9.80 3.75

2Q6W 18072 2524 −4.94 −38.66 2.09

2SEB 19168 3156 −3.93 −11.03 16.64

V3

1A6A 19264 2997 −3.26 −17.76 4.43

3C5J 18552 2881 −2.24 −19.96 10.68

1H15 19780 2391 −6.17 −14.91 9.40

2FSE 22094 3178 −7.31 −14.80 18.68

2Q6W 19988 4105 −6.62 −11.49 4.92

2SEB 19030 2221 −1.80 −32.26 −9.60

V4

1A6A 18320 2672 −4.47 −0.90 13.41

3C5J 17148 2335 −5.07 −11.22 8.26

1H15 20660 3533 −1.67 −12.92 6.23

2FSE 17310 2476 −7.78 −45.02 −0.52

2Q6W 17460 2205 −4.25 −8.74 9.56

2SEB 19030 2358 −4.84 −32.17 5.52

Table 6.  Docking score of different vaccine construct (V1 to V4) with the different HLA alleles. #1A6A(HLA-DR 
B1*03:01), 3C5J(HLA-DR B3*02:02), 1H15(HLA-DR B5*01:01), 2FSE(HLA-DR B1*01:01), 2Q6W(HLA-DR 
B3*01:01), 2SEB(HLA-DR B1*04:01).

Figure 9.  Docked complex of vaccine construct V4 with human TLR4-MD2 complex. The vaccine construct 
docked within the TLR-4 receptor.
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B3*02:02); −11.22, and 2Q6W (HLA-DR B3*01:01) −8.74 as shown in Table 6. On the basis of the different 
criteria, we have analysed all four different constructs and finalized the one suitable, and best vaccine construct 
i.e. V4 that can control A. baumannii infection.

Docking, and Molecular Dynamics Simulation of vaccine construct (V4) and TLR 4.  TLR 4 is agonist to 
beta-defensin. The interaction between the TLR4 and adjuvant enhance the immune response. Therefore, we 
have performed docking between vaccine construct (V4) with TLR 4. The result showed that docking score of 
17970 (−31.11 binding energy) that showed good interaction between vaccine construct V4 and TLR-4/MD2 
complex (Fig. 9). The molecular dynamics simulation confirms that V4-TLR-4/MD2 complex get stabilised after 
2 ns and remain stable (Fig. 10).

Figure 10.  Molecular dynamics simulation of V4- TLR4-MD2 complex. The result shows the RMSD obtained 
for the complex which showed that complex is stable after 2 ns at 0.8 nm.

Figure 11.  In-silico restriction cloning of gene sequence of final vaccine construct V4 into pET28a expression 
vector showing V4 sequence red colour surrounded between BglII (401) and AscI (1543).
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In-silico cloning of chimeric vaccine construct (V4) for its heterologous expression.  Reverse 
translation and codon optimization were performed from Codon Usage Wrangler, in order to evaluate the 
cloning and expression of multi-epitope vaccine within the expression vector. Reverse translation generates 
cDNA sequence, which was further analyzed by codon optimization analysis. Codon optimization evaluates the 
sequence on the basis of GC content of the cDNA sequence. The optimum range was found to be between 30–70% 
for all the four constructs. This is followed by CAI calculation. The high value of CAI indicates high expression of 
the gene. Our constructs have the CAI value in the range of 0.95–1.0 (Supplementary Table ST-11). Final vaccine 
construct (V4) was cloned into pET28a vector for its heterologous cloning and expression in E. coli (Fig. 11).

Discussion
Acinetobacter baumannii infection has emerged as a severe problem, reasons for a large number of deaths in 
worldwide. Despite this, there is no permanent cure and prevention for the multi drug resistant A. baumannii. 
Some approaches have been tried which includes the screening of herbal compounds66–68, nanomaterial based 
approach69,70 and in-silico approach71,72 to find an alternative to the current drug used against A. baumannii. 
Similarly, subtractive genomics of different strains of A. baumannii has also been tried to identify the druggable 
targets for A. baumannii10. Recently, proteome based approaches are used to develop subunit vaccine73.

In the present study, we have used comparative proteomes of 52 different strains of A. baumannii to iden-
tify their shared and unique features such as essential proteins, resistant determinants, and virulent proteins. 
Identified membrane proteins with the role in virulence and essential survival of A. baumannii, were selected for 
development of vaccine construction. The immune system reacts to some of foreign molecules with the help of T 
and B cells and generates efficient immune response against pathogens. Interestingly, this immune response has 
been replicated with synthetic peptides or epitopes against various infectious organisms, including ESKAPE path-
ogen like A. baumannii. Promiscuous epitopes were designed against MHC-class-I, II alleles and B cells, using 
protein sequence of selected two membrane proteins i.e. channel-tunnel spanning the outer membrane periplasm 
segregation of daughter chromosomes proteins and penicillin binding protein 1B. Only those peptides, having 
100% binding affinity towards all the HLA alleles and IC50 values < 200 nM were considered as promiscuous 
peptides. Predicted peptides were analysed for allergenicity, antigenicity, and solubility, physiochemical prop-
erties, etc. Final vaccine constructs were designed with the help of different adjuvants and amino acids linkers. 
Furthermore, docking analysis was done to explore the binding affinity of promiscuous epitopes with the differ-
ent HLA molecules i.e. DRB1*0101, DRB3*0202, DRB5*0101, DRB3*0101, DRB1*0401, and DRB1*0301. To 
analyse the effect of adjuvant and enhance the immune response against vaccine construct, we have also checked 
interaction between vaccine construct V4 with the TL4/MD2 complex. In the present study, promiscuous pep-
tides predicted, and analysis of promising epitopes by using in-silico tools are unique peptides to best of our 
knowledge. Chimeric subunit vaccine development against the A. baumannii may use to generate the immune 
response against all the finalized epitopes (epitopes of chimeric peptides of finalised proteins) and potential to 
bind with more than one HLA alleles. Therefore, the present study will help to develop a suitable therapeutics 
against A. baumannii and may help to reduce the mortality and morbidity caused by its infection. In addition to 
the therapeutic use of the vaccine, people in intensive care units or in hospitals setup can be vaccinated before 
admission in order to protect them from this nosocomial pathogen. In the vaccine construct, we have added 
adaptor beta-defensin, Pan-DR epitopes, linker along with multi-epitope sequences that may enhance the signifi-
cant A. baumannii specific immune responses. It is reported that PADRE sequence will reduce the polymorphism 
of HLA DR molecules in the population54. In the murine model, vaccine showed the very high CTL responses 
than the vaccines without Pan-DR sequence64. Murine beta-defensin act as ligands for TLR4 to promote the 
maturation of dendrite cells74,75. In addition, with G-rich linkers in vaccine enhanced the immunogenicity of the 
multi-subunit vaccine constructs55. Therefore, we have taken all important factors that can induce the immuno-
genicity of our vaccine constructs.

Conclusion and future prospects
In the present study, we have attempted two approaches subtractive proteomics and reverse vaccinology approach 
to finding out the suitable non-human homologous targets for the development of vaccine construct. Selected 
vaccine targets proteins were used to develop the chimeric subunit vaccine. This study started with the retrieval 
of all A. baumannii strains and shortlisted them according to their redundancy and non-redundancy. BLAST of 
non-redundant strains was performed with respect to reference proteome and identified the shared proteins. All 
proteins were shortlisted on the basis of their essentiality, virulence factors, resistance gene, non-human homol-
ogous proteins and druggability analysis. After shortlisted, thirteen proteins were screened as suitable druggable 
targets. Out of which four proteins were present on the membrane and two proteins were identified as suitable 
vaccine antigenic targets. This step was followed by the prediction of immunogenic B-cell and T-cell epitope to 
generate the humoral and cell-mediated immunity, respectively. Predicted epitopes were merged using suitable 
linkers and adjuvant to enhance the immunogenicity and effective separation of epitopes within the human body. 
Allergenicity, conservancy, toxicity, antigenicity and secondary structure analysis were also confirmed followed 
by the physiochemical properties evaluation. Molecular docking was also performed to check the binding affinity 
and stability of HLA molecules and TLR-4 with respect to vaccine complex. At last, in-silico cloning was per-
formed to ensure the stability and effective expression of vaccine construct (V4). Furthermore, the proposed 
vaccine needs to be experimentally validated to ensure its use to control A. baumannii infections by effective 
immunological memory. Our predicted in-silico results were based on diligent analysis of sequence and various 
immune databases. In-silico studies save both time and costs for researchers and can guide the experimental work, 
with higher probabilities of finding the desired solutions and with fewer trial and error repeats of assays. The 
proposed vaccine candidates need a validation in animal models.
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