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Background and purpose: The diagnosis of tuberculous meningitis (TBM) is

di�cult due to the lack of sensitive methods. Identification of TBM-specific

biomarkers in the cerebrospinal fluid (CSF) may help diagnose and improve

our understanding of TBM pathogenesis.

Patients and methods: Of the 112 suspected patients with TBM prospectively

enrolled in the study, 32 patients with inconclusive diagnosis, non-infectious

meningitis, and long-term treatmentwith hormones and immunosuppressants

were excluded. The expression of 8 proteins in the CSF was analyzed using

ELISA in 22 patients with definite TBM, 18 patients with probable TBM, and 40

patients with non-TBM.

Results: Significant di�erences in the expression of 7 proteins were detected

between the TBM and non-TBM groups (P < 0.01). Unsupervised hierarchical

clustering (UHC) analysis revealed a disease-specific profile consisting of

7 di�erentially expressed proteins for TBM diagnosis, with an accuracy of

82.5% (66/80). Logistic regression with forward stepwise analysis indicated

that a combination of 3 biomarkers (APOE_APOAI_S100A8) showed a better

ability to discriminate TBM from patients with non-TBM [area under the

curve (AUC) = 0.916 (95%CI: 0.857–0.976)], with a sensitivity of 95.0% (95%CI:

83.1–99.4%) and a specificity of 77.5% (95%CI: 61.5–89.2%).

Conclusion: Our results confirmed the potential ability of CSF proteins to

distinguish TBM from patients with non-TBM and provided a useful panel for

the diagnosis of TBM.
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Introduction

Tuberculous meningitis (TBM) is a common form of

meningitis caused by infection of Mycobacterium tuberculosis

(M.TB) and is the most severe form of tuberculosis (TB).

Although the proportion of TBM may only be 1–5%

of all TB cases (1–3), its mortality is unacceptably high

(range 10–36.5%) (2, 3), especially in developing countries.

Furthermore, survivors often experience neurological sequelae,

which seriously influence their quality of life (4, 5). Inmost cases,

TBM develops rapidly to a severe form within a few months

after M.TB infection (6). Early diagnosis and timely adequate

treatment are the most significant factors in reducing morbidity,

mortality, and healthcare costs (5, 7).

Since the clinical manifestations of TBM are similar to

other infectious meningitis, including viral meningitis (VM),

bacterial meningitis (BM), and cryptococcal meningitis (CM),

it is difficult to distinguish TBM from other infectious forms

of meningitis. Furthermore, laboratory diagnostic methods,

including smear microscopy of cerebrospinal fluid (CSF), CSF

M.TB culture, and other commercial nucleic acid amplification

technique (NAAT) tests targetingM.TB, do not present sufficient

sensitivity for the identification of TBM. All these reasons make

the diagnosis of TBM extremely difficult (8–10), leading to a high

rate of misdiagnosis of TBM with other infectious meningitis

and leading to fatal outcomes in clinical practice. Therefore, a

novel technique is urgently needed for the diagnosis of TBM.

The World Health Organization (WHO) announced that

non-sputum diagnostic biomarkers for TB should be developed

(11), and subsequently, several TB biomarkers have been

reported using high-throughput proteomics or transcriptomics

analysis. The disease process of TBM differed widely between

the periphery and the central nervous system (12). The CSF

is constantly being exchanged with the interstitial fluid of the

brain, which allows changes in the protein profile following

M.TB infection to be closely reflected in the CSF; and renders

the CSF a promising source of biomarkers for TBM (13).

Previous studies have identified potential protein

biomarkers present in the CSF for the diagnosis of TBM using

mass spectrometry (MS)-based high-throughput proteomics

technologies (14–17). However, the results of these studies have

not been translated into clinical practice so far, due to their poor

generalizability. To date, four different studies have identified

three sets of differentially expressed proteins in the CSF to

distinguish TBM from other meningitis diseases or healthy

controls, but there is limited overlap among the four studies.

The high heterogeneity among different studies may be due

to the different enrollment criteria for the TBM and control

groups, as well as the insufficient sample sizes applied in the

proteomic stage. Therefore, further validation of proteomic

results is critical for the exploration of biomarkers. However,

limited validation information is available in these studies.

We hypothesized that at least some of these biomarkers,

especially those repeatedly identified in different studies, will

have greater potential in the diagnosis of TBM. Therefore,

we aimed to evaluate the usefulness of previously identified

potential CSF biomarkers in a new cohort of immunocompetent

adults with suspected TBM and to build a diagnostic panel for

the diagnosis of TBM.

Materials and methods

Study population and ethical approval

Patients with suspected TBM who had a headache

or altered mental status with clinical syndrome or signs

suggestive of TBM were prospectively and consecutively

enrolled between February 2017 and September 2019, at the

Beijing Chest Hospital, Beijing Tiantan Hospital, and Beijing

Xuanwu Hospital. Routine clinical investigations, including

brain imaging, chest radiography, abdominal ultrasonography,

sputum and/or CSF Xpert MTB/RIF, smear, M.TB culture,

or other PCR tests, were performed as clinically indicated.

Finally, the clinical history, physical examination, and detailed

neurological assessment findings were prospectively recorded

in agreement with the data that were considered important by

Marais and colleagues (18). Patients with anti-TB treatment

> 14 days or anti-infection treatment > 3 days were

not enrolled.

The study was performed in accordance with the guidelines

of the Declaration of Helsinki and its later amendments or

comparable ethical standards and was approved by the Ethics

Committee of the Beijing Chest Hospital, Capital Medical

University (No. BJXK-2017-37-02). Written informed consent

was obtained from each participant.

Categorization of patients

The final diagnosis was done based on clinical manifestation,

routine biochemical examinations, and radiological,

histopathological, and microbiological information. Patients

were defined as (1) definite TBM: patients had symptoms

or signs of TBM and presented positive acid-fast bacilli,

positive M.TB culture, positive Xpert MTB/RIF test, or

positive PCR tests for M.TB in the CSF; (2) probable TBM:

patients had a diagnostic score of ≥ 12 when cerebral

imaging was available and a diagnostic score of ≥ 10 when

cerebral imaging was unavailable; and (3) possible TBM:

with cerebral imaging available, a diagnostic score of 6–11

was required, and with cerebral imaging unavailable, a

score of 6–9 was required. The diagnostic score was based

on the uniform clinical case definition recommended by

previous studies (18, 19). Briefly, the diagnostic scoring system
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included the presence of symptoms or signs indicative of

meningitis plus four additional levels of information, namely,

clinical criteria, CSF criteria, cerebral imaging criteria, and

evidence of TB elsewhere. (4) Non-TBM: an alternative

cause for meningitis was identified by microbiological,

histopathological, and serological examinations and the

response to appropriate nontuberculous therapy, including

other infectious meningitis, such as virus meningitis, CM, and

BM (20, 21).

Selection of target CSF proteins

We searched PubMed for the terms “tuberculous

meningitis,” “cerebrospinal fluid,” “proteomic,” “proteome,”

and “Mass spectrometry” and found only 4 publications up to

2019 (14–17). The biomarkers of the CSF protein with a fold

change of > 2 in each study, which were repeatedly identified

in at least two studies and presented consistent regulation

patterns in TBM compared to controls, were selected for

validation. A total of 8 CSF proteins were selected for our study,

including Alpha-1-Antichymotrypsin (ACT), Anti-thrombin

III, Haptoglobin, Apolipoprotein AI (APOAI), Apolipoprotein

B (APOB), Apolipoprotein E (APOE), S100 Calcium-Binding

Protein A8 (S100A8), and Transthyretin.

Specimen collection

Cerebrospinal fluid samples (∼1–3ml) were collected from

patients with suspected TBM during a routine diagnostic

evaluation at admission. All samples were centrifuged at 2,000

× g for 10min at 4◦C, aliquoted in sterile polypropylene

microtubes, and stored at−80◦C until use.

ELISA analysis

The Human ACT ELISA Kit (ab157706; Abcam), Human

Anti-Thrombin III ELISA Kit (ab108801; Abcam), Human

Haptoglobin ELISA Kit (ab108858; Abcam), Human APOAI

ELISA Kit (ab189576; Abcam), Human APOB ELISA Kit

(ab108807; Abcam), Human APOE ELISA Kit (ab108813;

Abcam), Human S100A8 ELISA Kit (ab267628; Abcam),

and Human Transthyretin ELISA Kit (ab108895; Abcam)

were used according to the manufacturers’ instructions to

measure protein concentrations in the CSF. Throughout

the study, clinicians were blinded to ELISA results and

laboratory technicians were blinded to diagnosis. Thus,

laboratory interpretation and diagnosis were independent of

test results.

Data analysis

Data analysis by Mu and colleagues showed that the APOB

performance of CSF gave a sensitivity of 89.3% and a specificity

of 92% in the diagnosis of TBM, respectively (15). APOB

was also included in our study; therefore, the abovementioned

sensitivity and specificity were defined as assuming parameters

to calculate the sample size, with an allowable error of 10%,

a significance level of 5%, and the sample size of TBM

and non-TBM was matched by a ratio of 1:1. Furthermore,

considering possible missing data, the sample size was expanded

by 10%. Finally, it was calculated that 40 samples in each group

were optimal.

Continuous variables were tested using Student’s t test

or Mann–Whitney U test, while categorized variables were

analyzed using Fisher’s exact test or Pearson’s chi-square test.

The accordance of the expression levels among the proteins was

analyzed by the Pearson correlation test. Logistic regression with

forward stepwise analysis was used to establish the diagnostic

panel. The receiver operating characteristic curves (ROCs) were

constructed to obtain the area under the curve (AUC) and

evaluate the diagnostic values of the single biomarker and the

panel. P < 0.05 was considered statistically significant. All

these data analyses were performed using SPSS version 21.0

(SPSS Inc., Chicago, IL, USA) and GraphPad Prism version 5.0

(Graph Pad Software Inc., San Diego, CA, USA). Unsupervised

hierarchical clustering (UHC) and principal component analysis

(PCA) were performed using the MetaboAnalyst version

4.0 software (https://www.metaboanalyst.ca/). The biological

signaling pathway analysis was performed with the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (http://

www.genome.jp/kegg/pathway.html/).

Results

Demographic and clinical information of
the study population

As shown in Figure 1, a total of 112 patients with suspected

TBM were initially enrolled. Based on the categorization

of the patients, 80 patients who had conclusive diagnostic

information on infectious meningitis were included in the

study. The remaining 32 patients were excluded due to

unclear diagnosis (n = 7), possible TBM (n = 15), malignant

meningeal carcinoma (n= 4), autoimmune encephalitis (n= 3),

metabolic encephalopathy (n = 1), and long-term treatment

with hormones and immunosuppressants (n = 2). Finally,

among the 80 patients included in the study, there were 22

patients with definite TBM, 18 patients with probable TBM, and

40 patients with non-TBM. Among the non-TBM group, there
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FIGURE 1

Flowchart of the study participants. TBM, tuberculous meningitis; VM, viral meningitis; BM, bacterial meningitis; CM, cryptococcal meningitis;

CT, computed tomography; MRI, magnetic resonance imaging; PCR, polymerase chain reaction.

were 35 patients with VM, 3 patients with BM, and 2 patients

with CM.

The demographic and clinical information of the 80 patients

in the study were described in Table 1. No significant differences

in age or gender were detected between the TBM and non-

TBM groups (P > 0.05). There were no significant differences

in the underlying diseases of the patients between the TBM and

non-TBM groups (P> 0.05). More patients with TBMpresented

the symptom of fever (P = 0.034) and vomiting (P = 0.021),

while more patients with non-TBM presented the symptom of

convulsions (P = 0.045). No patient had HIV infection in the

TBM and non-TBM groups. Furthermore, patients with TBM

showed significantly lower glucose and chloride concentrations,

as well as a lower proportion of monocytes in the CSF than those

of patients with non-TBM (P< 0.001), while significantly higher

protein concentrations were detected in the CSF in patients with

TBM than that in patients with non-TBM.

Detailed information on patients with TBM is described

in Table 2. Overall, 65% of patients with TBM presented

symptoms for more than 2 weeks. Only 25% of patients did not

receive anti-TB or hormone treatment, while the remaining 75%

(n= 30) of patients received anti-TB treatment (e.g., isoniazid,

rifampicin, pyrazinamide, and ethambutol) and prednisone for

1–14 days. A total of 17 patients were defined in stage I, 5

patients were defined in stage II, and 18 patients were defined in

stage III by the British Medical Research Council (MRC) clinical

stage of TBM (22).

The expression level of proteins in the
CSF between TBM and non-TBM

The eight target proteins were analyzed using ELISA

tests. As shown in Figure 2 and Supplementary Table 1, the

concentration of Anti-thrombin III, APOAI, APOB, APOE,

S100A8, Haptoglobin, and Transthyretin was significantly

higher in the TBM group than those in the non-TBM group

(P < 0.01). No significant differences were detected in the

expression level of ACT between TBM and non-TBM groups

(P = 0.083). The correlation analysis showed that APOB

had a significant correlation with APOAI and Haptoglobin,

respectively, Anti-thrombin III had a moderate correlation with

APOB and APOAI, respectively, and a weak correlation was

detected among other proteins (Figure 3).
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TABLE 1 Demographic and baseline clinical characteristics of participants*.

Characteristics TBM# group Non-TBM& Group P-Value

(n= 40) (n= 40)

Age, yrs 29 (22–54) 41 (26–54) 0.137

Gender (female/male) 16/24 14/26 0.644

HIV infection 0 (0) 0 (0) 1.000

Underlying diseases

Diabetes mellitus 3 (7.5) 1 (2.5) 0.615

Hypertension 4 (10.0) 6 (15.0) 0.499

None 30 (75.0) 29 (70.0) 0.799

Presenting symptoms

Fever 37 (92.5) 30(75.0) 0.034

Headache 29 (72.5) 22 (55.0) 0.104

Vomiting 20 (50.0) 11 (27.5) 0.001

Convulsion 4 (10.0) 11(27.5) 0.045

Consciousness disorder 18 (45.0) 14 (35.0) 0.361

Cerebrospinal fluid examination

Cerebrospinal fluid clear appearance 37 (92.5) 37 (92.5) 1.000

Total white blood cells count, cell× 103/mL 174.5 (98.8–417.8) 26.5 (6.2–160.8) <0.001

Monocytes proportion, % 44.3 (26.2–66.7) 97.9 (89.0–100.0) <0.001

Protein level, mmol/L 141.1 (97.5–217.2) 42.0 (28.6–66.2) <0.001

Glucose, mg/dL 1.8 (0.9–2.4) 3.3 (2.8–4.1) <0.001

Chloride concentration, mmol/L 112.4 (105.0–119.8) 125.0 (121.0–128.0) <0.001

*Data are median (interquartile range, IQR) or n (%).
#TBM includes definite and probable cases.
&Non-TBM includes viral meningitis, bacterial meningitis and cryptococcal meningitis.

The subgroup analyses of the TBM group are presented

in Supplementary Figures 1–3. No significant differences were

detected in the expression level of eight biomarkers between

definite and probable TBM patients. Furthermore, there were

also no significant differences in biomarker expression between

patients with different durations of symptoms or between

patients with different stages of TBM.

Bioinformatics analysis

To identify whether the 7 differentially expressed proteins

in the CSF could be indicative of a TBM-specific profile,

UHC and PCA analyses were performed based on the

expression of the 7 proteins. The UHC analysis showed that

a significant clustering of patients with TBM was evidenced,

while 14 patients with non-TBM were incorrectly clustered

into the TBM group (Figure 4A), including 10 patients with

VM, 3 patients with BM, and 1 patient with CM. The

accuracy of this TBM-specific profile was 82.5% (66/80). The

results of the UHC analysis were also confirmed by the

PCA analysis, with some non-TBM patients presented closer

distance with TBM patients (Figure 4B). To better understand

the biological relevance of the 7 differentially expressed

proteins in CSF with TBM, the KEGG pathway analysis

was performed (Supplementary Figure 4). These proteins were

matched in pathways including cholesterol metabolism (APOAI,

APOB, and APOE), vitamin digestion and absorption (APOAI

and APOB), fat digestion and absorption (APOAI and

APOB), peroxisome proliferator-activated receptor signaling

(APOAI), interleukin-17 signaling (S100A8), complement and

coagulation cascades (Anti-Thrombin III), thyroid hormone

synthesis (Transthyretin), African trypanosomiasis (APOAI),

and Alzheimer’s disease (APOE). The representative proteins

expressed in these pathways had higher expression in the

TBM group.

Diagnostic values of protein biomarkers
to distinguish TBM from non-TBM

Based on the UHC and PCA analyses, a specific CSF protein

profile consisting of 7 differentially expressed proteins in CSF

for the diagnosis of TBM was detected. However, whether the

7 differentially expressed proteins were essential biomarkers

for TBM diagnosis should be further analyzed. The ROC

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.886040
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2022.886040

TABLE 2 Characteristics of patients with TBM#.

Characteristics No. (%)

Total No. 40 (100.0)

History

Tuberculosis contact in history 2 (5.0)

Symptom duration > 14 d 26 (65.0)

Symptom duration 1–14 d 14 (35.0)

With anti-TB treatment duration 1–14 d 30 (75.0)

Without anti-TB treatment 10 (25.0)

TBM category

Definite TBM 22 (55.0)

Probable TBM 18 (45.0)

TBM stage*

I 17 (42.5)

II 5 (12.5)

III 18 (45.0)

Cerebral imaging

Hydrocephalus 5 (12.5)

Basal meningeal enhancement 9 (22.5)

Tuberculoma 22(55.0)

Infarct 9 (22.5)

#Data are n (%).

*TBM stage was defined by British Medical Research Council clinical stage of TBM (22).

analysis was performed to evaluate the discriminative capacity

of these 7 biomarkers (Table 3, Figure 5). The AUC of these 7

biomarkers ranged from 0.712 to 0.838 for discriminating TBM

from non-TBM. APOE was the best biomarker to distinguish

TBM from non-TBM (AUC = 0.838). Logistic regression with

forward stepwise analysis indicated that a combination of

3 biomarkers (APOAI_APOE_S100A8) could show a better

discrimination ability for discriminating TBM from non-TBM

[AUC = 0.916 (95%CI = 0.857–0.976)], with a sensitivity

of 95.0% (95%CI = 83.1–99.4%) and a specificity of 77.5%

(95%CI= 61.5–89.2%).

Discussion

The rapid development of proteomics and transcriptomics

has paved the way for the identification of disease biomarkers.

Many differentially expressed proteins have been identified as

TBM-specific proteins by MS technologies in blood or CSF.

However, the verification of biomarkers in independent sets

is of great importance before the clinical application of these

biomarkers, to improve the reproducibility and accuracy (23).

In our study, we searched for studies based on CSF proteomics

analysis for TBM until 2019 and found that more than 100

differentially expressed proteins were detected in previous

proteomics studies. However, most differentially expressed

proteins were not validated and only a few overlapped proteins

were identified across the different studies, presenting confusion

in the clinical use of these biomarkers. Therefore, differentially

expressed proteins in at least two studies were selected and

further validated in a new cohort with suspected TBM, to

confirm the usefulness of these biomarkers, and constructed a

useful diagnostic panel for the diagnosis of TBM.

Among the 8 repeated expressed proteins identified in

a previous proteomics study in CSF, 7 were differentially

expressed between the TBM and non-TBM groups in our study,

including Anti-Thrombin III, Haptoglobin, APOAI, APOB,

APOE, S100A8, and Transthyretin. The expression of these

7 proteins was significantly higher in the TBM group than

those of the non-TBM group, which was consistent with

previous proteomics studies (14–17). However, no significant

differences were detected in the expression of ACT in our

study. As we know, ACT is an acute-phase protein involved

in various inflammatory conditions. Previous studies have also

suggested that the expression of ACT in plasma or serum

was generally higher in patients with TB compared to healthy

controls (24, 25). Nevertheless, patients with VM, BM, or CM

(not healthy controls) were included in the non-TBM group

in our study. They were all infectious meningitis; infection

with virus, bacteria, or fungus inevitably activates the host

inflammation response. Therefore, it is reasonable that no

significant differences in the expression level of ACT between

the TBM were detected in the non-TBM group in our study.

Using UHC and PCA analyses, we identified a specific TBM

profile consisting of 7 proteins in the CSF for patients with TBM

compared to other types of infectious meningitis. Based on this

profile, all patients with TBM were correctly distinguished, but

all the 3 patients with BM were incorrectly grouped with the

patients with TBM. The result suggested that the pathological

mechanisms and processes of these two diseases shared more

similarities, compared to VM and CM. Essentially, M.TB also

belonged to the category of bacterial infections, despite the

differences in treatment regimens. Furthermore, a previous

study has also suggested that the transcriptomics profiles of

some probable TBM patients were more similar to those of

BM (12).

We evaluated the diagnostic capacity of the 7 CSF proteins

and found that all proteins had AUC values greater than

0.7, which indicated the potential to distinguish TBM from

non-TBM. Immunological response of patients with TBM or

non-TBM is comprehensive and complex. It is unrealistic to

rely on a single protein to accurately distinguish TBM from

non-TBM. Combining multiple differentially expressed proteins

can achieve better diagnostic performance. However, a specific

profile consisting of too many biomarkers will be limited in

its clinical application. In this field, a minimal set of proteins

with higher diagnostic accuracy is urgently needed. Therefore,

we performed logistic regression analysis and identified a panel

consisting of only three proteins (APOAI_APOE_S100A8),
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FIGURE 2

The expression of 8 proteins in the cerebrospinal fluid between patients with TBM and non-TBM. TBM, tuberculous meningitis.

FIGURE 3

Partial correlation analysis of the 7 di�erentially expressed proteins. The correlation values between any two proteins were presented in the

figure.
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FIGURE 4

Unsupervised hierarchical clustering and principal component analyses of di�erentially expressed proteins in the CSF between patients with

TBM and non-TBM. (A) Two-dimensional unsupervised hierarchical clustering of proteins in CSF between patients with TBM and non-TBM. The

normalized values for each protein are depicted in accordance with the color scale, where red and blue represent upregulation and

downregulation, respectively. (B) Three-dimensional representation of principal component analysis (PCA) of patients with and without TBM.

Each dot represents 1 participant based on the values of all proteins studied. Green and red represent patients with TBM and non-TBM,

respectively. TBM, tuberculous meningitis; CSF, cerebrospinal fluid.

which could enhance the diagnostic accuracy to 86.3% for

distinguishing TBM from non-TBM, with a sensitivity of 95.0%

and a specificity of 77.5%.

The distinctive lipid composition in the cell envelope of

M.TB makes it unique from other bacteria and facilitates

intracellular survival. Consequently, host proteins involved in

lipid metabolism could be regulated to adapt or resist invasion

by M.TB (26, 27). APOAI is the main protein component

of high-density lipoprotein. Serum APOAI has also been

reported to significantly increase in pediatric patients with

TBM compared to patients with other infectious meningitis,

which was consistent with the findings of our study (28).

APOE is mainly released by astrocytes, oligodendrocytes, and

neurons in the human brain and is involved in maintaining

cholesterol and phospholipid homeostasis (29). A previous study

has demonstrated that the deficiency of the APOE gene could

highly increase the susceptibility to M.TB infection, indicating

that APOE may be involved in the occurrence and development

of TB (30). Except for these two apolipoproteins, APOB also

significantly presented a higher expression level in the TBM

CSF than that in the non-TBM CSF, although it was not

included in the final diagnostic panel. A significantly higher

expression of APOAI, APOB, and APOE in patients with TBM

than those with other infectious meningitis indicated that the

occurrence and progression of TBM are related to abnormal

lipid metabolism.
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e. S100A8 belongs to the S100 protein family and is primarily

expressed by neutrophils and monocytes. It is a feature of

chronic inflammatory diseases, such as autoimmune diseases

and TB. Previous studies have confirmed the involvement of

S100A8 in the occurrence and development of TB, by recruiting

neutrophils and mediating inflammation in TB (31, 32). S100A8

is closely associated with central nervous system inflammation,

especially with immune reconstitution inflammatory syndrome

(IRIS) in TBM (33). Biomarker studies have also determined that

S100A8 is differentially upregulated in patients with tuberculous

pleurisy compared to patients with cancer (34). In our study,

it was confirmed that patients with TBM had higher levels of

S100A8 in the CSF than patients with non-TBM, and finally,

S100A8 was included in the diagnostic panel. Thus, S100A8 is

related to the pathological and biological progression of TBM.

Identification of TBM-specific proteins in CSF using

proteomics technologies is an effective and useful approach for

the diagnosis of TBM, but it is worth noting that validation

of these potential biomarkers in independent sets is of great

importance. To the best of our knowledge, only four proteomics

studies have been performed to date that identified potential

protein biomarkers in the CSF for the diagnosis of TBM, and

most studies have not been verified in large independent sets.

The protein biomarkers overlapped between these studies may

have a significant potential for the diagnosis of TBM, so we

selected them for further validation and confirmed the feasibility

of these biomarkers for the diagnosis of TBM. However, there

are still some limitations in our study. Due to the limited

CSF proteomics studies until now, only 8 overlapped proteins

were selected for validation. We could not rule out the fact

that other proteins identified in these proteomics studies may

also be potential biomarkers. Furthermore, because of the low

incidence of infectious meningitis, the sample size in our study

was not large enough. In addition, due to the use of vaccines and

antibiotics, the incidence of BM decreased, especially in adults.

CM often occurred in patients with HIV infection or another

immunosuppressive status, and the incidence of CM in China

was also not high (35, 36). Thus, the differentiation between

TBM and VM has become the most important and urgent

issue in clinical practice. Therefore, the majority of patients

in the non-TBM group were patients with VM. However,

further validations including a large number of patients with

different types of infectious meningitis and other non-infectious

meningitic diseases should be performed in future, in order

to confirm the effective application of these biomarkers in

clinical practice.

In conclusion, our study validated 8 overlapped proteins

identified in previous proteomics studies and confirmed that the

expression level of 7 proteins was significantly different between

the TBM and non-TBM groups. Furthermore, a diagnostic

panel consisting of APOAI_APOE_S100A8 was constructed and

presented a relatively good capacity to distinguish patients with

TBM from patients with non-TBM.
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FIGURE 5

The diagnostic value of CSF proteins and the panel (APOAI_APOE_S100A8) in distinguishing TBM from patients with non-TBM. (A) The receiver

operating characteristic curve (ROC) depicts the sensitivity and specificity of the proteins and the panel in CSF in distinguishing TBM from

patients with non-TBM. (B) Scatter plot showing the ability of the diagnostic panel (APOAI_APOE_S100A8) in distinguishing TBM from patients

with non-TBM. TBM, tuberculous meningitis; CSF, cerebrospinal fluid.
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SUPPLEMENTARY TABLE 1

The expression of 8 proteins in CSF between patients with TBM and

non-TBM.
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SUPPLEMENTARY FIGURE 1

The expression of 8 proteins in CSF between definite and probable TBM

patients.

SUPPLEMENTARY FIGURE 2

The expression of 8 proteins in patients with TBM with di�erent

symptom durations.

SUPPLEMENTARY FIGURE 3

The expression of 8 proteins in patients with TBM with di�erent disease

stages.

SUPPLEMENTARY FIGURE 4

KEGG analysis of 7 di�erentially expressed proteins.
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