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Abstract: DNA repair systems are abnormally active in most hepatocellular carcinoma (HCC)
cells due to accumulated mutations, resulting in elevated DNA repair capacity and resistance to
chemotherapy and radiotherapy. Thus, targeting DNA repair mechanisms is a common treatment
approach in HCC to sensitize cancer cells to DNA damage. In this study, we examined the anti-HCC
effects of melatonin and elucidated the regulatory mechanisms. The results of functional assays
showed that in addition to inhibiting the proliferation, migration, and invasion abilities of HCC cells,
melatonin suppressed their DNA repair capacity, thereby promoting the cytotoxicity of chemotherapy
and radiotherapy. Whole-transcriptome and gain- and loss-of-function analyses revealed that
melatonin induces expression of the long noncoding RNA RAD51-AS1, which binds to RAD51
mRNA to inhibit its translation, effectively decreasing the DNA repair capacity of HCC cells and
increasing their sensitivity to chemotherapy and radiotherapy. Animal models further demonstrated
that a combination of melatonin and the chemotherapeutic agent etoposide (VP16) can significantly
enhance tumor growth inhibition compared with monotherapy. Our results show that melatonin is a
potential adjuvant treatment for chemotherapy and radiotherapy in HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common cancer of the liver and ranks fifth in
global cancer incidence [1,2], with ~700,000 people worldwide being diagnosed with HCC every year.
Moreover, HCC is one of the most refractory malignant tumors, especially when it has progressed to
late stages and surgical resection is no longer feasible, and chemotherapy is the only treatment option
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available for these patients. Etoposide (VP16) and camptothecin (CPT), which induce DNA damage in
cancer cells and result in apoptosis, are commonly used in the clinic as chemotherapeutic agents [3,4].
However, DNA repair systems in most HCC cells are abnormally active due to the accumulation of
mutations, resulting in elevated DNA repair capacity and poor chemotherapy outcomes. Recent studies
have demonstrated that the effects of chemotherapy and radiotherapy can be significantly enhanced
when the DNA repair pathway in cancer cells is blocked, and accordingly, DNA repair blockers, such as
trans-resveratrol, B02, and IBR2, have been widely used for clinical treatment to reduce the dose of
chemotherapeutic drugs and improve their therapeutic effects [5–7].

DNA damage repair is an important mechanism for maintaining chromosome stability [8,9],
and dysregulation of proteins involved in DNA repair increases the probability of DNA mutations
and can result in cell death or oncogenesis [10,11]. DNA repair mechanisms can be subdivided into
two major categories: double-strand break repair (DSBR) and single-strand break repair (SSBR) [12].
Homologous recombination (HR) is the major mechanism of DSBR, and RAD51 is the key protein
involved in this process [13]. The RAD51 protein binds to single-stranded DNA to promote HR to
complete DNA repair, and suppressing RAD51 expression strongly inhibits the DNA repair process [14].
Thus, many RAD51 inhibitors, such as (E)-3-benzyl-2-(2-(pyridin-3-yl)vinyl)quinazolin-4(3H)-one
(i.e., B02) and arsenic trioxide (ATO), have been validated as adjuvant therapies for HCC treatment
and have been proven to enhance the effects of chemotherapy and radiotherapy [15–17].

Melatonin is the main hormone secreted by the pineal gland in the human brain. In addition
to regulating the sleep–wake cycle, melatonin and its metabolites are strong free-radical scavengers
that decrease cellular damage arising from the peroxides produced during physiological metabolic
processes [18,19]. Moreover, melatonin can activate immunity, inhibit angiogenesis and cell growth,
and suppress the metastasis of several cancers [20,21]. Although recent studies have reported that
melatonin can inhibit the growth and metastasis of liver cancer cell lines [22], the findings were limited
to cellular experiments, and the downstream regulatory mechanisms remain unclear. In addition,
further investigation is needed to clarify whether melatonin can serve as an adjuvant treatment
for HCC.

Long non-coding RNAs (lncRNAs) are involved in regulating gene expression and protein
activity [23,24] and also participate in multiple physiological regulatory and drug effector
mechanisms [25–27]. Thus far, ~15,000 lncRNA genes have been discovered, yet functions are known
for only 1%. In addition, lncRNAs are abnormally expressed in many diseases, indicating their
regulatory relationship with pathophysiology [28,29]. As many lncRNAs participate in the effector
mechanisms of drugs, they are likely to be involved in melatonin-based effector mechanisms against
HCC. In this study, we examined the feasibility of using melatonin for HCC treatment by elucidating
the regulatory roles of lncRNA in this process. The results revealed that melatonin can significantly
inhibit the proliferation, migration, and invasion capacities of HCC cells and can synergize with
chemotherapeutic agents to enhance their cytotoxic effects against HCC cells. This process is mainly
mediated through induction of lncRNA RAD51-AS1 expression; the lncRNA binds to RAD51 mRNA to
reduce RAD51 protein expression, thereby suppressing the DNA damage repair capacity of HCC cells.
Our in vivo animal experiments also demonstrated significantly enhanced cytotoxic effects of etoposide
on HCC cell lines when melatonin was administered in combination with the chemotherapeutic
agent etoposide.

2. Results

2.1. Melatonin Inhibits the Proliferation, Migration, and Invasion Abilities of HCC Cells

To understand whether melatonin has therapeutic effects on HCC, HCC cell lines HepG2 and
Huh7 (which exhibit higher expression of the melatonin receptor; Supplementary Figure S1A,B) were
treated with different concentrations of melatonin. The inhibitory effects of melatonin on cell growth
began at 0.1 mM, and these effects were dose dependent (Supplementary Figure S1C). The half-maximal
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inhibitory concentration (IC50) of melatonin was approximately 1 mM, i.e., cell growth was significantly
inhibited when HepG2 and Huh7 HCC cells were exposed to 1 mM melatonin. Compared with the
control group treated with vehicle (DMSO), HepG2 and Huh7 cells treated with melatonin for 72 h
showed growth rate inhibition of 38 and 33%, respectively (Figure 1A). Similar results were obtained
in colony formation assays (Supplementary Figure S2), whereby melatonin significantly inhibited the
ability of HepG2 and Huh7 cells to form colonies. The above results indicate that melatonin inhibits
HCC cell proliferation.

The metastatic and invasive properties of cancer cells contribute to treatment resistance.
To elucidate whether melatonin affects these properties of HCC cells, we treated cells with 1 mM
melatonin and performed transwell and wound-healing assays to analyze cell migration status.
According to the results, melatonin maximally inhibited cell migration capacity by 66% (Figure 1B–E).
In the invasion assay, melatonin suppressed the invasiveness of HepG2 and Huh7 cells by 64 and
68%, respectively (Figure 1F,G). The above findings show that melatonin exerts inhibitory effects on
HCC cells.
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Figure 1. Melatonin suppressed proliferation, migration and invasion capacities in HCC cells. (A) Huh7
and HepG2 cells were treated with 1 mM melatonin, and cell proliferation capacity was assessed
at the indicated time points using an xCELLigence real-time cell analyzer. Mock: cells treated
with DMEM medium. Vehicle: cells treated with DMSO. p < 0.01 (**), as assessed using Student’s
t-test. (B) Wound-healing abilities of Huh7 and HepG2 cells treated with/without 1 mM melatonin
were compared. Quantification of the cell wound-healing assays is presented in (C). p < 0.05 (*),
p < 0.001 (***). (D) The migration capacities of Huh7 and HepG2 cells treated with/without 1 mM
melatonin were compared using a transwell assay. Quantitative cell migration assay results are
shown in (E). Data represent the mean ± S.D. of three independent experiments. p < 0.001 (***).
(F) Invasion capacities of Huh7 and HepG2 cells were measured using Matrigel-coated polyethylene
terephthalate membrane inserts. Quantification of the cell invasion assay is shown in (G). p < 0.001 (***).
All experiments were performed in triplicate.
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2.2. Melatonin Increases the Sensitivity of HCC Cells to Chemotherapy and Radiotherapy

To further clarify the therapeutic effects of melatonin in combination with other anticancer
treatments [4], we treated HCC cells with melatonin and the chemotherapeutic agent etoposide (VP16)
and compared effects on growth inhibition with those after single-drug treatment. Compared with
etoposide alone, combined treatment with melatonin significantly enhanced inhibitory effects on
HepG2 and Huh7 cell growth (Figure 2A). In a trypan blue exclusion assay, combined treatment with
melatonin significantly enhanced the cytotoxicity of etoposide in HCC cells compared to the drug
alone, with the proportion of apoptotic Huh7 cells increasing by 22% (Figure 2B). Similar results
were obtained in MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assay and
TUNEL assay (Supplementary Figure S3). Figure 2C shows that similar results were obtained by
flow cytometry when etoposide was replaced with the chemotherapeutic drug camptothecin (CPT).
Additionally, suppression of colony formation increased by 25% when HCC cell lines were exposed
to both melatonin and irradiation compared with radiation alone (Figure 2D). These data show that
melatonin can increase the sensitivity of HCC cells to chemotherapeutic drugs as well as radiotherapy.

Cancers 2018, 10, x 4 of 17 

 

with etoposide alone, combined treatment with melatonin significantly enhanced inhibitory effects 

on HepG2 and Huh7 cell growth (Figure 2A). In a trypan blue exclusion assay, combined treatment 

with melatonin significantly enhanced the cytotoxicity of etoposide in HCC cells compared to the 

drug alone, with the proportion of apoptotic Huh7 cells increasing by 22% (Figure 2B). Similar results 

were obtained in MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assay and 

TUNEL assay (Supplementary Figure S3). Figure 2C shows that similar results were obtained by flow 

cytometry when etoposide was replaced with the chemotherapeutic drug camptothecin (CPT). 

Additionally, suppression of colony formation increased by 25% when HCC cell lines were exposed 

to both melatonin and irradiation compared with radiation alone (Figure 2D). These data show that 

melatonin can increase the sensitivity of HCC cells to chemotherapeutic drugs as well as 

radiotherapy. 

 

Figure 2. Melatonin enhanced the sensitivity of HCC cells to chemotherapy and radiotherapy. (A) 

The proliferation capacity of Huh7 and HepG2 cells treated with 1 mM melatonin, 200 µM etoposide 

(VP16), or both was monitored using an xCELLigence real-time cell analyzer. p < 0.05 (*), as assessed 

using Student’s t-test. (B,C) An trypan blue exclusion assay and flow cytometry showed that 

combined treatment with 1 mM melatonin significantly increased the cytotoxicity of 200 µM 

etoposide (VP16) and 1 µM camptothecin (CPT) in Huh7 cells. Data are expressed as the mean ± S.D. 

of three independent experiments. The arrows indicate the apoptotic cells. (D) Effect of melatonin on 

the radiosensitivity of Huh7 cells. Cells were irradiated with Cs-137 at a dose of 2 Gy, followed by 

treated with/without 1 mM melatonin for 24 h and then cultured for an additional 10 days in the 

absence of melatonin (left panel). The numbers of foci were counted, and the results are presented in 

the right panel. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). All experiments were performed in triplicate. 

2.3. Melatonin Inhibits the Growth of HCC Tumors and Increases the In Vivo Inhibitory Effects of 

Chemotherapeutic Drugs on Tumors 

To verify the experimental results described above, we used a mouse xenograft model to 

evaluate the inhibitory effects of melatonin on tumor growth in vivo. The results indicated that 

compared with the control group receiving only vehicle (DMSO), treatment with melatonin or 

etoposide alone significantly inhibited the growth of tumors. When melatonin was used in 

combination with etoposide, the inhibitory effect on tumor growth was more than 50% greater than 

that of each drug alone (Figure 3A–C), which was consistent with the results of the in vitro cellular 

experiments. In addition, melatonin injection did not significantly affect the weight of the mice during 

the experimental period (Figure 3D), suggesting that melatonin is not toxic to mice. We then 

performed hematoxylin and eosin (H&E) staining and immunohistochemical analysis of tumor 

tissues and found that compared with etoposide treatment alone, tumor tissues simultaneously 

Figure 2. Melatonin enhanced the sensitivity of HCC cells to chemotherapy and radiotherapy. (A) The
proliferation capacity of Huh7 and HepG2 cells treated with 1 mM melatonin, 200 µM etoposide (VP16),
or both was monitored using an xCELLigence real-time cell analyzer. p < 0.05 (*), as assessed using
Student’s t-test. (B,C) An trypan blue exclusion assay and flow cytometry showed that combined
treatment with 1 mM melatonin significantly increased the cytotoxicity of 200 µM etoposide (VP16) and
1 µM camptothecin (CPT) in Huh7 cells. Data are expressed as the mean ± S.D. of three independent
experiments. The arrows indicate the apoptotic cells. (D) Effect of melatonin on the radiosensitivity
of Huh7 cells. Cells were irradiated with Cs-137 at a dose of 2 Gy, followed by treated with/without
1 mM melatonin for 24 h and then cultured for an additional 10 days in the absence of melatonin
(left panel). The numbers of foci were counted, and the results are presented in the right panel.
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). All experiments were performed in triplicate.

2.3. Melatonin Inhibits the Growth of HCC Tumors and Increases the In Vivo Inhibitory Effects of
Chemotherapeutic Drugs on Tumors

To verify the experimental results described above, we used a mouse xenograft model to evaluate
the inhibitory effects of melatonin on tumor growth in vivo. The results indicated that compared
with the control group receiving only vehicle (DMSO), treatment with melatonin or etoposide alone
significantly inhibited the growth of tumors. When melatonin was used in combination with etoposide,
the inhibitory effect on tumor growth was more than 50% greater than that of each drug alone
(Figure 3A–C), which was consistent with the results of the in vitro cellular experiments. In addition,
melatonin injection did not significantly affect the weight of the mice during the experimental period
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(Figure 3D), suggesting that melatonin is not toxic to mice. We then performed hematoxylin and
eosin (H&E) staining and immunohistochemical analysis of tumor tissues and found that compared
with etoposide treatment alone, tumor tissues simultaneously treated with melatonin and etoposide
showed significantly higher caspase-9 and caspase-3 expression (Figure 3E). This finding suggests that
melatonin enhances etoposide-induced apoptosis.
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Figure 3. Melatonin suppressed tumor growth and enhanced etoposide (VP16)-induced inhibitory
effects on tumors in vivo. (A,B) A total of 5 × 106 Huh7 cells were injected subcutaneously into both
the right and left flanks of nude mice (n = 6, each group). Representative images show the tumor
xenografts after 4 weeks. (C) Tumor volumes were measured three times a week and calculated using
the formula: length × width2 × 0.5. Bars indicate S.D. * p < 0.05, ** p < 0.01. (D) Body weights
were recorded three times a week. (E) Histological analysis of xenografts using H&E staining and
immunohistochemical staining for cleaved caspase-3 and cleaved caspase-9 showed that melatonin
enhanced etoposide-induced apoptosis. Magnification: 400×, scale bar = 100 µm.

2.4. Melatonin Decreases the DNA Damage Repair Capacity of HCC Cells by Inhibiting RAD51 Expression

In both cellular and animal experiments, we observed that melatonin can enhance the cytotoxicity
of radiotherapy and chemotherapeutic drugs in HCC cells, in addition to inhibiting the growth,
migration, and invasion abilities of HCC cell lines. The main effector mechanisms of radiotherapy
and chemotherapy are mediated by inducing cellular DNA damage, which results in apoptosis.
To understand whether melatonin is involved in inhibiting DNA damage repair capacity (thereby
increasing the sensitivity of cells to chemotherapy and radiotherapy), we used the comet assay to
assess whether melatonin affects DNA damage repair in HCC cell lines. We found that the speed of
DNA damage repair was significantly slower in cells treated with melatonin than in control group cells
(Figure 4A,B). Furthermore, formation of DNA damage-induced RAD51 foci was significantly reduced
at every time point after melatonin treatment (Figure 4C), indicating that melatonin can suppress the
DNA damage repair capacity of cells.

HR is the most accurate mechanism of DSBR in the cell; thus, we performed an HR reporter
assay to determine whether melatonin regulates HR (Figure 4D). The results revealed that melatonin
significantly inhibited HR compared with the vehicle control (Figure 4E).

To understand the mechanism by which melatonin inhibits HR, we used western blotting
to analyze expression of HR-associated proteins (Supplementary Figure S4, Figure 4F) and found
significant decreases in RAD51, a key protein in HR, after cells were treated with melatonin (Figure 4F).
In addition, immunohistochemical staining of mouse tumor tissue slices revealed that melatonin
significantly inhibited expression and nuclear transport of RAD51 in tissues (Figure 4G). The above
results prove that melatonin can suppress HR in HCC cells by inhibiting RAD51 expression, thereby
increasing the cytotoxicity of chemotherapy and radiotherapy.
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Figure 4. Melatonin suppressed the DNA repair capacity of HCC cells by inhibiting RAD51 expression.
(A) A comet assay shows DNA repair activity after treatment with melatonin. Huh7 cells were treated
with 200 µM etoposide (VP16) for 1 h, followed by treatment with different concentrations of melatonin
in etoposide-free medium for 4 h. The cells were harvested and subjected to comet assays to detect DNA
repair activity. The rows of panels present the results of three individual experiments. Quantification
of cell repair activity is shown in (B). p < 0.01 (**), p < 0.001 (***). (C) Huh7 cells were treated with
200 µM etoposide (VP16) for 1 h to induce DNA damage, followed by recovery in medium with or
without 1 mM melatonin. Cells were processed for immunofluorescence staining at various time points
to detect the formation of Rad51 foci (green). Nuclei were stained with DAPI (blue). (D) A schematic
representing the principle of the HR reporter assay. The DR-GFP system, which contains two mutated
GFP genes (termed GFP−) was applied to detect HR repair in human cancer cells. As the left GFP-

gene contains an I-SceI endonuclease site, expression of I-SceI leads to a DSB that can be repaired by
HR using the homologous region in the truncated GFP gene. The complete HR results in expression
of a functional GFP (GFP+) that can be detected by flow cytometry. (E) The results of flow cytometry
indicate that melatonin significantly inhibited HR in HCC cells. (F) Western blot analysis of RAD51 in
Huh7 cells treated with or without 1 mM melatonin for 48 h; β-actin was included as an internal control
(upper panel). Quantitative results are shown in the lower panel. (G) Downregulation of RAD51 in
mice xenografts treated with melatonin, as examined by immunohistochemistry.
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2.5. Melatonin Induces Expression of lncRNA RAD51-AS1, Causing Reduced RAD51 Levels

Recent studies have demonstrated that lncRNAs can act via different mechanisms to regulate
gene expression. To examine whether lncRNAs participate in melatonin-mediated RAD51 regulation,
whole-transcriptome sequencing was performed to assess lncRNA expression status in Huh7 and
HepG2 cells treated with melatonin (Supplementary Figure S5). Expression of a recently discovered
lncRNA, RAD51-AS1, was significantly increased after melatonin treatment. We then confirmed
this finding by real-time PCR and found that lncRNA RAD51-AS1 expression in cells treated with
melatonin increased 1.8-fold compared with that of the control group (vehicle only) and that RAD51
mRNA levels significantly decreased (Figure 5A,B).
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Figure 5. Melatonin induced expression of lncRNA RAD51-AS1, causing RAD51 downregulation.
(A,B) Huh7 and HepG2 cells were treated with 1 mM melatonin for 48 h, and expression of RAD51-AS1
and RAD51 was examined by quantitative real-time RT-PCR. p < 0.001 (***) (C) Human serum melatonin
levels and hepatic RAD51-AS1 levels were measured by ELISA and real-time RT-PCR, respectively
(n = 33). RAD51-AS1 expression was positively correlated with serum melatonin levels. (D) RAD51-AS1
and RAD51 expression in human liver tissues was analyzed by real-time RT-PCR (n = 33). RAD51-AS1
expression was negatively correlated with RAD51 expression. (E) Real-time RT-PCR results showed
that silencing RAD51-AS1 expression had no effect on RAD51 mRNA levels. (F) Real-time RT-PCR
results showed that overexpression of RAD51-AS1 had no effect on RAD51 mRNA levels. (G) Huh7
cells were transfected with 50 nM synthesized random control siRNA (si-CTR) or RAD51-AS1-specific
siRNA (siRAD51-AS1) and then cotreated with 1 mM melatonin. After 48 h of treatment, cells were
harvested and subjected to western blotting to detect RAD51 levels; β-actin served as an internal
control (left panel). Quantitative results are shown in the right panel. p < 0.001 (***). (H) Huh7 cells
were transfected with a RAD51-AS1-expressing plasmid or the empty vector; after 24 h and 48 h, the
cells were harvested and subjected to western blotting to examine RAD51 protein levels (left panel).
Quantification of the western blotting results are shown in the right panel. p < 0.05 (*), p < 0.01 (**),
p < 0.001 (***). All experiments were performed in triplicate.

When analyzing clinical samples, we did not find a significant correlation between serum
melatonin levels and RAD51-AS1 or RAD51 expression. However, we did observe a positive correlation
between serum the melatonin concentration and HCC tissue RAD51-AS1 expression; conversely,
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RAD51-AS1 levels and RAD51 expression were negatively correlated in HCC tissues (Figure 5C,D).
These results suggest the existence of a regulatory relationship among melatonin, lncRNA RAD51-AS1,
and RAD51.

Previous studies have confirmed that many antisense lncRNAs can form a double-stranded RNA
structure with the sense mRNA strand and that this mechanism can (1) stabilize the mRNA structure
and protein expression (2) activate RNA interference mechanisms that degrade the double-stranded
RNA and inhibit protein expression or (3) inhibit translation initiation. To determine whether binding
of lncRNA RAD51-AS1 to RAD51 mRNA and the corresponding formation of double-stranded RNA
can induce mRNA interference and result in RAD51 mRNA degradation, we used siRNA to silence
expression of lncRNA RAD51-AS1 and then performed real-time PCR and western blotting to assess
RAD51 mRNA and protein expression. After RAD51-AS1 was silenced, RAD51 protein expression
increased significantly (Figure 5G). Conversely, overexpression of lncRNA RAD51-AS1 decreased
cellular RAD51 protein expression levels by 85% at 48 h (Figure 5H). However, RAD51 mRNA levels
were not changed (Figure 5E,F). The above results indicate that lncRNA RAD51-AS1 can suppress
RAD51 protein expression, possibly by inhibiting translation initiation.

2.6. Melatonin Increases the Sensitivity of HCC Cells to Chemotherapeutic Agents by Inducing Expression of
lncRNA RAD51-AS1

We then conducted a rescue assay to verify whether the anticancer effects of melatonin are
mediated by lncRNA RAD51-AS1. Treatment with both melatonin and etoposide significantly inhibited
the proliferation, migration, and invasion abilities of cells, and these effects were reversed when
expression of lncRNA RAD51-AS1 was silenced during treatment (Figure 6A–C). Base on western
blotting, the original RAD51 protein expression, which had been inhibited, was immediately restored
after lncRNA RAD-51-AS1 was silenced (Figure 6D). Similarly, when cells overexpressing RAD51 were
treated with both melatonin and etoposide, the inhibition of DNA repair by melatonin was attenuated,
and the etoposide-induced cellular apoptosis ratio significantly decreased (Figure 6E,F). These findings
indicate that the anti-HCC mechanisms of action involving melatonin are due to regulation of RAD51
by lncRNA RAD51-AS1. Specifically, melatonin induces RAD51-AS1 expression, which downregulates
RAD51 protein expression. This effect decreased the DNA damage repair capacity of HCC cells,
thereby increasing the cytotoxicity of chemotherapeutic agents.
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Figure 6. Melatonin enhanced the sensitivity of HCC cells to chemotherapy by inducing lncRNA
RAD51-AS1 expression. (A–C) The effects of melatonin combined with etoposide (VP16) on Huh7 and
HepG2 cell proliferation, migration and invasion with/without treatment with RAD51-AS1 siRNA
(50 nM). p < 0.05 (*), p < 0.001 (***) (D) Western blot analysis shows the effect on expression of RAD51
in Huh7 cells after the aforementioned treatments (left panel). Quantitative results are shown in the
right panel. p < 0.001 (***). (E) A comet assay showing that overexpression of RAD51 attenuated
the melatonin-mediated inhibition of DNA repair. (F) An trypan blue exclusion assay showing
that melatonin enhanced etoposide-induced apoptosis, whereas the apoptosis ratio was significantly
decreased when RAD51 was overexpressed. All experiments were performed in triplicate.

3. Discussion

DNA repair mechanisms are activated when cells undergo DNA damage, and apoptosis occurs
if the DNA cannot be repaired. Nevertheless, most tumor cells accumulate mutations in their DNA
repair proteins, resulting in hyperactive DNA repair [30–33]; even if these cells are damaged by
chemotherapeutic drugs, apoptosis will not be invoked [34,35]. This phenomenon is one of the reasons
for the resistance of cancer cells to chemotherapy. Therefore, understanding the mechanisms by which
cancer cells activate DNA repair and blocking this process are an effective strategy for increasing the
therapeutic effectiveness of chemotherapy [36–39]. In this study, we used cellular and animal model
experiments to demonstrate that melatonin can increase the sensitivity of HCC cells to chemotherapy
and radiotherapy. Melatonin reduced RAD51 protein expression through lncRNA RAD51-AS1 and
decreased DNA damage repair capacity, resulting in an inability to repair DNA damage caused by
chemotherapy and radiotherapy and thereby enhancing cell death (Figure 7). To the best of our
knowledge, our study is the first to show that melatonin can regulate the lncRNA RAD51-AS1 and
thus control a DNA damage repair mechanism.
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DNA repair.

There have been few studies to date on lncRNA RAD51-AS1, and the exact mechanism of action
on cellular physiology has not been reported [40]. One recent study on ovarian cancer revealed
that overexpression of RAD51-AS1 can promote cell cycle progression and inhibit apoptosis [40],
though the regulatory mechanisms involved were not addressed. Our recent study showed that
lncRNA RAD51-AS1 can regulate RAD51 protein expression and thus control DNA damage repair [41].
lncRNA RAD51-AS1 possibly forms a double-stranded structure with the 5′ UTR of RAD51 mRNA
that may interfere with the binding of the ribosome or initiation factors and inhibit RAD51 translational
initiation, thereby decreasing the DNA damage repair capacity of cells. Our previous study shows
that RAD51-AS1 can inhibit the resistance of liver cancer cells to treatment and that this effect is
different from the carcinogenic role of RAD51-AS1 described in the above study on ovarian cancer.
We hypothesize that RAD51-AS1 participates in other physiological regulatory pathways and plays
different regulatory roles in different cancer cell lines.

Studies have noted that the formation of a double-stranded structure between antisense lncRNA
and complementary mRNA can trigger RNA interference by causing RNase H to recognize this
double-stranded structure and cleave it, leading to mRNA degradation [42–44]. Moreover, some
anti-sense RNA can block ribosome binding and inhibit initiation of translation [45,46]. Alternatively,
antisense lncRNA, such as PCNA-AS1, can stabilize mRNA and promote protein expression [47].
Regarding why the two antisense lncRNAs have different regulatory mechanisms causing opposite
results, it is hypothesized that this discrepancy is due to the length and site of the complementary
sequence. Nonetheless, further studies are needed to elucidate the length of the double-stranded RNA
required to attract RNase H.

RAD51 is an important protein that regulates repair of double-stranded DNA damage, and
transcription factors such as p53 and E2F1 can regulate expression of this protein [48,49]. In the
present study, we found that melatonin was able to suppress RAD51 mRNA expression, as recently
reported [50]. However, we did not find that melatonin can regulate the abovementioned transcription
factors to inhibit RAD51 expression; rather, protein repression was achieved through lncRNA
RAD51-AS1. This mechanism is a novel regulatory pathway, and we theorize that it exists in other
cancers. Accordingly, we suggest that melatonin regulates RAD51 expression at both the transcription
and translation levels. Regardless, further studies are needed to determine how melatonin induces
RAD51-AS1 expression. We hypothesize that melatonin may regulate RAD51-AS1 expression via
transcriptional regulation or epigenetic mechanisms. Accordingly, we will investigate the relationship
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between melatonin and transcription factors regulating expression of RAD51-AS1 or the influence
of melatonin on the epigenetic modification of the RAD51-AS promoter in future studies. As there
are many molecules or ncRNAs in addition to RAD51that participate in the DNA damage repair
process [51–54], another aim of our subsequent studies will be to determine whether melatonin
participates in the regulation of these molecules.

Our rescue experiment (Figure 6) showed that knockdown of RAD51-AS1 expression leads
to incomplete recovery of the anti-HCC phenotype mediated by melatonin. This suggests that
other molecules (such as lncRNA-CPS1-IT1) are involved in melatonin’s regulation of cancer [55].
Further research is needed to confirm this.

Melatonin has anticancer effects on many types of cancer [56–58]. Nonetheless, relevant studies
on liver cancer are scarce. In addition, only a few studies have reported a regulatory relationship
between melatonin and lncRNA. In the present study, melatonin was confirmed to have inhibitory
effects on HCC and to suppress the DNA damage repair capacity of HCC cells through lncRNA
RAD51-AS1-mediated regulation of RAD51. In addition, melatonin was found to not be toxic and to
hold promise as an adjuvant therapy in HCC treatment to increase the effectiveness of chemotherapy
and radiotherapy.

4. Materials and Methods

4.1. Analysis of Melatonin, RAD51 and RAD51-AS1 Levels in Human Specimens

The human serum and fresh frozen tissues used in this study were obtained from 33 HCC patients
who underwent surgical resection at Chang Gung Memorial Hospital (Tao-yuan, Taiwan) between
2010 and 2015. Serum melatonin levels were measured using an enzyme-linked immunosorbent
assay (ELISA) kit (CUSABIO, Baltimore, MD, USA) according to the manufacturer’s instructions.
RAD51 and RAD51-AS1 expression levels in the above tissue samples were analyzed by quantitative
real-time RT-PCR using a TaqMan gene expression assay (Thermo Fisher Scientific, Waltham, MA,
USA). To reduce differences between individuals, patients of the same sex and similar age and
acquisition time were selected to rule out the influence of these factors. This study was approved by
the Ethics Committee of Chang Gung Memorial Hospital (IRB approval no.: 201601767B0, approval
date: 5 January 2017), and written informed consent was obtained from each patient.

4.2. Cell Lines, Antibodies, Drug, siRNA and Plasmid Construction

The HCC cell lines Huh7 and HepG2 were purchased from American Type Culture Collection
(Manassas, VA, USA), which supplies authenticated cell lines. The cell lines were subjected to
routine testing to confirm the absence of mycoplasma and cultured in DMEM medium containing
10% fetal bovine serum at 37 ◦C in a 5% CO2 atmosphere. Polyclonal antibodies against
RAD51, cleaved caspase-3, cleaved caspase-9, MT1, MT2, ATM, ATR, RPA32 and β-actin were
purchased from Cell Signaling Technology (Beverly, MA, USA) and Genetex (Irvine, CA, USA).
Secondary antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Commercialized si-RAD51-AS1 and negative-control siRNAs were purchased from Thermo Fisher
Scientific. Melatonin and etoposide (VP16) powder (characterized by purity above 98%, as measured
by TLC) were purchased from Sigma-Aldrich (St. Louis, MO, USA). A CMV-based expression plasmid
containing lncRNA-RAD51-AS1, namely, pCDNA3.1-RAD51-AS1, was constructed by BIOTOOLS
CO., LTD. (Taipei, Taiwan). The pCMV-FLAG-RAD51 plasmid, DR-GFP vector, and I-SceI expression
vector (for the HR assay) were kindly provided by Professor Chin-Chuan Chen.

4.3. Detection of lncRNA-RAD51-AS1 and RAD51 Levels Using Quantitative Real-Time RT-PCR

Total RNA from each tissue or cell line was isolated using an RNeasy mini kit (QIAGEN,
Gaithersburg, MD, USA) according to the manufacturer’s instructions. Two micrograms of each RNA
sample was reverse transcribed. These products were subjected to quantitative real-time RT-PCR to
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detect lncRNA-RAD51-AS1 and RAD51 expression using the TaqMan gene expression assay (Applied
Biosystems, Foster City, CA, USA); GAPDH was used as an internal control.

4.4. Transfection and Western Blotting Analysis

Huh7 and HepG2 cells were seeded in 6-well plates at a density of 3× 105 cells/well and incubated
overnight. The cells were transfected with 1 µg of plasmid (pCDNA3.1-RAD51-AS1 or pCDNA3.1
vector) or 50 nM siRNA (si-RAD51-AS1 or si-CTR) using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. Forty-eight hours later, the transfected cells
were washed twice with PBS and then lysed in 200 µL of RIPA lysis buffer (BIOTOOLS CO., LTD.,
Taipei, Taiwan) containing protease inhibitors. Proteins (100 µg) from the supernatant were separated
by SDS polyacrylamide gel electrophoresis, followed by western blotting analysis to detect levels of
RAD51 and β-actin. The immunoreactive bands were visualized using an ECL system (NEN Life
Science Products, Boston, MA, USA) and developed using X-ray films. The content of each band was
quantified using ImageQuant 5.2 (GE Healthcare, Piscataway, NJ, USA).

4.5. Cell Proliferation Assay

Cell proliferation capacity was examined with an xCELLigence real-time cell analyzer (Roche Life
Science, Indianapolis, IN, USA) and by a colony formation assay, as previously described [55].

4.6. Cell Migration and Invasion Assays

Cell migration activity was analyzed using a wound-healing assay and a transwell migration
assay, as previously described [59].

4.7. Apoptosis Assay

The apoptosis status of Huh7 cells were determined using trypan blue exclusion assay
and DeadEndTM Fluorometric TUNEL assay kit (Promega, Madison, WI, USA) according to the
manufacturers’ protocol. In brief, Huh7 cells were treated with 1 mM melatonin, 200 µM etoposide
(VP16), or both for 48 h. The cells were then subjected to a Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay or stained with 0.04% (w/v) trypan blue solution (Invitrogen
Life Technologies), which labels dead cells in blue, for 5 min at room temperature. The cells were
then counted under microscopy (magnification, ×40); cells in five different fields of vision/dish were
analyzed for each experiment.

4.8. Comet Assay

A comet assay was performed as described previously [41]. In brief, Huh7 cells were seeded in
24-well plates (4 × 104 cells per well), incubated overnight, and treated with 200 µM etoposide for
1 h. The etoposide was then washed out with PBS, and the cells were treated with 1 mM melatonin or
DMSO in etoposide-free medium. Four hours after treatment, the cells were harvested and subjected
to the comet assay. Comet images were obtained using a fluorescence microscope (Nikon ECLIPSE
Ni-U plus), and the tail moment was calculated using OpenComet software.

4.9. Immunofluorescence Staining of RAD51

Huh7 cells were treated with 200 µM etoposide for 1 h to induce DNA damage. The etoposide
was then washed out, and the cells were allowed to recover in medium with or without 1 mM
melatonin. At various time points, the cells were processed for immunofluorescence staining as
described previously to detect the formation of RAD51 foci [60]. Slides were mounted in Vectashield
containing DAPI (4′,6-diamidino-2-phenylindole; Vector Laboratories, Burlingame, CA, USA) and
visualized using confocal microscopy (LSM 700; Carl Zeiss, Jena, Germany).
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4.10. HR Assay

To determine the percentage of homologous recombination, a sample of 5 × 105 cells was
co-transfected with 1 µg of pDR-GFP (a gift from Maria Jasin, Addgene plasmid #26475) and I-Sce I
(a gift from Maria Jasin, Addgene plasmid #26477) plasmids and treated with or without melatonin
for 48 h. The cells were then trypsinized, washed once and resuspended in PBS. The percentage of
GFP-positive cells was quantitated using a FACSCalibur device (Becton-Dickinson, San Jose, CA, USA).

4.11. Whole-Transcriptome Sequencing

Total RNA from Huh7 and HepG2 cells treated with and without 1 mM melatonin for 48 h
was isolated using TRIzol reagent (Invitrogen) and checked for quality with the Bioanalyzer
2100 system (Agilent Technologies, Santa Clara, CA, USA). The qualified RNA was subjected to
whole-transcriptome sequencing, as described previously [61].

4.12. Mice

Six week-old male nude mice (BALB/cAnN-Foxnlnu/CrlNarl) were purchased from the National
Laboratory Animal Center (Taipei, Taiwan), housed under pathogen-free conditions and fed autoclaved
standard chow and water. The mice were bred at the animal center of Chang Gung Memorial
Hospital according to the Guidelines for the Care and Use of Laboratory Animals (NIH). All animal
experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Chang
Gung Memorial Hospital (IACUC approval no.: 2016121301, approval date: 24 February 2017).

4.13. Xenograft Assays and Drug Administration

A sample of 5 × 106 Huh7 cells was resuspended in 100 µL of saline with 50% Matrigel
(BD Biosciences) and subcutaneously implanted into the left and right flank regions of mice. All the
tumors were staged for 1 week before drug treatment was initiated. At the beginning of the second
week, mice with tumors were intraperitoneally (IP) injected with 100 µL of melatonin (at a dose of
40 mg/kg of body weight), etoposide (40 mg/kg) or an equal volume of dimethyl sulfoxide (DMSO),
which served as a control, five days per week. The abovementioned drugs were administered 1 h
before the room lights were switched off. Tumor volumes were measured three times per week using
digital calipers.

4.14. Immunohistochemical Staining

The tumors of mice were fixed in formalin and embedded in paraffin. Consecutive sections (2 µm
thick) were cut and subjected to immunohistochemical staining, as described previously [41].

4.15. Statistical Analysis

Original real-time PCR data and western blotting and migration assay analyses were considered
to be continuous variables and analyzed using Student’s t-test. All statistical analyses were performed
using SPSS 16.0 (IBM, New York, NY, USA) and Excel 2007 (Microsoft, Seattle, WA, USA). All statistical
tests were two-sided, and p-values were considered significant at <0.05 (*), <0.01 (**), or <0.001 (***).

5. Conclusions

Melatonin inhibits the DNA repair capacity of HCC cells via lncRNA RAD51-AS1-mediated
RAD51 suppression. Melatonin can be considered a promising adjuvant for chemotherapy and
radiotherapy in HCC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/9/320/s1,
Figure S1: Differential expression of the melatonin receptor and RAD51 protein in hepatoma cell lines; Figure S2:
Melatonin suppressed the colony formation ability of HCC cells; Figure S3: Melatonin enhanced etoposide
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(VP16)-induced apoptosis of Huh7 cells; Figure S4: Melatonin suppressed expression of DNA repair-related
proteins; Figure S5: Whole-transcriptome sequencing analysis of different genes after melatonin treatment.
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