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Abstract: Vibrio parahaemolyticus and Aeromonas hydrophila are major public health problems and the
main cause of bacterial disease in Nile tilapia (Oreochromis niloticus). This study was conducted to
determine the prevalence, antibiotic resistance and some virulence genes of both V. parahaemolyticus
and A. hydrophila isolates from Nile tilapia. From Manzala Farm at Dakahlia governorate, 250 fresh-
water fish samples were collected. The confirmed bacterial isolates from the examined Nile tilapia
samples in the study were 24.8% (62/250) for V. parahaemolyticus and 19.2% (48/250) for A. hydrophila.
multiplex PCR, revealing that the tlh gene was found in 46.7% (29/62) of V. parahaemolyticus isolates,
while the tdh and trh virulence genes were found in 17.2% (5/29). Meanwhile, 39.5% (19/48) of A.
hydrophila isolates had the 16s rRNA gene and 10.5% (2/19) had the aerA and ahh1 virulence genes.
The Multiple Antibiotic Resistance indices of V. parahaemolyticus and A. hydrophila were 0.587 and
0.586, respectively. In conclusion, alternative non-antibiotic control strategies for bacterial infections
in farmed fish should be promoted to avoid multidrug-resistant bacteria. Therefore, it is suggested
that farmers should be skilled in basic fish health control and that molecular detection methods are
more rapid and cost-effective than bacteriological methods.

Keywords: molecular identification; Aeromonas hydrophila; Vibrio parahaemolyticus; Oreoch- romis niloti-
cus

1. Introduction

Aquaculture is a globally essential industry that provides food to the world’s rapidly
growing population, in addition to being a good source of low-cost animal protein [1]. Nile
tilapia (Oreochromis niloticus) is the second-largest aquatic species cultivated worldwide [2,3].
The overall production of farmed Nile tilapia in Egypt accounts for 71.2 percent of all
farmed Nile tilapia worldwide [4] and is the source of the most common strains and species
used in commercial aquaculture. In general, seafood is a notable source of pathogenic
microorganisms infectious to humans [5,6]. Cultivation of fish may pose some fish health
problems due to contamination by pathogenic bacteria, which leads to high economic
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losses [7]. Contamination can occur at any time during the collection, storage or distribution
of seafood and may come from water, facilities, machinery and handlers. Feces containing
spoilage microorganisms and pathogens may contaminate seafood and cause microbial
contamination [8]. Freshwater tilapia in Egypt is often exposed to a variety of possible
stressors, including inadequate management and environmental factors that reduce natural
immunity, resulting in disease and death in the fish [9]. The key environmental parameters
are increased turbidity, temperature, salinity, pH, water conductivity and lower dissolved
oxygen [4]. Tilapia, under stress factors, is susceptible to many bacterial diseases that are
common in the freshwater ecosystem [10]. Bacteria are responsible for huge mortalities in
fish species resulting in higher economical loss in aquaculture [11]. However, bacteria are
not the only main cause of infection in fish; viruses also have a major role in aquaculture
contamination. The major viral fish diseases in aquaculture have been reported in many
reviews [12–16].

V. parahaemolyticus is out of the most common causes of salty, brackish and freshwa-
ter fish diseases [17]. The usual clinical signs of the V. parahaemolyticus toxin in humans
include acute dysentery and stomach ache, followed by diarrhea, nausea, vomiting, fever,
chills and watery stool [18]. The genes responsible for haemolysin, comprise thermostable
direct-haemolysin (tdh), TDH-related haemolysin (trh) and thermolabile haemolysin (tlh),
performs an essential role in pathogenesis [19,20]. In this regard, V. parahaemolyticus strains
possess some virulence factors as tdh and trh [21], that are linked mainly to hemolysis and
cytotoxicity in the host cell [22]. This means that most V. parahaemolyticus found in clinical
cases carry trh or tdh genes [23]. Detection of the presence of Vibrio in a food sample is
usually performed by selective media like thiosulphate citrate bile salts sucrose (TCBS)
media, and then confirmed by biochemical assays [24,25]. Aeromonas spp. causes more
severe bacterial diseases that influences various fish and shellfish species, posing a serious
threat to Egypt’s and other countries’ fish farming industries [26]. A. hydrophila, on the
other hand, is a zoonotic pathogen belonging to the Aeromonadaceae family [27–30], which
is considered the most important cause of gill and skin disease, causing high mortality rate
in freshwater fish [31]. It may cause intestinal and extra-intestinal diseases in humans, such
as septic arthritis, diarrhea (traveler’s diarrhea), gastroenteritis, meningitis, septicemia
and skin and wound infections [32]. Virulence factors like DNases, hemolysin, proteases,
aerolysin and lipases has been corelated with the pathogenicity of Aeromonas spp. Such tox-
ins play a critical role in the development of diseases in fish and humans [33,34]. 16S rRNA
is a suitable marker for Aeromonas spp. identification [35]. Antibiotics are widely utilized in
seafood farms as feeding additives or to prevent bacterial diseases [36], but extreme usage
of antibiotics resulted in the evolution of drug resistance in aquaculture pathogenic strains,
which has become a serious problem for veterinary and human health [37]. The Multiple
Antibiotic Resistance (MAR) Index is considered as a useful way to evaluate contamination
sources [38]. This study aimed to detect the prevalence and antibiotic-resistant patterns of
V. parahaemolyticus and A. hydrophila in Nile tilapia samples collected from Manzala Farm
at Dakhalia governorate. Moreover, the presence of certain virulence factors was investi-
gated using the multiplex PCR technique for detecting the occurrence of this important
seafood-borne pathogen and providing a fortuitous opportunity to high-risk environments
and consequently reducing the risk of food-borne illness.

2. Results
2.1. The Environmental Parameter at Manzala Farm

These data were taken from the farm administrator: Oxygen = 3 mg/L, PH = 9.1,
Temp = 33 ◦C, Salinity 1.3 g/L, NH3 = over range (more than 1 mg/L), NH4 = over range
(more than 1 mg/L), Copper = 1.2 mg/L, Hardness = more than 500 mg/L, Iron = 1.3 mg/L,
Nickel = 1.55 mg/L, Phosphates = 2 mg/L, Sulfide = 0.4 mg/L, Nitrite = 0.75mg/L, Zinc
= 0.3 mg/L. All these environmental parameters are above the permissible levels. The
mortality rate was about 10% because of poor storage in ponds and the use of agricultural
drainage water as a resource for pond water.
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2.2. Clinical Signs and Postmortem Examination of Diseased Tilapia

Postmortem examination showed a congested liver with hemorrhage on its surface
and engorged gall bladder with splenic hemorrhage. The kidney was also congested and
enlarged in the case of V. parahaemolyticus (Figure 1a,b), while the clinical signs of naturally
infected fish with Aeromonas were hemorrhagic septicemia in the form of bilateral exoph-
thalmia with gill cover hemorrhage, eye clouding, hemorrhage, surface ulcers, abdominal
distension and massive mortality (Figure 1c,d).
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Figure 1. Clinical signs and postmortem examination of diseased Nile tilapia.

2.3. Prevalence of Comfirmed Isolates of V. parahaemolyticus and A. hydrophila in the Examined
Nile tilapia Based on Biochemical Tests

In this study, the detectable prevalence rates of confirmed isolates of V. parahaemolyticus
and A. hydrophila were 24.8% (62/250) and 19.2% (48/250), respectively (Table 1; Figure 2).

Table 1. Prevalence and molecular identification of confirmed isolates of V. parahaemolyticus and A.
hydrophila in Nile tilapia (n* = 250).

Isolates
Confirmed Isolates Strains Containing tlh

Gene
Strains Containing tdh

and trh Genes

n % n % n %

V. parahaemolyticus 62 24.8 29 46.7 5 17.2

A. hydrophila

Strains contain 16S
rRNA gene

Strains contain aerA and
ahh1 genes

48 19.2 19 39.5 2 10.5
n*: Number of total samples.
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Figure 2. Prevalence and molecular identification of confirmed isolates of V. parahaemolyticus (a) and A. hydrophila (b) in
Nile tilapia.

2.4. Molecular Identification:
2.4.1. Molecular identification of V. parahaemolyticus

Multiplex PCR was performed on the V. parahaemolyticus isolates. It was found that only
29 (46.7%) of the samples contained the thermolabile hemolysin (tlh) gene at 450 bp, and only
5 (17.2%) of the 29 samples contained both the thermostable direct hemolysin (tdh) gene at
269 bp and tdh-related hemolysin (trh) gene at 500 bp (Table 1; Figures 2 and 3).
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Figure 3. Agarose gel electrophoresis of multiplex PCR of trh (500 bp) tlh (450 bp) and tdh (269 bp)
genes of V. parahaemolyticus. Lane M: 100 bp ladder, Lane C+: control positive, Lane C-: Control
negative; Lanes 1, 2, 3, 4, 5 and 6: positive strains for trh genes; Lane 1, 2, 3, 4, 5 and 6: positive strains
for tlh genes; Lanes 1, 3, 4, 5 and 6: positive strains for tdh genes.
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2.4.2. Molecular identification of A. hydrophila

Multiplex PCR was done on the A. hydrophila isolates; to distinguish the presence of
virulence genes, it was found that only 19 (39.5%) samples contained the 16S rRNA gene at
356 bp, and only 2 (10.5%) from 19 samples contained the aerolysin (aerA) gene at 309 bp
and extracellular hemolysin (ahh1) gene at 130 bp (Table 1; Figures 2 and 4).
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2.5. Antibiotic Susceptibility of V. parahaemolyticus and A. hydrophila Positive Strains Confirmed
by Multiplex PCR Assay

An antibiogram sensitivity test was performed on the 29 positive samples of the V.
parahaemolyticus strains, which were confirmed by multiplex PCR. This indicated that V.
parahaemolyticus was highly sensitive to ampicillin and amikacin (65.7%). The intermediate
was exhibited against neomycin (48.4%), cefotaxime (34.4%), sulfamethoxazole, tetracycline
and ciprofloxacin (31.0%). However, a higher resistance pattern varied among the other
tested drugs; the highest resistance (100%) was recorded for cloxacillin, streptomycin and
erythromycin, followed by nalidixic acid (82.7%) (Table 4; Figure 5). On the other hand, A.
hydrophila strains were highly sensitive to gentamycin (84.2%), tetracycline, ciprofloxacin
(68.4%), amikacin, neomycin and kanamycin (52.6%), and demonstrated high resistance to
cloxacillin and erythromycin (100%), followed by cefotaxime and streptomycin (84.2%),
nalidixic acid, sulfamethoxazole and cephalothin (68.4 %) (Table 2; Figure 6).

Table 2. Antibiotic susceptibility of V. parahaemolyticus (n = 29) and A. hydrophila (n = 19).

Antimicrobial Agent

V. parahaemolyticus A. hydrophila

Sensitive Intermediate Resistant Sensitive Intermediate Resistant

n % n % n % n % n % n %

Streptomycin 0 0 0 0 29 100 0 0 3 15.8 16 84.2

Erythromycin 0 0 0 0 29 100 0 0 0 0 19 100

Cloxacillin 0 0 0 0 29 100 0 0 0 0 19 100

Nalidixic Acid 0 0 5 16.7 24 82.7 3 15.8 3 15.8 13 68.4

Cefotaxime 0 0 10 34.4 19 65.5 0 0 0 0 16 84.2

Sulfamethoxazole 5 17.2 9 31.0 15 51.7 6 31.6 0 0 13 68.4

Neomycin 0 0 14 48.3 15 51.7 10 52.6 3 15.8 6 31.6
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Table 2. Cont.

Antimicrobial Agent

V. parahaemolyticus A. hydrophila

Sensitive Intermediate Resistant Sensitive Intermediate Resistant

n % n % n % n % n % n %

Tetracycline 5 17.2 9 31.0 15 51.7 13 68.4 0 0 6 31.6

Cephalothin 9 31.0 5 17.2 15 51.7 3 15.8 3 15.8 13 68.4

Kanamycin 14 48.3 0 0 15 51.7 9 47.4 0 0 10 52.6

Ciprofloxacin 9 31.0 9 31.0 11 37.9 13 68.4 3 15.8 3 15.8

Gentamicin 15 51.7 5 17.2 9 31.0 16 84.2 0 0 3 15.8

Ampicillin 19 65.5 0 0 10 34.5 3 15.8 6 31.6 10 52.6

Amikacin 19 65.7 5 17.2 5 17.2 10 52.6 3 15.8 6 31.6
n: Number of tested positive bacterial strains confirmed by multiplex PCR assay.
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The MAR index values showed multiple resistant patterns, revealing that the MAR
index averages of V. parahaemolyticus and A. hydrophila were 0.587 (Table 3) and 0.586
(Table 4), respectively.

Table 3. Antibiotics resistance profile and MAR index of V. parahaemolyticus isolated from Nile tilapia
(n* = 29).

No. of Tested V.
parahaemolyticus Strains Antimicrobial Resistance Profile MAR

Index

5 S, E, CL, NA, CF, SXT, N, T, CN, K, CP, G, AM, AK 1

4 S, E, CL, NA, CF, SXT, N, T, CN, K, CP, G, AM 0.928

1 S, E, CL, NA, CF, SXT, N, T, CN, K, CP, AM 0.857

1 S, E, CL, NA, CF, SXT, N, T, CN, K, CP 0.785

4 S, E, CL, NA, CF, SXT, N, T, CN, K 0.714

4 S, E, CL, NA, CF 0.357

5 S, E, CL, NA 0.285

4 S, E, CL 0.21

1 S, E 0.142

Average 0.587
n*: total number of V. parahaemolyticus positive samples confirmed by multiplex PCR assay.

Table 4. Antibiotic resistance profile and MAR index of A. hydrophila isolated from Nile tilapia (n* = 19).

No. of Tested A.
hydrophila Strains Antimicrobial Resistance Profile MAR Index

3 E, CL, S, CF, NA, SXT, CN, K, AM, n, T, AK, CP, G 1

3 E, CL, S, CF, NA, SXT, CN, K, AM, N, T, AK 0.857

4 E, CL, S, CF, NA, SXT, CN, K, AM 0.642

3 E, CL, S, CF, NA, SXT, CN 0.5

3 E, CL, S, CF 0.285

3 E, CL 0.214

Average 0.586
n*: total number of A. hydrophila positive samples confirmed by multiplex PCR assay.

3. Discussion

Hadous drainage is the primary water supply for Manzala fish farm, but unfortunately,
it is contaminated by agricultural and industrial activities, especially during rice cultivation
in the summer due to the use of many chemicals, and during canal cleaning in the winter.
Both factors contribute to the pollution of Hadous water sources, putting fish and their
development under stress [39].

Another issue is the abundance of Eichhornia spp., which consumes large quantities
of water containing all the nutrients needed for fish production, leaving the water devoid
of basic plankton species. When these plants die, they decay, producing toxic gasses
such as hydrogen disulfide, as well as some trace elements like copper, iron, phosphorus,
manganese, and nitrogenous compounds, that increase stress on the fish in this farm.
Finally, the fluctuating water level of Hadous drainage throughout the year reflects Manzala
fish-farm water level, contributing to a reduction in the water quality and increasing stress
on the fish in this farm [40].

As a result of the length of the breeding period (about 18 months) and the increase in
the organic matter at the bottom of the pond, there has been a severe decrease in dissolved
oxygen in the water, with an increase in the pH and toxic ammonia in the water that plays
important roles in the multiplication of pathogens leading to diseases of fishes [41–43].
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Typical signs of septicemia, such as deep dermal ulceration, abdominal dropsy, skin
roughness, skin abrasion and protruded hemorrhagic anal opening, have been shown in
the diseased tilapia according to the current research. Postmortem lesions have also been
evident. Furthermore, spleen and liver congestion have been determined. These results are
in agreement with the previously reported work [44,45].

The prevalence of Vibrio was detected by [46] who reported a lower incidence of Vibrio
spp. in cultured Nile tilapia (16.48 %) and a higher prevalence of 98.67% in freshwater
fish [47]. However, other studies reported a comparable prevalence to this study, for
example, a lower prevalence of A. hydrophila (13.2 %) in the isolated Nile tilapia [48] and as
the most prevalent bacterial pathogens (43%) in Nile tilapia in Uganda [49].

An MAR index above 0.2 is a parameter used to reveal the spread of bacterial resistance
in certain population. An MAR index more than 0.2 reveals that the strains of such
bacteria originated from a habitat in which different antibiotics are used and the abuse
of antibiotics in aquatic and environmental systems [50,51]. A high incidence of MAR
is permitted by genetic exchange between MAR pathogens and other bacteria [38]. In
this study, the MAR indices of V. parahaemolyticus and A. hydrophila isolates were 0.587
and 0.586, respectively, revealing that these isolates were derived from samples from
high-risk sources [52]. This is not surprising because the V. parahaemolyticus has shown
100% resistance to tested antibiotics in this research such as streptomycin, erythromycin
and cloxacillin. This finding corroborates the ideas of various researchers [52–56] who
discovered that several V. parahaemolyticus isolates from seafood are resistant to multiple
antibiotics. Another study [56] reported that V. parahaemolyticus recovered from commonly
consumed aquatic products in Shanghai was 75.4% resistant to streptomycin. In contrast,
the A. hydrophila isolates showed multiple resistance to erythromycin, cloxacillin (100%),
streptomycin and cefotaxime (84%). These findings are consistent with a past study [57],
which found A. hydrophila isolates from red hybrid tilapia in Malaysia were multidrug
resistant to cefotaxime, sulfamethoxazole, erythromycin and streptomycin, with an MAR
index of 0.5. Similarly, one study [58] found that the MAR index of A. hydrophila was
between 0.12 to 0.59 and another study [59] found that the MAR index was between
0.243 and 0.457 for Aeromonads isolated from decorative fish farming systems. At the
same time, gentamycin was reported as the most active drug against A. hydrophila (84%),
followed by tetracycline and ciprofloxacin (68.4%); this result is inconsistent with previous
findings [60], which reported the lowest sensitivity to gentamycin (40%) and high resistance
to chloramphenicol and ciprofloxacin (72% and 48%, respectively). Another study reported
that A. hydrophila was highly sensitive to ciprofloxacin and resistant to tetracycline [61].
In contrast, V. parahaemolyticus was sensitive to ampicillin, but these results disagree
with those [62] to have shown that reduced resistance to ampicillin is only found in V.
parahaemolyticus. Differences in sample sources can be explained by changes in the MAR
index [63,64]; antibiotic resistance levels are subject to various selective pressures due to
geographic spread [52] and methodologies [65].

The use of antimicrobials in aquaculture, could impose an impact on the develop-
ment of resistance in human health known as a direct spread of resistance from aquatic
environments to human. Similarly, increasing microbial resistance problems could spread
from country to another, for instant, the export/import of foods like fish and fishery
products [51].

The risk of V. parahaemolyticus in seafood to human health was determined by detecting
the microorganisms, followed by PCR-based detection of the genes that generate the tdh
and trh toxins. About 2.5 percent of 120 seafood samples tested positive for one or both
virulent genes tdh and trh, according to another major study [66]. Although one study
found that shellfish samples tested in Chile were more likely to be positive for tdh, with
85 percent (17/20) of overall tested samples being positive [67]. Furthermore, the tdh and
trh genes were found in 8.16 and 12.24% of fish samples South China, respectively [68].
One study [69] contradicts our results; they approved the occurrence of V. parahaemolyticus
based on PCR with a lower frequency than ours, and about 3% of collected seafood samples
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were positive for tdh and trh virulence genes. Other studies were conducted [70,71] that
approved the occurrence of V. parahaemolyticus at higher frequencies. Various researchers
isolated V. parahaemolyticus from Thai shrimp samples and discovered that these isolates
lacked the tdh and trh virulence genes [72–74].

Manzala Lake is furious with nutrients such as calcium, magnesium, and chlorides;
that are closely related to the number of Aeromonas spp. found in brackish water [40]. A.
hydrophila has gained increased attention because of its pathogenicity to humans and the
widespread prevalence of the organism in the environment, food and water [75]. Traditional
microbiological procedures of Aeromonas spp. from food samples are time consuming. The
polymerase chain reaction technique has been developed to solve these problems [76,77],
and the incidence of A. hydrophila isolated from tilapia investigated. It secretes multiple
virulence parameters, such as aerolysin and α-hemolysin [78]. The detection of the 16S
rRNA gene has contributed to the rapid and accurate characterization of the bacteria [22].
In addition to biochemical tests, the 16S rRNA gene is an essential tool in diagnostic
laboratories for recognizing microbes [79]. In this regard, approximately 39.5% of these
isolates were positive for the 16srRNA gene and 10.5% were positive for the aerA and ahh1
genes. In addition, the aerA and ahh1 virulence genes were present in A. hydrophila, which
was confirmed by applying PCR with a prevalence of approximately 52.6% [80]. Wang et al.
performed multiplex PCR for the recognition of the aerA and ahh1 genes in A. hydrophila
and A. sobria [77]. The virulence range of aeromonads may originate from variations
in the genotypes and phenotypes that are found in the environment. The A. hydrophila
β-hemolysin virulence gene has been isolated from freshwater fish in China [81]. Cloned
β-hemolysin sequences have been used to detect pathogenic A. hydrophila strains [82]. Our
findings are consistent with past research [83], which detected the presence of the aerA
gene in 85% of pathogenic A. hydrophila isolates from fish and pond water, which caused
hemolysis of red blood cells, leading to hemorrhagic signs on fish skin and internal organs
due to the presence of hemolysin and enterotoxigenic properties [75,84]. A negative PCR
result does not prove the absence of the virulence gene, but may result from sequence
differences in the primer binding sites [85]. These findings indicate the importance of
performing biological tests for determining the virulence factors of some strains and
identifying the potential pathogenicity of A. hydrophila due to their possible public health
risks [86]. [37] detected the prevalence of ahh1 and aerA virulence factors with 28% and
68% frequencies of A. hydrophila isolated from fish collected from Damietta governorate in
Egypt. The hemolysin gene was detected in our study with a percentage that is lower than
that reported in previous studies (30–100%) [87], while the aerolysin gene was identified
with a frequency of 68% of the isolates, which is lower than the detected rates that ranged
from 70% to 100% in other studies [88,89]. However, another study reported a lower rate of
66.7% [90]. For instance, in another study, the prevalence of the aerA gene was high (83.3%)
and that of the ahh1 gene was low (16.7%) [91].

4. Materials and Methods
4.1. Farm Information

Manzala lake is an important Egyptian lake according to its size and economic
value [42]. The study area (Manzala fish-farm) includes fifty two ponds in four sections
each consists of thirteen acres, so the total water area production equal about six hundred
seventy six acre. The main water source of this farm is Hadous drainage, that is considered
as the main drainage to Manzala Lake (49% of the drainage from the eastern delta). This
farm is representative of the thousands of farms in Egypt. The volume of production of
this farm is about 1400 tons/year.
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4.2. Fish Sampling

Specimens (n. 250) of Nile tilapia fish were collected from five ponds with constant
environment parameters in all ponds for two weeks.

The fish (Age of fish = 15 months, Length of fish = 15 cm, Weigh of fish = 200–250 gm)
collected from the pond had a breeding time of around 18 months with high organic matter
at the bottom of the pond, and low dissolved oxygen and high pH and toxic ammonia in
the water. The mortality rate was about 10%.

The experiments were done according to the Research Ethics Committee of the Fac-
ulty of Veterinary Medicine, Mansoura. The samples were collected in sterilized sealed
plastic containers, transported to the laboratory in a cold box below 4 ◦C, and analyzed
immediately [92].

4.3. Bacteriological Examination
4.3.1. Preparation of Fish Samples

Five grams of individual fish muscle, under aseptic conditions, was homogenized into
45 mL of 3% NaCl plus 1% alkaline peptone water for V. parahaemolyticus enrichment and
tryptic soya broth for A. enrichment [93], followed by incubation at 37 ◦C for 18 h. for V.
parahaemolyticus and at 37 ◦C for 24 h. for A. hydrophila [94].

4.3.2. Culture Characters

A loop of prepared fish samples was inoculated with TCBS agar was then incubated
at 37 ◦C for 18–24 h [95]. The isolated colonies appeared as green or blue-green colonies
(sucrose negative) according to the power to ferment sucrose [96]. Suspected colonies
were collected and transferred onto a tryptic soya agar slant enriched with 2% NaCl
for further microscopic and biochemical identification. For the isolation of A. hydrophila,
Aeromonas agar base medium (Rayan) supplemented with ampicillin (5 mg/L) (Oxoid)
was used. A loopful from previously incubated enriched samples of fish was inoculated on
an Aeromonas agar base containing ampicillin (Oxoid) and incubated at 37 ◦C for 18–24 h.
The isolated colonies appeared green with black centers. Suspected colonies were picked
and transferred onto tryptic soya agar slants for further microscopic and biochemical
identification [97].

4.3.3. Biochemical Examination

Biochemical identification of bacterial isolates was performed using the method de-
scribed in Bergey’s Manual® of Systematic Bacteriology [98].

The biochemical tests used were cytochrome-oxidase (Oxoid, Denver, USA), catalase
(Al-Goumhoria Co, Cairo, Egypt), oxidation-fermentation medium (O-F) (BioMérieux,
Marcy-l’Étoile, France), glucose gas production and indole tests (Al-Goumhoria Co, Cairo,
Egypt), Esculin hydrolysis (bile esculin agar medium (DifcoTM, California, USA), Voges-
Proskauer tests, arabinose, sucrose, lactose and mannose acid production, lysine decar-
boxylase and arginine dihydrolase and reduction of nitrates. Further identification was
achieved using an analytical profile index (API 20 E system (BioMérieux, Paris, France), as
instructed by the manufacturer.

4.4. Antimicrobial Susceptibility Testing and MAR Index Value

To verify the sensitivity of the test, 14 antimicrobials were used (Table 5). The single
diffusion method was used to evaluate the antimicrobial susceptibility according to [99]
for V. parahaemolyticus and [100] for A. hydrophila, and the results were applied accord-
ing to [101]. The multiple antibiotic resistance (MAR) index for each strain was done
according to the equation stipulated by [83,102,103] as follows: MAR index = number of
resistance/total number of antibiotic.
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Table 5. Antimicrobial discs used for V. parahaemolyticus and A. hydrophila.

Antibiotic Symbol Concentration

Streptomycin S 10 µg

Erythromycin E 15 µg

Cloxacillin CL 5 µg

Nalidixic acid NA 30 µg

Cefotaxime CF 30 µg

Sulfamethoxazole SXT 25 µg

Neomycin N 30 µg

Tetracycline T 30 µg

Cephalothin CN 30 µg

Kanamycin K 30 µg

Ciprofloxacin CP 5 µg

Gentamycin G 10 µg

Ampicillin AM 10 µg

Amikacin AK 25 µg

4.5. Molecular Identification of V. parahaemolyticus and A. hydrophila Virulence Genes
4.5.1. Molecular Identification of A. hydrophila Virulence Genes

Genomic DNA was extracted from A. hydrophila isolates using a DNA extraction
kit (DNeasy kit, Qiagen, USA) following the manufacturer’s guidelines. Multiplex PCR
was performed to detect virulence factors including 16S rRNA, aerA and ahh1 of the A.
hydrophila isolate. The primer sequences and PCR products are illustrated in Table 6. Each
PCR reaction was performed in a total volume of 25 µL containing 12.5 µL of dreamTaq
master mix (Green PCR Master Mix (2X), Thermo Scientific), 1 µL of each primer and 5 µL
of DNA template, and the total volume was completed to 25 µL using DNase/RNase-free
water. The PCR thermal conditions are illustrated in Table 6. The first step was denaturation
at 94 ◦C for 4 min, followed by 35 cycles of denaturation at 94 ◦C for 30 s, annealing for
30 s at the specified temperature according to each gene (57 ◦C for tlh, tdh and trh; 59 ◦C
for 16S rRNA, ahh1 and aerA) and an extension step at 72 ◦C for 30 s. After the end of
the cycles, a final extension step at 72 ◦C for 10 min was added. The integrity of the PCR
products was checked by electrophoresis on 1.5% agarose gels and visualized with a UV
trans-illuminator with a 100-bp DNA ladder (Invitrogen, San Jose, CA, USA), which was
used as the size standard.

4.5.2. Molecular Identification of V. parahaemolyticus Virulence Genes

The amplification was done on a Thermal Cycler (Master Cycler, Eppendorf, Hamburg,
Germany). PCR was done in a 25 mL volume consisting of 0.5 mg of genomic DNA, 0.5 mM
of each of the oligonucleotide primers for tlh, tdh and trh (1.25 mL of each of the primers
from a 20 mM stock suspension), 2.5 mL of a 10_PCR reaction buffer (500 mM Tris-Cl, pH
8.9, 500 mM KCl and 25 mM MgCl2), 0.5 mL 10 mM dNTPs, 1.25 units Taq DNA polymerase
and an appropriate volume of sterile MilliQ water. Amplification of the DNA segment
was performed with the following temperature cycling parameters: initial denaturation at
95 ◦C for 5 min followed by 30 cycles of amplification. Each cycle consisted of denaturation
at 95 ◦C for 1 min, primer annealing at 58 ◦C for 1 min, primer extension at 72 ◦C for 1 min
and a final extension at 72 ◦C for 10 min. Of each amplified product, 10 µL was separated
in 1.5% agarose gel by electrophoresis. The gel was then stained with ethidium bromide
(0.5 mg/mL) and visualized on a UV transilluminator. A 100 bp plus DNA Ladder was
used to determine the fragment sizes.
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Table 6. Primer sets for PCR amplification of the target genes specific for V. parahaemolyticus and
A. hydrophila.

Target Gene Oligonucleotide Sequence (5′ → 3′) Product
Size (bp) References

V. parahaemolyticus

tlh F-5′AAAGCGGATTATGCAGAAGCACTG-′3
R-5′ GCTACTTTCTAGCATTTTCTCTGC-′3 450

[104]tdh F-5′ GTAAAGGTCTCTGACTTTTGGAC ′3
R-5′ TGGAATAGAACCTTCATCTTCACC ′3 269

trh F-5′ TTGGCTTCGATATTTTCAGTATCT ′3
R-5′ CATAACAAACATATGCCCATTTCCG ′3 500

A. hydrophila

16S rRNA F-5′ GGGAGTGCCTTCGGGAATCAGA-′3
R-5′ TCACCGCAACATTCTGATTTG-′3 356

[105]aerA F-5′CAAGAACAAGTTCAAGTGGCCA-′3
R-5′ ACGAAGGTGTGGTTCCAGT-′3 309

ahh1 F-5′ GCCGAGCGCCCAGAAGGTGAGTT-′3
R-5′ GAGCGGCTGGATGCGGTTGT -′3 130

5. Conclusions

Aquaculture in Egypt continues to be a growing, vital and important high-protein, easily
digestible and high-value production sector for livestock. However, disease outbreaks are a
major problem in aquaculture. Environmentally transmitted bacterial pathogens in their hosts
can result in single and combined co-infections that have significant economic impacts on
the aquaculture of Egypt. Antibiotic-resistant V. parahaemolyticus and A. hydrophila isolates in
seafood may pose a danger to human health, and according to this study, adequate control
measures should be implemented to reduce the risk of contamination and avoid antibiotic
resistance. This would reduce the risk of transferring antibiotic-resistant bacteria to the human
population through fish products. Therefore, antibiotic susceptibility should be determined
in broader studies. It is important to promote a focus on alternative non-antibiotic control
strategies for bacterial infections in farmed fish. To fully comprehend bacterial effects on Egyp-
tian fish and human health, characterization of the isolated bacteria, including pathogenicity
studies, is important. Future research should also concentrate on the use of more accurate
methods of bacterial identification in order to identify contaminated seafood.
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