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There is a special role for estrogens in preventing and curing cardiovascular disease in women. Soy isoflavone (SI), a soy-
derived phytoestrogen, has similar chemical structure to endogenous estrogen-estradiol. We investigate to elucidate the protective
mechanism of SI on myocardial ischemia/reperfusion (MI/R) injury. Female SD rats underwent bilateral ovariectomy. One week
later, rats were randomly divided into several groups, sham ovariectomy (control group), ovariectomy with MI/R, or ovariectomy
with sham MI/R. Other ovariectomy rats were given different doses of SI or 17𝛽-estradiol (E

2
). Four weeks later, they were

exposed to 30 minutes of left coronary artery occlusion followed by 6 or 24 hours of reperfusion. SI administration significantly
reduced myocardial infarct size and improved left ventricle function and restored endothelium-dependent relaxation function
of thoracic aortas after MI/R in ovariectomized rats. SI also decreased serum creatine kinase and lactate dehydrogenase activity,
reduced plasma malonaldehyde, and attenuated oxidative stress in the myocardium. Meanwhile, SI increased phosphatidylinositol
3 kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) signal pathway. SI failed to decrease infarct size of hearts with I/R in
ovariectomized rats if PI3K was inhibited. Overall, these results indicated that SI protects myocardial ischemia/reperfusion injury
in ovariectomized rats through increasing PI3K/Akt/eNOS signal pathway and decreasing oxidative stress.

1. Introduction

Several researches have demonstrated that there are gender
differences in the risk of cardiovascular diseases, such as
premenopausal women exhibiting a lower risk than age-
matched men, but it disappears after menopause [1–3]. It
suggests a special role for estrogens in preventing and curing
cardiovascular disease in women. As we all know, estrogen
replacement therapy (ERT) can attenuate the incidence of
cardiovascular events in postmenopausal women [4]. How-
ever, several large-scale, randomized, controlled studies have
questioned the beneficial effects of ERT in postmenopausal

women in many epidemiologic studies [5]. The conflicts
have stimulated further research on alternative treatments,
such as phytoestrogens. Soy isoflavone (SI), a soy-derived
phytoestrogen, is a group of biologically active plant sub-
stances with chemical structures which are similar to that
of an endogenous estrogen-estradiol [6]. The similarity of
structures might partly explain why these compounds have
the ability of binding to estrogen receptors (ERs) and exerting
various effects.

As the development of thrombolytic therapy or percu-
taneous coronary intervention in clinic, the incidence of
myocardial ischemia/reperfusion (MI/R) injury increases. As
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well as we know, MI/R is an important complication of acute
arterial occlusion and subsequent recanalization. Moreover,
in the presence of clinical condition, recanalization is used
as an attempt to minimize the infarct area; however, the
reoxygenation of ischemic heart usually leads to functional
loss on the area ofmyocardial [7–9]. So researchers paidmore
and more attention to reduce I/R injury. Recently, it is also
gradually appreciated that there were distinctions of different
gender on sensitivity and/or severity in ischemia/reperfusion
(I/R) induced injuries in heart, liver, kidney, and so on
[10, 11]. With consistent findings, females are less susceptible
to I/R induced injuries compared with males. 17𝛽-estradiol
was reported to protect against myocardial I/R injury in
female Wistar rats [12]. Meanwhile, some reports indicated
estrogen binding to ER lessened the extent of injury during
MI/R after ovariectomy [13]. Previous studies suggested
that estrogen receptor mediated protective effect on female
MI/R injury was associated with phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (Akt)/endothelial nitric oxide
synthase (eNOS) signaling cascade [14, 15].

On the other hand, reactive oxygen species (ROS), as
highly reactive compounds causing peroxidation of lipids
and proteins, play an important role in the pathogenesis of
MI/R injury [16, 17]. ROS have been long-term recognized to
enhance oxidative stress and activate I𝜅B (inhibitor of NF-
𝜅B)/p-I𝜅B/nuclear factor-𝜅B (NF-𝜅B) pathway, which was
considered as a classic signaling pathway. NF-𝜅B remains
in an inactive state in the cytoplasm in normal station
because of a complexing to its inhibitor-I𝜅B. As response to
stress factors, for example, I/R, different signaling pathways
converge on the activation of I𝜅B kinase complex (IKK),
which induces phosphorylation of the I𝜅B. Paralleling with
the loss of I𝜅B in the cytoplasm is the appearance of NF-𝜅B
in the nucleus [18].

Therefore, the purpose of the present study was to
determine whether SI protects myocardium from I/R injury
through activating PI3K/Akt/eNOS and reducing oxidative
stress pathway. If so, a new ideal would be provided for
postmenopausal I/R injury and even other cardiovascular
diseases in clinic.

2. Materials and Methods

2.1. Animals and Experimental Groups. Animal experiments
were conducted according to theGuidelines ofCommittee for
the Care and Use of Laboratory Animals of Nanjing Medical
University. Female Sprague Dawley (SD) rats (180∼220 g)
were obtained from Beijing Vital River Laboratory Animal
Technology, Co, Ltd (Beijing, China). Rats were anesthetized
with chloral hydrate (3.5mL/kg, intraperitoneal injection)
and underwent bilateral ovariectomy (OVX) as previously
described [19].The sham procedure of ovariectomy consisted
of administration of anesthesia and visualization of the
ovaries through incisions into the abdominal cavity and
closure of the wounds.

One week after ovariectomy, the rats were randomly
divided into eight groups: sham ovariectomy operation (con-
trol group), ovariectomy with sham MI/R (OVS group), or
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Figure 1: Experimental procedure. One week after ovariectomy, rats
were maintained with soy free chow and given different treatments.
Four weeks later, rats were subjected to 30min myocardial ischemia
and 6 h or 24 h reperfusion.

ovariectomy with MI/R (OVX group). Other ovariectomy
rats were given different doses of soy isoflavone (SI) dissolved
in 0.5% carboxymethylcellulose (CMC-Na) by gavage (L-
SI group: 30mg/kg⋅d, M-SI group: 90mg/kg⋅d, H-SI group:
270mg/kg⋅d). Additional ovariectomy rats were adminis-
trated with the same volume of CMC-Na by gavage (CMC
group) or 50 𝜇g/kg⋅d of 17𝛽-estradiol (E

2
) by subcutaneous

injection (OVE group) instead of drug once daily over the
same period. All rats fed soy-free chow (corn starch: 32%,
sucrose: 30%, casein: 23%, corn oil: 5%, cellulose: 5%, mixing
mineral salts: 3.5%, mixing vitamin: 1%, DL-methionine
0.3%, and choline dipl-tartrate: 0.2%) and water ad libitum.
To block the PI3K pathway in vivo, an intraperitoneal
injection of a PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-
1(4H)-benzopyran-4-one hydrochloride (LY294002, Sigma-
Aldrich, MO, USA, diluted in CMC for injection) at dose of
0.3mg/kg was given immediately after SI administration.

2.2. Surgical Procedures of MI/R. After 4-week treatment,
MI/R was performed as described previously [20] (Figure 1).
All rats except control group were anesthetized with sodium
pentobarbital (40mg/kg, intraperitoneal injection). Then,
atropine of 0.1mg/kg was administered to reduce airway
secretions by subcutaneous injection. Intraoperative mon-
itoring of adequate anesthesia was done by toe pinching.
A core body temperature of 37∘C was maintained by auto-
matic heating blanket during surgery. After exposing heart,
myocardial ischemia (MI) was produced by temporarily
exteriorizing the heart via a left thoracic incision and placing
a 6-0 silk suture with a slipknot around the left anterior
descending coronary artery. After 30 minutes of MI, the
slipknot was released and themyocardiumwas reperfused for
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6 hours (only for cardiac function analysis) or 24 hours (for
infarct size determination and other measurements). A sham
operation was subjected to the same surgical interventions
without performing occlusions (OVS group). Blood and
tissue samples were obtained after reperfusion for future
analysis.

2.3. Echocardiography. After 6 hours of reperfusion, cardiac
function was evaluated using an echocardiography system
(Visual Sonics Vevo 2100, VisualSonics, CA) equipped with
a 12-MHz linear-array transducer. Two-dimensional (2D)
images were obtained in the parasternal long axis view.
Left ventricular (LV) ejection fraction (EF) and fractional
shortening (FS) were derived by goal-directed, diagnosti-
cally driven software. All measurements were made by one
observer who was blinded to the identity of the treatments.
The values were averaged over five consecutive cardiac cycles.

2.4. Determination of Myocardial Infarct Size. Myocardial
infarct size was determined by Evans blue/triphenyltetra-
zolium chloride (TTC) staining. Briefly, the hearts were
removed and perfused with saline on a Langendorff system
to wash blood from the coronary vasculature, followed by
staining with 1.5% Evans blue to determine the area at risk.
The heart was sliced horizontally into five slices with similar
thickness. The slices were incubated in 1.2% TTC prepared
with Tris Buffered Saline (TBS, pH 7.8) for 15min at 37∘C.
Then, viable nonischemic myocardium stained blue with
Evans blue staining, while ischemic but viable myocardium
stained red with TTC and necrotic myocardium stained pale
white. The infarct area (white) and the area at risk (red plus
white) from each section were determined using an Alpha
EaseFC image analyzer (Alpha Innotech Corporation. CA,
USA). Ratios of risk area to left ventricle (RA/LV) and infarct
area to risk area (IA/RA) were calculated as percentages.

2.5. Vascular Relaxation Responses. The thoracic aorta from
rat was dissected out and carefully removed from adher-
ing adipose and connective tissues. Vessels were then cut
into approximately 4mm ring segments with special care
to reserve the endothelium and mounted into an organ
bath (DMT, A/S Inc., Denmark) filled with Krebs solution
(composition in mmol/L: NaCl 119, KCl 4.7, KH

2
PO
4
1.18,

MgSO
4
1.17, NaHCO

3
25, CaCl

2
2.5, EDTA 0.026, and glucose

5.5, pH 7.4) at 37∘C with 95% O
2
and 5% CO

2
. The rings

were attached to a force transducer and a resting tension
of 9.8mN was maintained throughout the experiment. For
endothelium-dependent relaxation responses, vessel rings
were preconstricted with noradrenaline (NE, Jinrao amino
acid company, Tianjin, China) of 10−7mol/L. After the plateau
was attained, the rings were exposed to different concentra-
tions of acetylcholine (ACh, 10−9mol/L to 10−5mol/L, Sigma,
USA) to obtain cumulative concentration-response curves.

2.6. Measurement of Serum Creatine Kinase (CK), Lac-
tate Dehydrogenase (LDH), Estradiol, and Plasma Malondi-
aldehyde (MDA). Blood samples were collected from the
right carotid artery. After centrifuging at 1000 g for 15min,

the supernatant was obtained for various assays. Serum
CK and LDH as well as plasma MDA levels were assessed
according to the manufacturer’s instructions by using com-
mercially available kits (Jiancheng Biochemistry Co. Ltd.,
Nanjing, China). Serum estradiol levels were estimated by
radioimmunoassay kit (Beijing North Institute of Biological
Technology). Eachmeasurement was performed in duplicate.

2.7. Western Blotting. Briefly, left ventricle of cardiac tissue
was homogenized with a homogenizer in TBS buffer and
then centrifuged at 8000 bpm for 5min at 4∘C. Precipitation
was homogenized in tissue lysis buffer (NaCl 150mmol/L;
TRIS 25mmol/L; NaF 50mmol/L; Na

3
VO
4

1.0mmol/L;
phenylmethylsulfonyl fluoride 1.0mg/L; aprotinin 1.0mg/L;
leupeptin 10mg/L; pH 7.6) and then placed on ice for 50min.
After centrifugation at 12,000 bpm for 10min at 4∘C, the
supernatants were removed and stored at −80∘C. Protein
concentrations were determined by the BCA method (Pierce
Chemical, USA).

Prestained protein marker (New England Biolabs Ltd,
Ontario, Canada) and 60 𝜇g protein samples were separated
by 8% or 10% SDS-PAGE. The separated protein was trans-
ferred onto a 0.45 𝜇M polyvinylidene fluoride membrane
(Millipore, USA). After blocking at room temperature in
TBS containing 0.2% Tween 20 (TBS-T) and 5% nonfat dry
milk for 2 h, the membrane was incubated with P85𝛼 (rabbit
monoclonal, 1 : 1000, Cell Signaling Technology Inc., MA,
USA), anti-phosphorylation-Akt (Ser473) (rabbit polyclonal,
1 : 2000, Cell Signaling Technology Inc. MA, USA), anti-Akt
(rabbit polyclonal, 1 : 1000, Cell Signaling Technology Inc.,
MA, USA), anti-phosphorylation -eNOS (Ser1177) (rabbit
polyclonal, 1 : 5000, Cell Signaling Technology Inc., MA,
USA), anti-eNOS (mouse polyclonal, 1 : 2000, BD Biotech-
nology Inc., USA), anti-iNOS (rabbit polyclonal, 1 : 5000,
Bioworld Technology Inc., MD, USA), anti-I𝜅B𝛼 (rabbit
polyclonal, 1 : 5000, Stanza Cruz Biotechnology Inc., CA,
USA), 𝛽-actin (mouse monoclonal, 1 : 4000, Sigma-Aldrich,
MO, USA), or GAPDH (mouse monoclonal, 1 : 6000, Kang
Cheng, China) in blocking buffer at 4∘C overnight. Mem-
branes were then washed 3 times in TBS-T buffer, fol-
lowed by incubation with 1 : 6000 dilutions of horseradish-
peroxidase-conjugated anti-rabbit IgG or 1 : 4000 dilutions
of horseradish-peroxidase-conjugated goat anti-mouse IgG
(Santa Cruz Biotechnology, CA, USA) at room temperature
for 2 h and washing 3 times in TBS-T. Visualization was
carried out using anEnhancedChemiluminescence (ECL) kit
(Thermo Fisher Scientific Inc., IL, USA).

2.8. Measurement of Superoxide Anion Formation. Hearts
or 4mm vessel rings of thoracic aorta removed from rats
were immediately frozen in Tissue-Tek OCT embedding
medium (Sakura Finetek, Tokyo, Japan). Then, the samples
were cut into 5-𝜇m-thick sections and placed on glass slides.
Dihydroethidium (DHE, 2𝜇M, Beyotime, China), topically
applied to each tissue section,was used to evaluate superoxide
levels in situ. After the slides were incubated in a dark cham-
ber at 37∘C for 30min, DHE fluorescences were observed by
fluorescence microscope (Olympus, Japan).
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Table 1: Level of body weight, uterus weight, and serum estradiol
after MI/R.

Body weight (g) Uterus weight (g) Serum estradiol
(pg/mL)

Control 269.0 ± 11.0 0.744 ± 0.062 502.2 ± 31.5
OVS 329.8 ± 15.1&& 0.162 ± 0.011&& 194.4 ± 25.0&&

OVX 333.9 ± 12.3 0.157 ± 0.009 197.5 ± 23.8
CMC 328.8 ± 11.4 0.171 ± 0.018 197.3 ± 21.2
L-SI 302.6 ± 8.1 0.1953 ± 0.02684 274.8 ± 22.4
M-SI 288.6 ± 10.3# 0.2307 ± 0.03062 300.5 ± 21.1
H-SI 276.0 ± 8.3## 0.3448 ± 0.03841# 341.4 ± 25.1##

OVE 263.0 ± 7.5## 0.7432 ± 0.07498## 471.9 ± 42.5##

Values are mean ± SEM, 𝑛 = 5–8. Statistical significance: &&
𝑃 < 0.01

compared with control; #𝑃 < 0.05, ##𝑃 < 0.01 compared with CMC.

2.9. Statistical Analysis. All data are expressed as mean ±
SEM deviation and were analyzed by 1-way ANOVA followed
by the Bonferroni post host test as appropriate (Stata13.0
software). Values of 𝑃 < 0.05 were considered statistically
significant.

3. Results

3.1. Effect of SI on Uterus Weight, Body Weight, and Serum
Levels of Estradiol inOvariectomizedRats. After ovariectomy,
body weight increased significantly, which was consistent
to the fact that higher body weight was in postmenopausal
women [21]. Rats with SI (90mg/kg⋅d and 270mg/kg⋅d) or
E
2
(50 𝜇g/kg⋅d) administration show significant reduction in

body weight. Uterine weight, used as a bioassay for estrogens
[22], was measured after 4-week treatment (Table 1). Uterus
of lighter weight and lower concentration of E

2
were present

after ovariectomy, which suggested that ovariectomy elicited
estradiol deficiency and uterine atrophy (Table 1). After
4-week treatment, SI (270mg/kg⋅d, H-SI group) and 17𝛽-
estradiol (50𝜇g/kg⋅d, OVE group) administration increased
estradiol level and uterus weight compared with CMC group
(Table 1).

3.2. SI Improved Cardiac Function of Hearts with I/R in
Ovariectomized Rats. According to the representative 2D
echocardiographs after 6 h perfusion (Figure 2(a)), ejection
fraction (EF) and fractional shortening (FS) decreased in
OVX and CMC group compared with OVS group. There
was an improvement in EF and FS in M-SI and H-SI group
compared with CMC group, which reached the level in OVE
group (Figures 2(b) and 2(c)).

3.3. SI Decreased the Infarct Size of Hearts with I/R in
Ovariectomized Rats. Compared with OVS group, myocar-
dial infarction size was greater in OVX group, suggesting
that 30min ischemia followed by 24 h reperfusion resulted in
significant myocardium infarct. The infarction size (IS)/AR
was significantly smaller in M-SI group and H-SI group than
that in CMC group, which was similar to the level of OVE

group, suggesting that SI plays a protective role in the heat
during I/R in ovariectomized rats (Figure 3).

3.4. SI Decreased Serum CK and LDH after I/R in Ovariec-
tomized Rats. Serum CK and LDH activity was evaluated to
assess the extent of myocardial injury after I/R [23, 24]. A
significant increase in CK and LDH activity was observed in
OVX and CMC group compared with the OVS group. After
4-week treatment, there were lower levels of CK andMDA in
M-SI and H-SI group compared with the CMC-treated rats,
which reached the level in OVE group (Figure 4).

3.5. SI Upregulated Myocardial PI3K/Akt/eNOS Pathway
during I/R in Ovariectomized Rats. To elucidate the pro-
tective mechanism of SI on myocardial I/R, expressions
of PI3K/Akt/eNOS signaling molecules were determined
in myocardium. The ovariectomized rats subjected to I/R
demonstrated a significant decrease in protein expression of
p85𝛼, phosphorylation of Akt (Ser473), and eNOS (Ser1177)
compared with OVS group. After 4-week treatment, there
were great increases of above protein expressions in M-SI
andH-SI groups comparedwith the CMC-treated rats, which
reached the level in OVE group (Figure 5).

3.6. SI Attenuated Oxidative Stress in Myocardium after I/R
Injury in Ovariectomized Rats. Level of ROS reflected by
the intensity of DHE fluorescence was much higher in the
myocardium of OVX group compared with OVS groups.
Four-week treatment with SI significantly reduced ROS pro-
duction in the myocardium compared with the CMC-treated
rats, which was similar to that in OVE group (Figure 6(a)).
There was also a significant increase in plasmaMDA in OVX
andCMCgroup comparedwith theOVS group. After 4-week
treatment, there were lower levels of MDA in M-SI and H-SI
groups compared with CMC group, which reached the level
in OVE group (Figure 6(b)).

3.7. SI Inhibited iNOS but Enhanced I𝜅B𝛼 Expression in
Myocardium after I/R Injury in Ovariectomized Rats. There
was higher expression of iNOS in OVX group compared
with OVS group, and SI treatment significantly decreased
it (Figure 6(c)). Meanwhile, the protein of I𝜅B𝛼 displayed
opposite changes. There was lower expression of I𝜅B𝛼 in
OVX group compared with OVS group, and SI treatment
significantly enhanced it, which reached the level in OVE
group (Figure 6(d)). All of these results suggested that SI
attenuatedmyocardial oxidative damage after myocardial I/R
injury in ovariectomized rats.

3.8. SI Improved the Endothelium-Dependent Relaxation
of Thoracic Aortas in Ovariectomized Rats. Endothelium-
dependent relaxation of thoracic aortas to acetylcholine was
remarkably impaired in ovariectomized rats after I/R injury
compared with OVS group (Figure 7(a)). After four-week
treatment, SI treated rats showed significant improvement of
endothelium-dependent relaxation of thoracic aorta, which
was similar to the effect of estradiol in ovariectomized rats
(Figure 7(b)).
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Figure 2: SI improved cardiac function after I/R in ovariectomized rats. (a) Representative echocardiography in each group after 6 h perfusion.
(b) Ejection fraction after 6 h perfusion. (c) Fractional shortening after 6 h perfusion. Plots represent the mean ± SEM, 𝑛 = 4–6. Statistical
significance: ∗∗𝑃 < 0.01 compared with OVS; #𝑃 < 0.05, ##𝑃 < 0.01 compared with CMC.

3.9. SI Attenuated Oxidative Stress inThoracic Aortas after I/R
Injury in Ovariectomized Rats. Level of ROS reflected by the
intensity of DHE fluorescence was much higher in thoracic
aortas of OVX group compared with OVS groups. Four-week
treatment with SI significantly reduced ROS production in
thoracic aortas, which was similar to that in OVE group
(Figure 7(c)).

3.10. SI Suppressed iNOS but Elevated I𝜅B𝛼 and PI3K/Akt/
eNOS Expression in Thoracic Aortas after I/R Injury in
OvariectomizedRats. After treatment, SImarkedly decreased
iNOS expression but increased expression of I𝜅B𝛼 and p85𝛼
and phosphorylation of Akt and eNOS in thoracic aortas
(Figures 7(d)–7(h)). Combined with the above results, it was
indicated that the improved function of thoracic aortas by
SI may be related with inhibition of oxidative stress and
improvement of PI3K/Akt/eNOS signaling pathway.

3.11. SI Failed to Decrease the Infarct Size of Hearts with I/R
in Ovariectomized Rats If PI3K Was Inhibited. LY294002,
a specific inhibitor of the PI3K/Akt pathway, was used to
further demonstrate whether PI3K/Akt/eNOS pathway was
essential in the attenuating effect of infarct size with I/R in

ovariectomized rats. It is worth noting that SI during I/R in
ovariectomized rats was not able to reduce the infarction size
if PI3K inhibitor was administrated (Figure 8).

4. Discussion

As well as we know, after menopause, cardiovascular risk
among women becomes progressive because of decreased
levels of estrogens [25, 26]. Estrogen actions are essentially
mediated by binding to estrogen receptors [27]. Isoflavone,
with similar structure to estrogen, also acts on estrogen recep-
tor to influence the cardiovascular system [28]. Myocardial
I/R injury occurs following partial or complete cessation
of blood circulation to the myocardium. Since Jennings et
al. first described the phenomenon of MI/R injury in 1960
[29], previous researches have been trended to illuminate the
mechanisms of MI/R injury and to investigate interventions
on cardioprotection [30]. Despite the fact that increasing
knowledge has been studied on the protection of MI/R, none
of the experimental interventions has proved to be effective in
the clinic [31]. All of these highlight the fact that MI/R injury
is a complex pathological condition. An effective clinical
therapy for MI/R remains a great challenge.
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Figure 3: SI decreased MI size after I/R in ovariectomized rats. (a) Representative staining of heart by Evans blue/triphenyltetrazolium
chloride (TTC) after 24 h perfusion. Evans blue-stained areas (blue) indicate nonischemic/reperfused area; TTC stained areas (red staining)
indicate ischemic but viable tissue; Evans blue/TTC staining negative areas (white staining) indicate infarcted myocardium; red staining plus
white staining indicates area at risk (AR). (b) Ratio of area at risk (AR)/left ventricle (LV) in each group after 24 h perfusion. (c) Ratio of area
of infarction size (IS)/AR after 24 h perfusion. Plots represent the mean ± SEM, 𝑛 = 3–5. Statistical significance: ∗∗𝑃 < 0.01, compared with
OVS; ##𝑃 < 0.01 compared with CMC.
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Figure 4: SI decreased serum CK and LDH activity after I/R in ovariectomized rats. (a) Level of serum CK activity. (b) Level of serum LDH
activity after 24 h perfusion. Plots represent the mean ± SEM, 𝑛 = 4–6. Statistical significance: ∗∗𝑃 < 0.01 compared with OVS; #𝑃 < 0.05,
##
𝑃 < 0.01 compared with CMC.

Several studies have showed that there were apparent
gender differences of risk of cardiovascular diseases between
men and women [32–34].This difference might be attributed
to the loss of female sex steroid hormones after menopause,
but the biological explanations for gender differences in
cardiovascular diseases, including myocardial I/R injury, are
more complex. In our study, serum estradiol concentration
and uterine weight decreased but body weight increased in

ovariectomized rats, which imitate the menopause situation
in women. Recent studies indicate that sex steroid hormones
and their receptors are critical determinants of cardiovascular
gender differences [35]. Some other research has focused
on the effects of estrogen and estrogen receptors on car-
diovascular physiology and disease [36]. Isoflavone, as an
analog to estrogen, may act on estrogen receptors [37] and
might have potential protection to cardiovascular diseases in
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Figure 5: SI increased myocardial PI3K/Akt/eNOS pathway during I/R in ovariectomized rats. Expression of p85𝛼 (a), phosphorylation of
Akt (Ser473) (b), and eNOS (Ser1177) (c) with western blotting after 24 h perfusion. Plots represent the mean ± SEM, 𝑛 = 5-6. Statistical
significance: ∗∗𝑃 < 0.01, compared with OVS; #𝑃 < 0.05, ##𝑃 < 0.01 compared with CMC.

postclimacteric women [38]. A randomized, cross-over soy
isoflavone feeding study in 12 healthy premenopausal women
for about 100 days found that SI decreased estrogen synthesis
[39]. However, our present study suggested that SI adminis-
trated for 4 weeks increased serum estradiol level. The dis-
crepancy may be attributed to different treatment durations,
different models, different ages, and different methods of
measurement or a combination of these factors. Detailed
mechanism should be investigated in further studies.

It has been proposed that ROS cause oxidative damage
to a variety of cellular components and play an important
role in the etiology of MI/R injury [40, 41]. Tissue injury
mediated by oxygen-derived free radicals might be due to
the activation of lipid peroxidation in cellular and subcellular
membranes. Lipid peroxides are unstable and decompose
to form a series of compounds including reactive carbonyl
compounds [42]. Polyunsaturated fatty acid peroxides are

able to generate MDA, which is an indicator of lipid per-
oxidation [43]. Previous study has reported that I/R injury
could partly be prevented by a ROS scavenger [44]. After
MI/R injury, MDA production was increased compared with
sham group but isoflavone restored them. Our study also
found that isoflavone decreased DHE fluorescence intension
and expression of iNOS but increased I𝜅B𝛼 expression after
isoflavone treatment. These findings suggested administra-
tion of isoflavone for four weeks before I/R appeared to pro-
vide obvious antioxidant effects for attenuating intracellular
ROS generation in the myocardium. Accordingly, isoflavone
enhanced the cardiac function after MI/R in our research,
which might be beneficial to protect cardiovascular function
in clinic after menopause.

Previous studies have shown conflicting results on the
role of ROS on infarct size. A number of studies find that
antioxidants or scavengers reduce infarct size during I/R
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Figure 6: SI decreased myocardial oxidative stress and iNOS expression but increased I𝜅B𝛼 expression after I/R injury in ovariectomized
rats. (a) Dihydroethidium (DHE) fluorescence staining of myocardium. (b) Lever of plasma MDA. ((c) and (d)) Expression of iNOS (c) and
I𝜅B𝛼 (d) in myocardiumwith western blotting after 24 h perfusion. Plots represent the mean ± SEM, 𝑛 = 6. Statistical significance: ∗𝑃 < 0.05,
∗∗
𝑃 < 0.01 compared with OVS; #𝑃 < 0.05 compared with CMC.
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Figure 7: Continued.
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Figure 7: SI improved endothelium-dependent vasorelaxation, decreased oxidative stress and iNOS expression, and increased I𝜅B𝛼
expression and PI3K/Akt/eNOS phosphyration in thoracic aorta in ovariectomized rats. (a and b) Endothelium-dependent vasorelaxation
to acetylcholine of precontracted aortic sections was assessed. (c) Dihydroethidium (DHE) fluorescence staining of thoracic aorta. ((d)–(h))
Expression of iNOS (d), I𝜅B𝛼 (e), and p85𝛼 (f), phosphorylation of Akt (Ser473) (g) and eNOS (Ser1177) (h) in thoracic aorta with western
blotting after 24 h perfusion. Plots represent the mean ± SEM, 𝑛 = 5–7. Statistical significance: ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 compared with OVS;
#
𝑃 < 0.05, ##𝑃 < 0.01 compared with CMC.

[45, 46], while some other studies find no reduction in infarct
size [47, 48]. And some reports suggested that antioxidants
could only delay but not prevent manifestations of infarction
[49]. These nonconsistent findings may be attributable to the
difference in disease courses and drug species or doses. In our
study,we found that isoflavone reduced infarct size afterMI/R
injury in ovariectomized rats accompanied with decreased
level of oxidative stress.

On the other hand, a number of recent studies have indi-
cated that “ischemia/reperfusion injury salvage,” including
PI3K and Akt activation, played a vital role in the process
of myocardium I/R [50, 51]. As is reported, one of the major
targets of Akt is eNOS, which catalyzes L-arginine to produce
nitric oxide (NO) and is pivotal to the cardioprotection in

myocardium I/R injury [52]. In our study, we found that
expression of P85𝛼, phosphorylation of Akt (Ser473), and
eNOS (Ser1177) decreased significantly in ovariectomized
rats after MI/R injury. After isoflavone treatment, the protein
expressions of PI3K/Akt/eNOS signal pathway increased,
which might accelerate intracellular signaling transduction
and are attributed to a marked anti-I/R injury effect. More
importantly, upregulation of PI3KAkt/eNOS signal pathway
induced by adequate doses of isoflavone was similar to that
induced by 17𝛽-estradiol supplementary. This action might
be responsible for the uniform estrogen receptor, which can
activate PI3K related signaling [53, 54]. It is worth noting
that the attenuating effect of SI was unavailable during
I/R in ovariectomized rats if LY294002 was administrated.
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Figure 8: SI failed to decrease the infarct size of hearts with I/R in ovariectomized rats if PI3K was inhibited. One week after ovariectomy,
the female SD rats were given 0.5% CMC (CMC group) or SI of 270mg/kg⋅d by gavage (SI group). LY294002 (a specific PI3K inhibitor) at
dose of 0.3mg/kg was intraperitoneally injected immediately after SI was given (SI + LY294002 group). (a) Representative staining of heart
by Evans blue/TTC after 24 h perfusion. (b) Ratio of area at risk (AR)/left ventricle (LV) in each group after 24 h perfusion. (c) Ratio of area
of infarction size (IS)/AR after 24 h perfusion. Plots represent the mean ± SEM, 𝑛 = 4. Statistical significance: ##𝑃 < 0.01, compared with
CMC; $$𝑃 < 0.01 compared with SI.

These data suggested that soy isoflavone protects myocar-
dial I/R injury via a PI3K dependent pathway. Meanwhile,
inducible NOS (iNOS) and enhanced oxidative stress result
in NO uncoupling, and loss of I𝜅B elevates inflamma-
tion. Both of them exacerbate MI/R injury [18, 55]. And
isoflavone inhibited iNOS and but enhanced I𝜅B𝛼 expression
in myocardium after I/R injury.

More intriguingly, cardiac I/R causes not onlymyocardial
but also vascular injury [56]. It has also been proposed
that reperfusion induced endothelial dysfunction, charac-
terized by decreased endothelium-dependent vasodilatation
[57]. Studies have displayed a potential role of ROS in
endothelial dysfunction [58, 59]. And we found that there
was serious oxidative stress in thoracic aortas after I/R
injury in ovariectomized rat, which might be an important
factor to impair the vascular endothelium.Chronic isoflavone
treatment improved endothelium-dependent vasodilation in
ovariectomized rats, whichmight be related to the attenuated
effect on oxidative levels. Similar to the effect onmyocardium,
isoflavone also increased PI3K/Akt/eNOS signal pathway and
inhibited iNOS but enhanced I𝜅B𝛼 expression in thoracic
aortas, all of which are helpful to protect vascular functions.

In conclusion, although previous studies have reported
beneficial effects of estrogen supplement on women’s cardio-
vascular function, to our knowledge, our data first showed
that isoflavone could evoke an enhanced improvement on
myocardial I/R injury and vascular relaxation during I/R.
This actionwas shown to be related to the strengthened action
of PI3K/Akt/eNOS pathway and attenuated oxidative stress.
In brief, our studymight raise a possible potential therapeutic
of isoflavone for postmenopausal I/R injury and even other
cardiovascular diseases in clinic.
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