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Abstract

Background: White matter disruption has been suggested as one of anatomical features associated with Alzheimer’s
disease (AD). Diffusion tensor imaging (DTI), which has been widely used in AD studies, obtains new insights into the white
matter structure.

Methods: We introduced surface-based geometric models of the deep white matter tracts extracted from DTI, allowing the
characterization of their shape variations relative to an atlas as well as fractional anisotropy (FA) variations on the atlas
surface through large deformation diffeomorphic metric mapping (LDDMM). We applied it to assess local shapes and FA
variations of twenty-three deep white matter tracts in 13 patients with AD and 19 healthy control subjects.

Results: Our results showed regionally-specific shape abnormalities and FA reduction in the cingulum tract and the sagittal
stratum tract in AD, suggesting that disruption in the white matter tracts near the temporal lobe may represent the
secondary consequence of the medial temporal lobe pathology in AD. Moreover, the regionally-specific patterns of FA and
shape of the white matter tracts were shown to be of sufficient sensitivity to robustly differentiate patients with AD from
healthy comparison controls when compared with the mean FA and volumes within the regions of the white matter tracts.
Finally, greater FA or deformation abnormalities of the white matter tracts were associated with lower MMSE scores.

Conclusion: The regionally-specific shape and FA patterns could be potential imaging markers for differentiating AD from
normal aging.
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Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging

(MRI) technique that enables the measurement of the restricted

diffusion of water in tissue. DTI has been widely applied in studies

of Alzheimer’s disease (AD) to obtain new insights into the tissue

structure of brain white matter, including quantitative measure-

ments of tissue properties such as diffusivity and fractional

anisotropy (FA) derived from diffusion tensor [1,2,3,4,5,6]. A

number of studies have reported reduced FA and increased

diffusivity in patients with AD in the fornix [5] and the cingulum

bundle [1,2,3,4,5,6]. Most of these studies have been limited to

measurements of contrasts such as diffusivity and FA using manual

region-of-interest (ROI) or voxel-based analysis. Evidence that

shape analysis on gray matter structures (e.g. the hippocampus)

distinguished patients with AD from healthy control subjects

[7,8,9] suggests that geometric shapes of the white matter tracts

may also give insights of the disease. Nevertheless, it is still

challenging to study the geometry (such as shape) of the white

matter tracts revealed by DTI and its relationship with AD

because of difficulties in quantifying specific white matter

structures visualized by the DTI acquisition. Therefore, this paper

focused on surface models of shapes and FA of deep white matter

tracts and identified their relationship with AD.

Adapting voxel-based morphometry used in structural MRI

[10], the voxel-based analysis of DTI serves as an exploratory

analysis to make statistical inferences about differences in diffusion

properties of brain tissues in an atlas coordinate system. It first

spatially normalizes the images of individual subjects (such as FA,

T1 or T2) to an atlas’ whole brain space where spatial smoothing

and voxel-by-voxel statistical testing are then performed. Recent

registration algorithms specialized for DTI have been developed

and have shown to improve structural alignment when considering

the tensor structure of DTI [11,12,13,14,15]. Voxel-based analysis
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in DTI has been widely used to identify FA and diffusivity

abnormalities in a variety of clinical studies. Nevertheless, there is

the need for spatial smoothing which makes localization of

abnormalities challenging to interpret in terms of the white matter

tracts. To address this issue, researchers [16,17,18,19] character-

ized FA or diffusivity as functions indexed over manifolds such as

curves, medial surfaces representative of the overall geometry of a

white matter tract, and skeleton of the white matter. These

demonstrated the potential for increased sensitivity in statistical

analysis using geometrical models of the white matter tracts and

tract-based analysis.

In this study, we followed the idea of the tract-based analysis

and introduced the surface representation of twenty three deep

white matter tracts that were defined based on Mori’s white

matter atlas [20]. We chose these deep white matter structures

because they are reliably delineated from DTI and some of

them are adjacent to gray matter structures (e.g., hippocampus)

with anatomical abnormalities in AD. Perhaps, gray matter

abnormalities could influence adjacent white matter structures

during AD process. Using advanced brain mapping techniques,

large deformation diffeomorphic metric mapping (LDDMM)

[21,22], the surface model of the white matter tracts was

automatically constructed by transforming the shape of the

atlas white matter tracts to individual subjects through a flow of

diffeomorphisms. This surface model facilitated the study on

local shape and FA variations of the white matter tracts. Given

the important role of the hippocampal shape in distinguishing

patients with AD from healthy control subjects, we expect that

the white matter tracts connecting the hippocampus to the rest

of the brain, such as the cingulum tract, would show regionally-

specific shape abnormalities in AD. Additionally, we also

expect regionally-specific pattern of FA reduction in AD as

measurement of white matter tissue disruption. Compared with

traditional ROI-based volumetric and mean FA analysis on the

white matter tracts, the regionally-specific pattern of FA

reduction and shape abnormalities would potentially increase

statistical power for differentiating AD from healthy aging,

which would be beneficial to clinical diagnosis.

Results

We applied the surface-based analysis for assessing shape

abnormalities of the deep white matter tracts in 19 normal

comparison subjects and in 13 subjects with AD (Table 1). Shown

in Figure 1 are examples of the white matter tracts extracted from

the DT images of a healthy elderly (top row) and a patient with

AD (bottom row) according to anatomical definitions given in

Figure 2. Volume and surface representations are respectively

shown in the left and right columns. Visually, the extracted deep

white matter tracts clearly include the region with high FA. The

enlarged lateral ventricles in the patient with AD did not influence

the extraction accuracy of the commissural tract and other

surrounding white matter tracts. The accuracy of this atlas-based

diffeomorphic segmentation for extracting the white matter tracts

has been validated using 237 manually labeled landmarks in the

DT images of 13 AD patients and 18 healthy elderly subjects [21].

These DT images were a subset of the images used in this study.

The landmarks were placed at the boundary of the white matter

tracts [20]. In the healthy control subjects, 80% of deformed

landmarks had distance to the manually labeled landmarks less

than 2.2 mm (DTI resolution), while in the AD patients, 70% of

deformed landmarks had distance to the manually labeled

landmarks less than 2.2 mm (Figure 7 in [21]). The test-retest

reliability of the landmark placement was 1.5860.60mm,

suggesting that the segmentation quality approached the accuracy

of this measurement.

2.1 Volumes and Shapes of the White Matter Tracts
In traditional volumetric analysis, we examined group differ-

ences in the volume of each white matter tract between the healthy

control subjects and the patients with AD using linear regression.

After controlling the total intracranial volume, left cingulum in the

hippocampus (CgH) showed significant white matter loss in AD

(uncorrected p-value: p = 0.0111). But this did not hold up using

Bonferroni correction for multiple comparisons at a significance

level of 0.05 (p-value threshold = 0.05/23 = 0.0022). No group

difference was found in the other white matter tracts. Using left

CgH volume as feature, LDA leave-one-out cross validation

yielded a classification accuracy rate of 65.6% (specificity: 78.9%;

sensitivity: 46.2%) and F-score of 0.732.

Figure 3(b) illustrates the average difference in the surface

deformation maps between the groups of healthy controls and

patients with AD. Regions with negative values are compressed

in the AD group, while regions in positive values are expanded.

After controlling for the total intracranial volume, linear

regressions found pronounced regionally-specific shape abnor-

malities of the deep white matter tracts in patients with AD

when compared with the healthy controls (Figure 3(c)). Permu-

tation tests confirmed the overall significance of p = 0.0195.

Compared with the healthy controls, the shape compression in

the patients with AD occurs in bilateral sagittal stratum tract

(SS), anterior corona radiata (CR), and cingulum in the

hippocampus (CgH). The shape compression also occurs in

left anterior external capsule (EC) and right superior longitu-

dinal fasciculus (SLF). Moreover, the shape expansion in the

patients with AD occurs in the posterior of the commissural

tract (CC), which well corresponds to the expansion of the

lateral ventricles in AD. When considering the deformation map

as whole, only the 2nd PC showed significant difference in the

shapes of the white matter tracts between the control subjects

and the patients with AD (p = 0.0002). Using it as feature, LDA

leave-one-out cross validation yielded a classification accuracy

rate of 81.3% (specificity: 89.5%; sensitivity: 69.2%) and F-score

of 0.850.

2.2 Mean FA and FA map of the White Matter Tracts
In traditional ROI-based analysis, mean FA values were

computed within the ROIs of individual white matter tracts.

Compared with healthy control subjects, patients with AD showed

reduction of mean FA values in bilateral fornix (uncorrected p-

values, left: p = 0.0184; right: p = 0.0040), left corona radiata

(uncorrected p-value, p = 0.0458), right limb of internal capsule

(uncorrected p-value, p = 0.0030), right external capsule (uncor-

rected p-value, p = 0.0110). But these findings did not hold up

Table 1. Demographic and clinical information.

CON AD

N 19 13

Age (SD) 76.5 (5.5) 73.5 (6.7)

MMSE 28.8 21.9

CDR-SB (SD) 0 (0) 5.77 (2.19)

Key: SD — standard deviation; CON — healthy controls; AD — Alzheimer’s
disease; MMSE — mini-mental state examination; CDR-SB — Clinical Dementia
Rating-Sum of Boxes.
doi:10.1371/journal.pone.0009811.t001

Shape of White Matter Tracts

PLoS ONE | www.plosone.org 2 March 2010 | Volume 5 | Issue 3 | e9811



using Bonferroni correction for multiple comparisons at a

significance level of 0.05 (p-value threshold = 0.05/23 = 0.0022).

No group difference in mean FA value was found in the rest of the

white matter tracts. Using mean FA values in the tracts with

significant group difference as features, LDA leave-one-out cross

validation yielded a classification accuracy rate of 62.5%

(specificity: 68.4%; sensitivity: 53.8%) and F-score of 0.684.

Figure 4(b) illustrates the average difference in FA between the

healthy control subjects and patients with AD. Regions in cool

color are FA reduction in the AD group, while regions in warm

color are FA increase in the AD group. Linear regressions found

pronounced regionally-specific FA abnormalities of the deep

white matter tracts in patients with AD when compared with the

healthy controls (Figure 4(c)). Permutation tests confirmed the

overall significance of p = 0.0375. Compared with the healthy

controls, the FA reduction in the patients with AD occurs in

bilateral SS, left anterior CR and CgH, right fornix. When

considering the FA map as whole, only the 2nd and 5th PCs

showed significant difference in the FA map of the white matter

tracts between the control subjects and the patients with AD (2nd

PC: p = 0.0094; 5th PC: p = 0.047). Using these two PCs as

features, LDA leave-one-out cross validation yielded a classifica-

tion accuracy rate of 71.9% (specificity: 78.9%; sensitivity: 61.5%)

and F-score of 0.769.

2.3 Clinical Relationship
Figure 5(a) illustrates the relationship of MMSE with the

canonical scores of the deformation map. In the canonical analysis

on the deformation map, patients with AD were associated with

larger canonical scores, while healthy controls were associated

with lower canonical scores. Pearson’s correlation analysis

revealed significant negative correlation between MMSE and the

canonical score of the deformation map (r = 20.5680, p = 0.0007),

suggesting that more severe shape abnormalities in the white

matter tracts predicted lower MMSE scores.

Figure 5(b) illustrates the relationship of MMSE with the

canonical scores of the FA map. In the canonical analysis on the

FA map, patients with AD were associated with larger canonical

scores, while healthy controls were associated with lower canonical

scores. Pearson’s correlation analysis revealed the significant

negative correlation between MMSE and the canonical score of

the deformation map (r = 20.6200, p = 0.0002), suggesting that

more severe FA abnormalities in the white matter tracts predicted

lower MMSE scores.

Figure 1. Examples of the white matter tract segmentation. Rows respectively illustrate the white matter tracts of a healthy elderly subject
and a patient with AD. The left column shows the volume representation in the FA maps, while the right column shows the surface representation in
the superior view.
doi:10.1371/journal.pone.0009811.g001
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Discussion

In this paper, the surface-based analysis was applied for

assessing shapes and FA maps of the twenty three deep white

matter tracts in patients with AD and healthy control subjects. The

main contribution of this work was to construct the surface

representation of deep white matter tracts. Using this surface

model, patients with AD showed pronounced regionally-specific

FA reduction and shape abnormalities mainly in the sagittal

stratum and the cingulum (combination of corona radiate and

cingulum in the hippocampus) when compared with healthy

control subjects. The surface-based abnormal patterns of FA and

shapes in the white matter tracts better distinguished patients with

AD from healthy control subjects when compared with white

matter volumes and mean FA values within each white matter

tract (see Table 2). Furthermore, greater FA or deformation

abnormalities of the white matter tracts were associated with a

lower MMSE score.

Previous studies using structural MRI and PET revealed brain

atrophy in the cingulum tract and showed its strong correlations

with the hippocampal atrophy and hypometabolism of the

mammillary bodies, thalamus, cingulate gyrus, parahippocampal

gyrus, and hippocampus in AD. Using DTI, our study further

confirmed the local volume loss and FA reduction of the cingulum

tract in AD. Based on the white matter atlas, this cingulum tract

contains fibers connecting the parahippocampal gyrus and

hippocampus proper to the posterior cingulate cortex [20,23],

cortico-thalamic fibers, as well as cortico-cerebellar fibers [20].

This is in agreement with the finding that the hypometabolism in

the limbic circuit results from the hippocampal formation atrophy

via the cingulum tract disruption, which was suggested in previous

studies [24]. It also interprets the striking discrepancy between the

hypometabolic profile and the well described brain atrophy

pattern in AD. Brain atrophy is characterized by the early

involvement of the medial temporal lobe, subsequently spreading

to the lateral temporal areas before extending to the cingulate and

temporoparietal, frontal and occipital regions [25], consistent with

the course of neurofibrillary degenerations [26]. Nevertheless,

brain glucose metabolism alterations are characterized by the early

involvement of the posterior cingulate cortex, subsequently

spreading to the neighboring precuneus and temporoparietal

regions [27,28,29].

Using DTI, our study for the first time reported the shape

abnormality and FA reduction in the sagittal stratum tract that

contains the inferior fronto-occipital fasciculus [30], the inferior

longitudinal fasciculus (ILF), and the posterior thalamic radiation.

DTI tractography showed that the ILF directly connects occipital

branches related to areas V2 and V4 and anterior temporal

branches related to the lateral temporal cortex, parahippocampal

gyrus and amygdala [31]. The patient described by Ross [32] with

a lesion apparently restricted to the ILF was unable to learn novel,

non-verbalizable visual stimuli, despite the fact that visual

information was able to reach the medial temporal lobe through

other indirect pathways. One function of the direct pathway

Figure 2. The single-subject atlas of the deep white matter tracts. The top row illustrates the color map, image without diffusion weighting,
and fractional anisotropy (FA) with the contours of the deep white matter tracts, respectively. The bottom row shows the surface representation of
the deep white matter tracts in the left, right, inferior, and superior views. Each tract surface is color coded. The anatomical definition of each white
matter tract was detailed in [20]. The abbreviations of the tracts’ names are given in Text S1.
doi:10.1371/journal.pone.0009811.g002
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between the occipital and temporal lobes through the ILF is

perhaps to prime medical temporal structures to facilitate the

consolidation of visual memories. It therefore suggests that

cognition impairment in visuospatial memory in AD could be

due to disruption in the ILF. In addition to the ILF, the IFO,

posterior thalamic radiation, EC, and SLF contain connections

among the frontal, parietal, temporal, occipital lobes, and the

cerebellum. Regional shape compression and FA reduction in

these tracts may indicate the loss of neuronal axons or loss of

connection with the cortex, suggesting a disruption in direct or

indirect connectivity of the temporal lobe with the frontal, parietal,

and occipital lobes as well as the cerebellum. As AD progresses,

the propagation of the gray matter atrophy in AD from the

temporal lobe to the frontal, parietal, and occipital lobes as well as

the cerebellum may therefore be due to connectivity disruption in

these tract regions.

Our findings support that AD is thought to reflect disrupted

cortical connectivity. Integration of these shape abnormalities with

Figure 3. Deformation maps of the white matter tracts. Row (a) illustrates the anatomical orientation of the corresponding column. Row (b)
shows the group difference map in the log-Jacobian determinant between the healthy control subjects and patients with AD. Warm color denotes
regions with shape expansion in the AD group; while cool color represents regions with shape compression. Row (c) illustrates shape abnormalities of
the deep white matter tracts in the patients with AD relative to the healthy control subjects. Blue denotes the regions with significant surface
compression in the AD group compared with the control group, while red colors the regions with significant surface expansion in the AD group
relative to the control group. Left, right, inferior, and superior views are respectively illustrated from the left to the right.
doi:10.1371/journal.pone.0009811.g003
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white matter tissue properties (e.g. FA) provides new insights of

abnormalities in white matter structures in AD. An open question

is how these white matter changes in terms of geometry and tissue

properties predict the disease when compared with the gray matter

atrophy, cortical metabolism and functional connectivity, as well

as underlying neuropathology that have been identified as image

markers of AD [33,34]. One possibility is that disruption in the

white matter tracts near the temporal lobe represents the

secondary consequence of the medial temporal lobe pathology.

Subsequently, metabolic effects and brain atrophy represent the

consequence of regionally-specific white matter tract disruption.

Future research will be required to determine the relationship of

white matter disruption with gray matter atrophy and cortical

hypometabolism in AD, which may explain why certain regions of

the brain show preferential vulnerability to AD as the disease

progresses.

The data analysis in this study offers several strengths. The main

contribution of this work is its construction of the surface

representation of deep white matter tracts. The surface model is

a natural representation for white matter tracts because the surface

Figure 4. FA maps of the white matter tracts. Row (a) illustrates the anatomical orientation of the corresponding column. Row (b) shows the
group difference in the FA map between the healthy control subjects and patients with AD. Warm color denotes regions with increased FA in the AD
group; while cool color represents regions with reduced FA in the AD group. Row (c) illustrates FA abnormalities in the patients with AD relative to
the healthy control subjects. Blue denotes the regions with significant FA reduction in the AD group compared with the control group. Left, right,
inferior, and superior views are respectively illustrated from the left to the right.
doi:10.1371/journal.pone.0009811.g004
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effectively summarizes the overall shape of the white matter tract

whose variations relative to the atlas can be characterized as a

scalar field of the surface through the surface diffeomorphic metric

mapping [22,35]. This provides a natural way for reducing the

dimensionality of the shape deformation and offers an alternative

to smoothing and performing statistical analysis based on

geometric models of white matter tracts (e.g. [36,37]). Further-

more, our surface-based analysis also offers a natural representa-

tion of diffusion properties as a function indexed over the surface

manifold by projecting the diffusion measures (e.g. FA, diffusivity)

onto it. Our clinical study with a small sample size demonstrates

the feasibility and sensitivity of using the surface-based analysis to

identify the regionally-specific shape and FA abnormalities in AD.

There are, however, several limitations to the proposed analysis

framework. First, our atlas-based segmentation uses multiple

image contrasts to drive the spatial normalization. It is possible to

use the tensor information instead. Several methods have been

postulated to use the full tensor for the spatial normalization of

DTI [11,12,38]. They may provide additional benefits to further

improve mapping accuracy. Second, the shape analysis introduced

in this paper considers individual white matter tracts as whole,

which cannot provide shape information (e.g. twist, split, interrupt)

of individual white matter fibers. As the validity and reliability of

the white matter fiber extraction is proven increasingly, we will

accordingly be able to adapt our current analysis to investigating

individual white matter fiber shape using the LDDMM curve

mapping [39,40]. Furthermore, the white matter bundles near the

cortex are not included in this study. Our analysis framework

could be applied to them when the atlas of these bundles is defined

such as one introduced in [41].

In this study, the white matter atlas was built on a single-

subject’s DTI image. There is a reason for choosing this single-

subject atlas rather than a population-averaged atlas. High-

dimensional non-linear registration methods may not work

properly with the population-averaged atlas in which the

anatomical structures are blurred due to averaging. This is not a

substantial issue for linear normalization, which is mostly driven

by a large contrast change at the outside boundary of the brain,

but the blurred internal structures could easily confuse high-

dimensional non-linear registration [21]. Ideally, if the spatial

normalization algorithm is perfect, the single-subject atlas simply

serves as the origin of coordinates to measure anatomical

variability and the location of the origin may not be important

as long as we are interested in differences among groups.

However, in reality, our atlas-based diffeomorphic segmentation

assumes that the overall appearance of subjects’ DTI images is

sufficiently similar to that of this atlas so that the diffeomorphic

mapping is feasible to deform the atlas to subjects. In studies where

subjects with large tumor, or brain lesions are present, this atlas-

based segmentation is likely not feasible. Recent advantages in

DTI segmentation and higher resolution imaging may indeed

make it possible to consistently label the tracts in individual subject

images [42,43,44].

Methods

4.1 Subjects
Two groups of subjects were included in the present study: (1)

Healthy Controls (CON) (n = 19): subjects who were cognitively

normal and had a Clinical Dementia Rating (CDR) of 0 [45,46];

(2) Alzheimer’s disease (AD) (n = 13): subjects who had mild

AD, had a CDR = 1, and met NINCDS/ADRDA criteria for

AD [47]. Participants were primarily recruited from two

sources: the Clinical Core of the Johns Hopkins Alzheimer’s

Disease Research Center and memory clinics associated with

Johns Hopkins Medicine Hospital. Subjects were excluded from

enrollment if they were under age 55, had a history of a

neurological disease other than AD, or a history of major

psychiatric illness. Subjects were required to have a knowledge-

able informant who could provide information about their daily

function. Demographic and clinical information about the

subjects is in Table 1.

Ethic Statement. All subjects provided written consent for

participation in accordance under the oversight of the Johns

Hopkins Institutional Review Board.

Figure 5. Clinical relations with the shape and FA of the white matter tracts. Panel (a) shows the relation between the MMSE and canonical
score of the deformation map, while panel (b) illustrates the relation between the MMSE and canonical score of the FA map. Asterisks and circles
respectively denote control and AD subjects.
doi:10.1371/journal.pone.0009811.g005

Table 2. Classification results.

features Volumes Shape Pattern Mean FA values FA map

accuracy rate 65.6% 81.3% 62.5% 71.9%

specificity 78.9% 89.5% 68.4% 78.9%

sensitivity 46.2% 69.2% 53.8% 61.5%

F-score 0.732 0.850 0.684 0.769

The accuracy rate, specificity, sensitivity, and F-score of the classification are
listed when the volumes, shape pattern, mean FA values, and FA map of the
deep white matter tracts were respectively used as features in the classification.
doi:10.1371/journal.pone.0009811.t002
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4.2 Data Acquisition and Preprocessing
High-resolution DTI data were acquired on a 3T Philips

Achieva system using a single-shot EPI sequence with a SENSE

parallel imaging scheme (Sensitivity Encoding, reduction fac-

tor = 2.5, TR = 6111.68 ms, TE = 71.0 ms). The imaging matrix

was 96696, with a field of view of 2126212 mm (nominal

resolution of 2.2 mm), which was zero-filled to 2566256. Axial

slices of 2.2 mm thickness were acquired parallel to the anterior–

posterior commissure line. A total of 60 slices covered the entire

brain and brainstem without gaps. The diffusion weighting was

encoded along 30 independent orientations [48] and the b-value is

700 sec/mm2. Five additional images with minimal diffusion

weighting (b = 33 sec/mm2) were also acquired (B0 images). Co-

registered T2 weighted images were also acquired using a double

spin echo sequence with a first echo time of 10.1ms, a second echo

time of 96.0ms, and a repetition time of 3,000ms. The imaging

matrix was 2566247, with a field of view of 2406210 mm. Axial

slices of 3 mm thickness were acquired parallel to the anterior–

posterior commissure line. A total of 48 slices covered the entire

brain and brainstem without gaps.

To correct geometric distortion of the DTI due to B0-

susceptibility differences over the brain, we followed the procedure

detailed in [49]. The T2 weighted image was considered as

anatomical reference. Within a subject, the deformation that carried

its DTI to the T2 weighted image characterized the geometric

distortion of the DTI. For this, intra-subject registration was first

performed using Automated Image Registration (AIR) [50] to

remove linear transformation (rotation and translation) between the

35 diffusion weighted images and T2 weighted image. Then, the

LDDMM image mapping sought the optimal nonlinear transfor-

mation that deformed the B0 image to the T2 weighted image.

Such diffeomorphic transformation was applied to every diffusion

weighted image to correct the DTI nonlinear geometric distortion.

We aligned each subject’s diffusion weighted images to the atlas

anatomical space based on the affine transformation between the

T2 weighted images of the subject and the atlas [50]. The diffusion

tensor of the subject was determined by multivariate least-squares

fitting. A fractional anisotropy (FA) map was computed based on

the three eigenvalues of the tensor for quantifying the anisotropy

of the deep white matter tracts.

4.3 Atlas-Based Diffeomorphic Segmentation of White
Matter Tracts

For the atlas-based segmentation, we used the white matter atlas

generated from the DT image of a single subject where the

anatomical definition of each white matter tract followed the

criteria described in [20]. The atlas consists of a collection of

homogeneous volumes and smooth surfaces Iatlas,Satlasð Þ for

individual white matter tracts, where Iatlas denotes the homoge-

neous volume and Satlas represents the surface at the boundary of

Iatlas. Figure 1 shows the deep white matter atlas in the volume

(panels (a–c)) and surface (panels (d–g)) representations. The deep

white matter tracts included in this atlas are listed in Text S1. The

atlas is available online in an in-house program ROIeditor (www.

mristudio.org).

Given the DT image of a subject, its white matter tracts are

assumed to be generated based on the atlas via a flow of

diffeomorphisms (one-to-one, reversible smooth transformations),

solutions of ordinary differential equations
dwt

dt
~vt(wt),t[½0,1�,

where wt is a diffeomorphic flow. This flow starts from the identity

map w0~id , and is associated with velocity field vt,t[½0,1�. The

topological and global shape properties of the atlas are

transformed into the subject anatomical coordinates by solving

the large deformation diffeomorphic metric mapping (LDDMM)

algorithm [21] defined as

J(vt)~ arg min

vt :
dwt
dt

~vt(wt),w0~id

ð1

0

vtk k2
V dtz w{1

1 0Iatlas,1{Isubject,1

���
���2

z w{1
1 0Iatlas,2{Isubject,2

���
���2

:

ð1Þ

The matching cost E(w1
:Iatlas,m,Isubject,m)~

P2
m~1

w{1
1 0Iatlas,m{

���
Isubject,mk2

quantifies the intensity similarity between the deformed

atlas and the subject, where m~1,2 indexes image modality. In

particular, we chose Iatlas,1 and Isubject,1 to respectively be the

FA images of the atlas and the subject for controlling the image

alignment in the white matter region, while Iatlas,2 and Isubject,2

were respectively the images without diffusion weighting (b = 0)

of the atlas and the subject for well matching the global shapes

of the brain and the gray matter. The integrated norm

vtk kV ,t[½0,1� of the velocity field is the geodesic length of

the curve that connects the atlas and the subject in the shape

space. To ensure the curves are flows of diffeomorphisms, vt[V
is a Hilbert space of smooth vector fields with norm square

vtk k2
V ~L�Lvt

:vt (see [51] for specific requirements). L is a

differential operator defined as L~{a+2zcid3|3, where

id3|3 is a 3|3 identical matrix and +2 is the Laplacian

operator. L� denotes as adjoint of L. The
a

c
ratio affects the

elasticity of the transformation. The matching quality im-

proves as the ratio decreases [21]. In our study, we took a

three-step cascading approach with a decreasing
a

c
of 0.01,

0.005, and 0.0025 in the LDDMM mapping to gradually

improve the matching quality. This procedure ensures that

there is only a small amount of required transformation

at each step up to
a

c
~0:0025. Denoting the surface represen-

tation of the atlas white matter tracts as Si
atlas, i indexed the white

matter tract (Figure 1). The deformed atlas segmentations

are therefore given by ÎI~w
a
c~0:0025

1
:w

a
c~0:005

1
:w

a
c~0:01

1
:Iatlas; the

shapes of the segmented white matter tracts are given by

transforming the atlas surfaces under the same mapping

Si~w
a
c~0:0025

1
:w

a
c~0:005

1
:w

a
c~0:01

1
:Si

atlas,i~1,2, � � �.

4.4 Shape Analysis on the White Matter Tracts
To understand the shape variation of the white matter tract, i,

across subjects, we seek the optimal diffeomorphic transformation,

wt, that connects Si
atlas and Si

subject. Such a transformation can be

found through the LDDMM-surface mapping algorithm [22,35]

in the form of

J(vt)~ arg min

vt :
dwt
dt

~vt(wt),w0~id

ð1

0

vtk k2
V dtzE w1

:Si
atlas,S

i
subject

� �
ð2Þ

where E w1
:Si

atlas,S
i
subject

� �
quantifies the geometric similarity

between the deformed atlas, w1
:Si

atlas, and the subject, Si
subject

based on the closeness of normal vectors of the two surfaces. The

mathematical form of E w1
:Si

atlas,S
i
subject

� �
was detailed in [22,35].

To give this paper a sense of completion, we briefly introduced

E w1
:Si

atlas,S
i
subject

� �
. The surface of the white matter tract
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embedded in R3 was assumed to be a two-dimensional manifold

in the sense that the neighborhood of every point on the surface

is equivalent to a two-dimensional plane in Euclidean space.

Such a plane can be uniquely defined by a point and a vector

originated at this point and normal to the plane. Therefore, we

can represent a triangulated surface as S~fcf ,gf g, a set of

points and normal vectors, where cf ~
1

3
x

f 1zx
f 2zx

f 3

� �
is the

center of triangle f on S with three vertices x
f 1 ,x

f 2 ,x
f 3 and

gf ~
1

2
x

f 1{x
f 2

� �
| x

f 3{x
f 1

� �
is the normal vector to f at

location cf . The symbol|denotes cross product [22,35].

Now we defined E w1
:Si

atlas,S
i
subject

� �
for registering surfaces

in the LDDMM setting based on their position and normal

vectors. Let Si
atlas~fcf ,gf g and Si

subject~fch,ghg be the atlas

and subject triangulated surfaces represented by center points of

triangles on the surface and their corresponding normal vectors.

Denote the deformed atlas surface w1
:Si

atlas~fcf1
,gf1
g, where

cf1
~

1

3
w1
:xf 1zw1

:xf 2 zw1
:xf 3

� �
is the center of deformed

triangle f and gf1
~

1

2
w1
:xf 1{w1

:xf 2

� �
| w1

:xf 3{w1
:xf 1

� �
is the

normal vector to deformed triangle f at location cf1
. Let f ,g be

indices of triangles on the surface Si
atlas and h,q be indices of

triangles on the surface Si
subject. E w1

:Si
atlas,S

i
subject

� �
is given in

the form of

E w1
:Si

atlas,S
i
subject

� �
~
X

f

X
g

kW cf1
,cg1

� �
gf1
:gg1

z
X

h

X
q

kW ch,cq

� �
gh
:gq

{2
X

f

X
h

kW cf1
,ch

� �
gf1
:gh,

where kW (x,y) is a kernel and defined as an isotropic Gaussian

kernel matrix, e
{

x{yk k
s2 id3|3. x{yk k denotes Euclidean distance

between points x and y and id3|3 is a 3|3 identical matrix.

The first two terms are intrinsic energies of the two surfaces

w1
:Si

atlas and Si
subject. The last term gives penalty to mismatching

between normal vectors of w1
:Si

atlas and Si
subject.

The log-Jacobian determinant of the deformation was

computed at every location of the atlas coordinates for each

subject and was used to examine group differences (e.g., AD vs.

controls) in shape. It is a smooth function over R3 that

indicates the ratio of the volume of subject’s white matter tract

to that of the atlas in a logarithmic scale. Positive values

correspond to the surface expansion of a subject’s white matter

tract relative to the atlas, while negative values denote the

surface compression of subject’s white matter tract relative to

the atlas. We shall term it as ‘‘surface deformation map’’

throughout the paper.

4.5 Surface-Based FA map of the White Matter Tracts
Obtaining a surface-based representation of FA requires a

reduction of dimensionality, the assignment of the FA data in the

3D volumes of the white matter tracts to locations on their

surfaces. We considered two steps that contribute to the mapping

of a voxel in the volume of the white matter tract to a vertex on its

corresponding surface. The first step was to find the proper

association between the voxels in the white matter tract volume

and its surface based on their Euclidean distance. Each vertex on

the surface was thus associated with a set containing the voxels that

have the shortest distance to this vertex. In the second step, FA

value at this vertex was computed as averaged FA value over the

set of its associated voxels.

4.6 Statistical Analysis
At each point on the tract atlas surface, the surface deformation

map was modeled using linear regression with diagnosis as the

main factor and the total intracranial volume as a covariate. The

surface-based FA map was also modeled using linear regression

with diagnosis as the main factor. The statistical results were

corrected for multiple comparisons using permutation tests to

determine the overall significance of the statistical maps. In each

permutation trial, diagnostic labeling was randomly assigned to

each subject and the number of points with significant main effects

(p,0.05) was recorded. After 10,000 permutation trials, the

overall significance was computed as the fraction of the time the

suprathreshold area was greater in the randomized maps than the

real effect [52].

Principal component analysis (PCA) [53] and linear discrimi-

nant analysis (LDA) [54] were applied for examining how well the

FA maps and the deformation maps can distinguish the patients

with AD from the healthy control subjects. PCA was first

employed to reduce the dimensionality of the FA maps or the

deformation maps. To identify the principal components (PCs)

that significantly contributed to group differences, we first

examined the two-sample t-test on each PC. A set containing

PCs with corresponding p-value less than 0.05 was then chosen as

feature space in LDA. Leave-one-out cross validation was used to

examine the LDA performance. Classification accuracy rate,

sensitivity, specificity, as well F-score were computed as quanti-

tative evaluation of the LDA classification.

To examine the correlation of the FA map with the clinical

measure of MMSE, PCs selected from the classification using the

FA map were used to generate canonical scores. The canonical

analysis was designed to score the control and AD subjects along

the dimension that showed the difference between these two

groups. More specifically, using a general linear model with the

PC scores as dependent variables, and group as predictor variable,

the canonical analysis computed the first eigenvector of matrix

E{1H , where H was the sum of squares and cross-products

(SSCP) matrix associated with the contrast between the control

and AD subjects, and E was the SSCP matrix of the model

residuals (derived from the full model using all subjects). A

canonical score was obtained for each subject by applying the

weighting coefficients in the eigenvector to the original dependent

variables (i.e., the PC scores). Pearson’s correlation analysis was

performed on the canonical scores with MMSE scores. We

repeated this analysis for investigating the correlation of the

deformation map with MMSE.
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Text S1 Anatomical definition of white matter tracts.

Found at: doi:10.1371/journal.pone.0009811.s001 (0.03 MB
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