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Abstract 

Objectives: Plasmodium berghei ANKA infection in mice is a model for human cerebral malaria, the most severe 
complication of Plasmodium falciparum infection. Responses of brain microglia have been little investigated, and may 
contribute to the pathogenesis of cerebral malaria. We showed previously that microglia are activated in P. berghei 
infections, and that Type 1‑Interferon signaling is important for activation. This dataset compares transcriptomic 
profiles of brain microglia of infected mice in the presence and absence of Type 1 interferon signaling, with the aim of 
identifying genes in microglia in this pathway during experimental cerebral malaria.

Data description: We documented global gene expression from microglial RNA from uninfected and P berghei‑
infected wild‑type C57BL/6 and IFNA Receptor Knock‑out mice using Illumina Beadarrays. Principal component analy‑
sis showed 4 groups of samples corresponding to naïve wild‑type, naïve IFNA Receptor knock‑out, infected wild‑type, 
and IFNA Receptor knock‑out mice. Differentially‑expressed genes of microglia from the two groups of infected mice 
are documented. Gene set enrichment analysis showing the top 500 genes assigned to Reactome pathways from 
infected IFNA Receptor knock‑out versus naïve, and infected WT versus naïve has been generated. These data will be 
useful for those interested in microglia cells, and in experimental cerebral malaria.
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Objective
Cerebral Malaria is one of the most severe complications 
of infection with the malaria parasite Plasmodium falci-
parum. A widely used animal model to investigate patho-
genic processes in cerebral malaria, and the contribution 
of the host response, is the C57BL/6 mouse infected with 
the ANKA strain of Plasmodium berghei (experimental 
cerebral malaria, or ECM, [1]). We showed previously 
that microglia are activated in the brains of mice infected 
with P. berghei ANKA undergoing ECM. At the time 

of ECM symptoms, immune response and chemokine 
genes were significantly upregulated. Gene Ontology 
analysis and functional gene enrichment suggested that 
these responses were driven by Type I interferons [2]. In 
support of this, we showed that IFNβ activated micro-
glia in  vitro to produce those chemokines, whose gene 
expression was upregulated in the microarray analysis 
[2]. As Type 1 IFN signaling can have different roles in 
malaria infections it would be important to determine the 
contributions of signaling through the Type I IFN recep-
tor on microglia in ECM, and thus whether microglia 
play any part on the pathogenesis, or control of pathol-
ogy, in ECM, which might have implications for human 
disease. We wanted to investigate the possible effects on 
microglia and ECM of abrogating signaling through the 
IFN-1 receptor. In the analysis shown in this Data Note, 
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we compared the transcriptome of purified microglia 
from P. berghei-infected IFNA Receptor knock-out mice 
with that of infected wild-type C57BL/6 mice using Illu-
mina Beadarrays.

An analysis of gene expression microglia in wild-type 
C57Bl/6 mice has been published [2], but a comparative 
study with microglia from IFNA Receptor knock-out 
mice has not been documented previously. These micro-
array results have not been incorporated into a research 
publication as we could not continue this study in this 
form as the Illumina Beadarrays have been discontin-
ued. Nevertheless, we believe these data may be a use-
ful for those research groups interested in activation of 
microglia in various settings and for malaria immunolo-
gists interested in the mechanisms of ECM in this rodent 
model.

Data description
We collected gene expression data from microglia iso-
lated from wild-type C57Bl/6 mice and IFNA Recep-
tor knock-out mice infected with Plasmodium berghei 
ANKA using Illumina Beadarrays (Table 1, data file 1).

Female C57BL/6 mice and mice lacking the IFNA 
Receptor (IFNARKO) (aged 6–9  weeks of age) were 
obtained from the SPF breeding unit of the Mill Hill 
Laboratory, Francis Crick Institute, and for experimen-
tal work were conventionally housed with sterile bed-
ding, food and irradiated water. Room temperature was 
22 °C with a 12 h light/dark cycle; food and water were 
provided ad  libitum. Mice were injected with  105 P. 
berghei ANKA infected erythrocytes intraperitoneally. 
Mortality, parasitemia and clinical scores indicative of 
ECM were monitored daily. Naïve and day 7-infected 
(d7) infected WT and IFNARKO mice were euthanised 
using pentobarbital, injected intraperitoneally (600 mg/
kg body weight). Isolation of microglia is described in 
detail in [2]. Briefly, microglia were isolated from the 
brains of uninfected C57Bl/6 and IFNARKO mice and 
from both groups of infected mice. Microglia  (CD45low 
and  CD11b+) were purified from other brain cells by 
flow cytometry (MoFlo XPD, Beckman Coulter) using 

a combination of fluorophore conjugated antibodies: 
APC-anti-CD11b, PE-CD45, APCCy7-Ly6C, pacific 
blue- -H-2  Kb (Biolegend). Cells were washed and 
resuspended in PBS containing 2% FCS. Analysis was 
carried out using FlowJo-X software (Treestar). The 
sorted cells were confirmed as microglia based on the 
lack of cell surface marker Ly6C.

Total RNA was extracted immediately after sorting 
from approximately  105 microglial cells using Ribopure 
kit (Ambion), and concentrations determined by Qubit 
quantitation using the HS assay kit (ThermoFisher Sci-
entific). Quality was assessed by the Agilent 2100 Bio-
analyzer; samples with a RIN score above 8.50 were 
used. Total RNA (300 ng) of each sample was amplified 
using the Total prep RNA amplification kit (Illumina) 
and Amplified cDNA (1500  ng) were then hybridized 
to Illumina MOUSE WG-6 V2.0 Beadarrays at 58  °C 
for 14–20  h at the High Throughput Screening facil-
ity of the Francis Crick institute RNA and cDNA were 
quantified by Qubit fluorometric quantitation and the 
quality were analysed using Agilent 2100 Bioanalyzer at 
each step ([2] and Table 1, Data file 1)

Data analysis was conducted using the limma package 
[3] within R v3.5.1 running Bioconductor v3.7. Illumina 
idat files were read using “read.idat” function together 
with manifest file MouseWG-6_V2_0_R3_11278593_A.
bgx downloaded from the Illumina website. Detection 
p-values were calculated using the “detectionPValues” 
function with default settings. Background correction 
was performed using negative control probes followed 
by quantile normalization using negative and positive 
control probes via the “neqc” function. Normalised 
expression values are reported in a  log2 scale.

Principal Component Analysis was performed on the 
500 genes showing greatest variance across samples 
(Table 1, Data file 2).

Differential gene expression was assessed between 
infected and naïve cell states within KO and WT cells 
separately using a linear model (Table  1, Data files 3 
and 4). Significance was determined using a threshold 

Table 1 Overview of data files/data sets

Label Name of data file/data set File types
(file extension)

Data repository and identifier (DOI or accession number)

Data file 1 Microarray data C57Bl/6 mice infected with P. berghei Illumina idat https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE11 9650

Data file 2 PCA.pdf pdf https ://figsh are.com/s/37fc3 835ea 53be4 bf94f 

Data file 3 wt.inf_vs_wt.naive‑p01.fc2.results.txt txt https ://figsh are.com/s/37fc3 835ea 53be4 bf94f 

Data file 4 ko.inf_vs_ko.naive‑p01.fc2.results.txt txt https ://figsh are.com/s/37fc3 835ea 53be4 bf94f 

Data file 5 ToppGene.enrichment.barplot.pdf pdf https ://figsh are.com/s/37fc3 835ea 53be4 bf94f 

Data file 6 ko_specific_treatment_effect.heatmap.pdf pdf https ://figsh are.com/s/37fc3 835ea 53be4 bf94f 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119650
https://figshare.com/s/37fc3835ea53be4bf94f
https://figshare.com/s/37fc3835ea53be4bf94f
https://figshare.com/s/37fc3835ea53be4bf94f
https://figshare.com/s/37fc3835ea53be4bf94f
https://figshare.com/s/37fc3835ea53be4bf94f


Page 3 of 3Talavera‑López et al. BMC Res Notes          (2018) 11:913 

based on a FDR ≤ 0.01 together with an absolute fold 
change ≥ 2.

The two resulting lists were ordered by absolute fold 
change and the top 500 unique Entrez gene identifiers 
from each were put forward for gene list enrichment 
analysis using the ToppGene Suite [4]. Hits to the Reac-
tome [5] pathway (FDR ≤ 0.01) are presented in the bar-
plot (Table 1, Data file 5).

A nested interaction formula was used to select genes 
responding differently to infection between KO and WT 
cells. Genes showing a KO specific response but remain 
unchanged in WT cells were selected for visualisation 
in a heatmap (Data file 6). Each gene’s expression across 
samples was converted to a z-score to aid visualisation. 
Clustering of row and columns was conducted using 
complete linkage on a Euclidean distance matrix.

Limitations

The sample size for each group is relatively small, 5 
mice per group.
There is only one time-point in the infection.

It was intended to continue this study; however, Illu-
mina ceased production of these arrays during the study, 
and therefore the experiment could not be extended 
using this microarray format.
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