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Abstract: The estimation of the Individual Treatment Effect (ITE) on survival time is an important
research topic in clinics-based causal inference. Various representation learning methods have been
proposed to deal with its three key problems, i.e., reducing selection bias, handling censored survival
data, and avoiding balancing non-confounders. However, none of them consider all three problems
in a single method. In this study, by combining the Counterfactual Survival Analysis (CSA) model
and Dragonnet from the literature, we first propose a CSA–Dragonnet to deal with the three problems
simultaneously. Moreover, we found that conclusions from traditional Randomized Controlled
Trials (RCTs) or Retrospective Cohort Studies (RCSs) can offer valuable bound information to the
counterfactual learning of ITE, which has never been used by existing ITE estimation methods. Hence,
we further propose a CSA–Dragonnet with Embedded Prior Knowledge (CDNEPK) by formulating a
unified expression of the prior knowledge given by RCTs or RCSs, inserting counterfactual prediction
nets into CSA–Dragonnet and defining loss items based on the bounds for the ITE extracted from
prior knowledge. Semi-synthetic data experiments showed that CDNEPK has superior performance.
Real-world experiments indicated that CDNEPK can offer meaningful treatment advice.

Keywords: individual treatment effect; survival data; counterfactual prediction; prior knowledge

1. Introduction

In this paper, problems related to the estimation of the Individual Treatment Effect
(ITE) on survival time will be discussed. Estimating treatment effects from observational
data is an important research topic of causal inference [1]. With the development of
personalized healthcare, there has been increasing concern about estimating the Individual
Treatment Effect on survival time, which indicates how much an individual could benefit
from a pair of treatments in the sense of prolonging survival time [1], and therefore can
help a doctor or a patient determine which treatment to select.

To introduce the related concepts and existing works more clearly and concisely,
we need to give some notations in this section. Suppose there are N patients. For each
individual patient i with baseline xi composed of some covariates (e.g., basic information,
laboratory tests, and image tests, etc.), let YT=1

i (xi) and YT=0
i (xi) represent the potential

outcomes of a pair of treatments T = {1, 0}. Since a patient can only receive one actual
treatment of the two potential outcomes, the one which cannot be observed is referred to as
counterfactual [2]. The Individual Treatment Effect of T = 1 relative to T = 0 is defined
by ITEi , ∆Yi = YT=1

i (xi)− YT=0
i (xi) [1,2], which is also counterfactual because one of

YT=1
i and YT=0

i must be counterfactual. This makes it impossible to learn a model for ∆Yi ,
i.e., ∆̂Yi (xi) = f (xi), based on historical data, which is useful for predicting the ITE for a
new patient before the selecting of treatments.
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Representation learning methods [1,3–5] are a kind of important method to deal with the
counterfactual problem, which divides the historical data of all the patients into two parts, i.e.,
DT=1 =

{(
yti=1

i , xti=1
i

)
, i = 1, ..., NT=1

}
and DT=0 =

{(
yti=0

i , xti=0
i

)
, i = 1, ..., NT=0

}
for patients who have received treatment T = 1 and T = 0, respectively, with ti repre-
senting the actual treatment patient i has received and yti=∗

i and xti=∗
i representing the

observed survival time and the baseline of patient i, respectively. Then, in representation
learning methods, instead of learning ∆̂Yi = f (xi), which encounters the counterfactual

problem, ŷti=1
i = fT=1

(
xti=1

i

)
based on historical data DT=1 and ŷti=0

i = fT=0

(
xti=0

i

)
based on DT=0 are learned separately, and for a new patient, the ITE can be predicted by
∆̂Ynew = fT=1(xnew)− fT=0(xnew) [3].

However, a challenge encountered by representation learning-based ITE estimation is
the problem of selection bias caused by confounders, which are defined as the covariates
in the baseline affecting both the treatment assignment ti and the outcome yti

i [1,2,6]. An
example [3,6] can be used to illustrate the problem. Let T = 1 and T = 0 denote taking
a drug and not taking a drug, respectively. Suppose that most of the old patients have
received treatment T = 1 and most of the young patients have received treatment T = 0,
then in this case “age” is a confounder, which makes the data distributions of DT=1 and
DT=0 not consistent, and therefore further leads to unreliable estimations of ŷti=0

i for old
patients and ŷti=1

i for young patients.
A common idea to reduce selection bias in representation learning methods for ITE es-

timation is balancing the confounders. As one of the typical representation learning-based
methods for the ITE estimation, the Counterfactual Regression (CFR) method proposed by
Shalit et al. [3] uses a fully connected network (FCN) φ(xi) to map xi into a representation
space first. Then, taking the idea of separating the learning for T = 1 and T = 0 as men-
tioned above, the CFR method uses two FCNs to predict ŷti=1

i and ŷti=0
i based on DT=1 and

DT=0, respectively, and finally optimizes the three FCNs by minimizing a CFR loss function

defined as the weighted summation of ∑
[
yti=1

i − ŷti=1
i

]2
for xi ∈ DT=1, ∑

[
yti=0

i − ŷti=0
i

]2

for xi ∈ DT=0, and IPM
(

pT=1
φ , pT=0

φ

)
, where the first two items obviously measure the

estimation errors for the data from DT=1 and DT=0, respectively, and IPM
(

pT=1
φ , pT=0

φ

)
represents the integral probability metric (IPM) between the probability distributions of
DT=1 and DT=0 in the representation space, whose minimization means balancing the
impact of the confounders on the two distributions in the representation space. As men-
tioned in [1], the CFR model is also extended to some other improved models, such as
those in [6,7]. Additionally, considering the unmeasured confounders, Anpeng Wu et al.
propose an instrumental variable-based counterfactual regression method, which can also
be regarded as an improvement to the CFR model [5].

ITE estimation methods based on representation learning (including the CFR method
mentioned above) face the censoring problem when they are applied to survival time,
because the output yti=1

i or yti=0
i denoting survival time in this case will become unavailable

(also referred to as censored) if the follow-up of the patient i has been lost or patient i is
still alive before the trial ends [4,8,9]. To make the methods applicable to survival data,
Chapfuwa et al. proposed a Counterfactual Survival Analysis (CSA) method [4] which
improves CFR by replacing the censored outputs (i.e., the survival times) with the so-called
observed censoring times (please refer to the notations in Section 2.1) and revising the
corresponding estimation error items in the loss function.

Although balancing the confounders helps to reduce selection bias, the above-mentioned
methods cannot discriminate between confounders and non-confounders (i.e., they treat all
covariates in the baseline as confounders) and therefore may balance the non-confounders
which do not affect the treatment assignment ti. Shi et al. pointed out that this may lead to a
decrease in prediction precision, and proposed the so-called Dragonnet to prevent balancing
non-confounders [10]. Besides the three FCNs used in CFR, Dragonnet introduces an FCN to
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predict the treatment t̂i and further incorporates a cross-entropy distance between t̂i and ti in
the loss function, whose minimization helps to reduce the influence of the non-confounders
in the representation space and therefore helps to prevent them from being balanced [10].
However, unlike CFR and CSA, the Dragonnet method has the demerits of not balancing the
confounders and is not applicable to censored survival data.

Besides representation learning methods, there are also other methods for estimating
treatment effects on survival time based on machine learning, such as random survival
forest (RSF), COX regression, and accelerate failure time (AFT) [11–13], etc. In spite of their
effectiveness, a common limitation of these kind of methods is they do not balance the
confounders, which could lead to selection bias [4].

Actually, besides the above-mentioned methods, Randomized Controlled Trials (RCTs) [14]
are always gold standards for treatment effect estimation, in which patients meeting some
particular inclusion criteria are selected and randomly assigned to a treatment group and control
group; then, the treatment effect is evaluated by comparing the difference between the trial
results of the two groups. The RCTs will not face the problem of selection bias because the
random allocation of the treatment can guarantee that the baseline distributions in the treatment
group and control group are identical. Similarly, there are also Retrospective Cohort Studies
(RCSs) for treatment effect estimation [15], in which the data of the treatment and control group
are selected from historical data based on inclusion criteria, but RCSs still have the identical
baseline distributions in the two groups to avoid selection bias. However, RCTs may not be
feasible in many cases, e.g., forcing non-smokers to smoke in an RCT for smoking is against
ethics [16]. Even in the cases where RCSs are feasible, the strict inclusion criteria limits the
generalizability of RCTs for the patients who cannot be represented by the included ones [17,18],
which is also the case for RCSs. These demerits limit the application of RCTs and RCSs.

In spite of their limitations, the conclusions obtained from accomplished RCTs or RCSs
can offer valuable qualitative prior knowledge to the counterfactual learning of the ITE,
because although the ITEi = ∆Yi = YT=1

i (xi)−YT=0
i (xi) is counterfactual and unavailable

for each patient i, it can be obtained from the results of RCTs or RCSs where, for patients
with a significant treating effect, there is ∆Yi > 0 with a high probability, and for patients
without a significant treating effect, there is ∆Yi = 0 (please refer to Section 4.1 for details).
However, although there exists effective methods for treatment effect estimation which
introduce prior knowledge, such as [19,20], which incorporates prior knowledge on the
relationship between the baseline xi and treatment ti, to the best of our knowledge, there is
still no method for treatment effect estimation which can take advantage of prior knowledge
on the ITE obtained from RCTs or RCSs.

To sum up, there are four problems which need to be considered in the estimation
of the ITE on survival time, i.e., (i) how to balance the confounders to reduce selection
bias; (ii) how to handle the censored survival data; (iii) how to avoid balancing the non-
confounders which may lead to the decrease in prediction precision; and (iv) how to take
advantage of prior knowledge on the ITE obtained from RCTs or RCSs.

Considering the situation that the existing methods have proposed solutions to prob-
lems (i)–(iii) separately, that none of them take all three problems into consideration in a
single method, and that there has been no solution to problem (iv), in this paper, we first
propose a new model called CSA–Dragonnet based on CSA and Dragonnet to combine
CSA’s solutions to problems (i) and (ii) and Dragonnet‘s solution to problem (iii), and
then propose a CSA–Dragonnet with Embedded Prior Knowledge (CDNEPK) to further
incorporate the prior knowledge obtained from RCTs or RCSs.

The more important contributions of this paper come from the second part, i.e., the
proposing of CDNEPK, which includes: (i) finding a way to express different kinds of prior
knowledge extracted from RCTs or RCSs in a unified form; (ii) embedding prior knowledge
into the CDNEPK proposed in this paper by inserting counterfactual prediction nets into
CSA–Dragonnet, whose output is denoted by ŷT=1−ti

i , for ti = 1 or 0, and incorporating
new loss items into the loss function, which takes advantage of prior knowledge to extract
valuable bound information for ŷT=1−ti

i .
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The key novelty of CDNEPK compared to the existing representation learning-based
ITE estimation methods lies in the counterfactual prediction introduced in CDNEPK. As
explained above, to deal with the difficulty that ITEi , ∆Yi = YT=1

i − YT=0
i is counter-

factual, i.e., one of YT=1
i and YT=0

i is counterfactual to patient i, the existing methods

train ŷti=1
i = fT=1

(
xti=1

i

)
based on DT=1 (i.e., that dataset of patients who have actually

received treatment T = 1) and ŷti=0
i = fT=0

(
xti=0

i

)
based on DT=0 (i.e., that dataset of

patients who have actually received treatment T = 0) separately, both of which have
the ground truth outputs (i.e., yti=1

i and yti=0
i , or their corresponding observed censoring

times). While in CDNEPK, besides them, ŷT=1−ti
i = fT=1−ti

(
xti=∗

i

)
for * = 1 and 0, i.e.,

ŷT=0
i = fT=0

(
xti=1

i

)
and ŷT=1

i = fT=1

(
xti=0

i

)
are further introduced and trained, which

are called the counterfactual prediction because T = 1− ti has not actually happened
and there are no ground truth data for ŷT=0

i or ŷT=1
i . However, as will be explained in

Section 4.3, we can extract valuable bound information for the prediction of ŷT=0
i or ŷT=1

i
from prior knowledge yielded by RCTs and RCSs, so we add the counterfactual prediction
nets for ŷT=0

i = fT=0

(
xti=1

i

)
and ŷT=1

i = fT=1

(
xti=0

i

)
and their corresponding loss items

for training to take full advantage of the valuable information offered by prior knowledge.
This paper is organized as follows. Section 2 first defines the notations and gives a brief

introduction to CSA and Dragonnet. Then, based on CSA and Dragonnet, CSA–Dragonnet
is proposed in Section 3 to handle the problems (i)–(iii) mentioned above simultaneously.
In Section 4, we formulate a unified expression of the prior knowledge yielded by RCTs
and RCSs and propose CDNEPK with incorporated counterfactual prediction branches
and its corresponding loss items. Semi-synthetic data experiments are designed to test
the performance of the proposed methods in Section 5. Real-world experiments based
on Hepatocellular Carcinoma data covering 1459 patients in China are used to show the
potential usage of CDNEPK. Finally, we draw a conclusion in Section 7.

2. Notations and Preliminary
2.1. Notations and Description of Dataset

Throughout the paper, we use the following notations:

1. Let T = 1 or 0 denote two treatments for comparison. For patient i, let YT=1
i and YT=0

i
represent the potential outcomes of treatment T = 1 and T = 0, respectively; let yi,
xi, and ti denote the observed survival time, baseline vector comprising m covariates,
and the actual treatment patient i has received, respectively; let xti=∗

i and yti=∗
i denote

that yi and xi are corresponding to an actual treatment ti = ∗ (i.e., the observed
survival time and the baseline of patient i who has received a treatment ti = ∗, ∗ = 1
or 0). For the case where we do not need to refer to the specific value of ti, we also use
xti

i and yti
i for short.

2. Considering the censoring problem, let ycen,i denote the observed censoring time when
yi is censored, which is defined as “the time up to which we are certain that the event
has not occurred” according to [4], where the event refers to death here. To denote yi
and ycen,i in a unified way, like reference [9], let γi denote the observed time, which
equals yi when it is available, and is set at ycen,i when yi is censored. Similar to the
meaning of yti=∗

i , we use γ
ti=∗
i to denote the observed time of patient i who has received

an actual treatment ti = ∗. Let δi = 0(1) indicate that survival time is (is not) censored.
3. Let Dall = {(γi, xi, δi, ti), i = 1, 2, ..., N} denote the historical dataset of all patients

and let DT=∗ =
{(

γ
ti=∗
i , xti=∗

i , δi

)
, i = 1, ..., NT=∗

}
represent the historical dataset

for patients who have received treatments T = ∗, with ∗ = 1 or 0, where DT=1 and
DT=0 are the subsets of Dall , with N = NT=1 + NT=0.

4. Let t̂i denote the prediction of ti based on xi and ŷti=∗
i denote the prediction of survival

time yti=∗
i based on xti=∗

i , with ∗ = 1 or 0, which is also called factual prediction.
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While on the contrary, we use ŷT=1−ti
i to represent a counterfactual prediction, which

uses xti=∗
i (for a patient who has received ti = ∗) to predict what will happen if the

contrary treatment T = 1− ti is adopted (please see Section 4.2 for details).
5. Let YT=∗

i represent the potential outcome of T = ∗ (with ∗ = 1 or 0) and call
ITEi , ∆Yi = YT=1

i − YT=0
i the Individual Treatment Effect of T = 1 relative to

T = 0 [1]. In this paper, suppose we have historical datasets Dall , DT=1, and DT=0,
and some prior knowledge which can be expressed by ∆Yi > 0 for xi ∈ Ω and ∆Yi = 0
for xi ∈ Γ (please refer to Section 4.1 for details).

2.2. A Brief Introduction to CSA and Dragonnet

CSA [4] contains seven FCNs, i.e., φ, hT=1, hT=0, uT=1, uT=0, gT=1, and gT=0. Among
them, φ(xi) with xi as the input is first used to map xi into a representation space, then
φ
(

xti=1
i

)
and φ

(
xti=0

i

)
are further fed into two branches to predict ŷti=1

i and ŷti=0
i , re-

spectively, with ŷti=1
i = hT=1

(
gT=1

(
φ
(

xti=1
i

)) ⊕
uT=1(ε1)

)
for patients from DT=1 and

ŷti=0
i = hT=0

(
gT=0

(
φ
(

xti=0
i

))⊕
uT=0(ε0)

)
for patients from DT=0, where ∆ denotes the

concatenating operation and ε1 and ε0 are random input vectors. The following CSA loss is
minimized in [4] to train the seven FCNs:

LCSA = ∑
j=0,1

∑
xi∈DT=j

1
NT=j

[
δi

∣∣∣γti=j
i − ŷti=j

i

∣∣∣+ (1− δi)max
(

0, γ
ti=j
i − ŷ ti=j

i

)]
+ αIPM(pT=1

φ , pT=0
φ ) (1)

where δi

∣∣∣ γ
ti=j
i − ŷti=j

i

∣∣∣ and max
(

0, γ
ti=j
i − ŷti=j

i

)
are used to measure the error between

the estimated output ŷti
i and the observed time γ

ti
i , which may become more controversial

if the survival data is censored, and IPM
(

pT=1
φ , pT=0

φ

)
represents the distance between the

distributions of φ
(

xti=1
i

)
and φ

(
xti=0

i

)
, which actually reflects the impact of selection bias

in the representation space caused by the confounders.
Dragonnet [10] consists of four FCNs, i.e., φ, hT=1, hT=0, and ψ. Similar to the CSA

model, φ(xi) is still used to map xi into a representation space; ŷti=1
i = hT=1

(
φ
(

xti=1
i

))
and ŷti=0

i = hT=0

(
φ
(

xti=0
i

))
are used to predict the outcomes for patients from DT=1 and

DT=0, respectively. Unlike the CSA model, a new FCN ψ is introduced in Dragonnet to
predict the treatment t̂i by t̂i = ψ(φ(xi)), and the loss to be minimized is defined by:

LDragonnet =
1

NT=1
∑

xi∈DT=1

[
yti=1

i − ŷti=1
i

]2
+

1
NT=0

∑
xi∈DT=0

[
yti=0

i − ŷti=0
i

]2
+ β ∑

xi∈Dall

CE
(
t̂i, ti

)
(2)

where the first two items are estimation errors of the outcomes, ∑i∈Dall
CE
(
t̂i, ti

)
is the

average cross-entropy distance between t̂i and ti over all patients which reflects the impact
of the non-confounders on t̂i. So, its minimization helps to reduce the influence of the
non-confounders in the representation space and prevents them from being balanced.

From (1) and (2) it can be seen that for the four problems needed to be considered
in the estimation of ITE on survival time mentioned in Section 1, the CSA method gives
solutions to problem (i) and (ii), i.e., how to balance the confounders to reduce selection
bias and how to handle the censored survival times data, and the Dragonnet method gives
a solution to problem (iii), i.e., how to avoid balancing the non-confounders which may
lead to the decrease in prediction precision.

3. CSA–Dragonnet

As summarized in Section 1, for the ITE estimation, the CFR model [3] is proposed to
reduce selection bias by balancing the confounders in the representation space, and the CSA
method [4] is proposed by extending CFR to handle the survival data which could be censored.
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Since CFR does not discriminate between the confounders and the non-confounders, it also
balances the non-confounders and leads to a decrease in prediction precision. Hence, Drag-
onnet is proposed in [10] to reduce the influence of the non-confounders in the representation
space and to prevent them from being balanced. However, Dragonnet still suffers from the
problems of selection bias and censoring [10]. So in this section, we propose a CSA–Dragonnet
based on the CSA model [4] and Dragonnet [10] to combine their advantages.

Figure 1 shows the architecture of the proposed CSA–Dragonnet. The CSA–Dragonnet
consists of three parts, i.e., (i) as in the CSA [4] and Dragonnet [10] models, the baseline xi
of all patients from Dall is mapped onto a latent representation by an FCN φ(xi); (ii) as in
Dragonnet [10], in order to reduce the influence of the non-confounders in the representa-
tion space, a single-layered FCN ψ with φ(xi) as the input is used to predict the probability
of the treatment, i.e., t̂i = ψ(φ(xi)); (iii) as in the CSA model [4], in order to predict ŷti=1

i

and ŷti=0
i , φ(xi) of all the patients are divided into two parts, i.e., φ

(
xti=1

i

)
for patients

from DT=1 and φ
(

xti=0
i

)
for patients from DT=0, which are further fed into two groups of

networks on the top and bottom branches of Figure 1, respectively. In the two branches,
gT=∗, hT=∗, and uT=∗ (with * = 1 or 0) are all FCNs, ε1 and ε0 are specially designed random
inputs [4], and

⊕
denotes the concatenating operation rather than summation, i.e., the

input of hT=∗ is a vector composed of gT=∗(φ(xi)) and uT=∗(ε∗). The random inputs ε1
and ε0 are utilized to introduce some randomness model in the time generation process [4].
Please refer to reference [4] for the details of the non-parametric survival model.
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In summary, the whole CSA–Dragonnet is a three-head neural network, in which the
inputs include the baseline and two random sources, and the outputs include the predicted
probability of the treatment t̂i as well as the predicted survival times ŷti=1

i and ŷti=0
i . Eight

FCNs are involved in the network, among which φ and ψ are shared networks for all
patients, while uT=1, gT=1, hT=1 on the top branch are only applicable to patients with ti = 1
and uT=0, gT=0, hT=0 on the bottom branch are only applicable to patients with ti = 0. FCNs
φ, gT=1,gT=0 are defined by Leaky Rectified Linear Unit (Relu) activation functions; FCNs
uT=1,uT=0 use Hyperbolic Tangent(tanh) activation functions; FCNs hT=1, hT=0 are defined
by exponential activation functions; and ψ is defined by the softmax activation function.
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The loss function to train the eight FCNs in CSA–Dragonnet can be defined by com-
bining (1) for CSA and (2) for Dragonnet as follows:

LCSA−Dragon = ∑
j=0,1

∑
xi∈DT=j

1
NT=j

[
δi

∣∣∣γti=j
i − ŷti=j

i

∣∣∣+ (1− δi)max
(

0, γ
ti=j
i − ŷ ti=j

i

)]
+αIPM(pT=1

φ , pT=0
φ ) + β ∑

i∈Dall

CE
(
t̂i, ti

) (3)

where the last item comes from (2) (i.e., the loss function of Dragonnet) and the other items
come from (1) (i.e., the loss function of the CSA method). Please refer to references [21]
and [22] for detailed definitions of the IPM distance and cross-entropy distance, respectively.

As explained in Section 1, (i) IPM
(

pT=1
φ , pT=0

φ

)
measures the difference between the

impacts of the confounders in the representation space, so minimizing it helps to balance
the confounders and reduces selection bias [3,4]; (ii) ∑i∈Dall

CE
(
t̂i, ti

)
measures the impact

of the non-confounders on t̂i, so its minimization helps to reduce the influence of the
non-confounders in the representation space and prevents them from being balanced [10];
(iii) as for the first part, since there is δi = 1 and γ

t=j
i = yt=j

i for patients with observed

survival time, minimizing the summation of δi

∣∣∣γt=j
i − ŷt=j

i

∣∣∣ means encouraging ŷt=j
i to be

close to the ground truth, while since δi = 0 and γ
t=j
i is set as the observed censoring

time ycen,i for patients whose survival times are censored, minimizing the summation

of (1− δi)max
(

0, γ
t=j
i − ŷt=j

i

)
means encouraging ŷt=j

i (j = 1, 0) to exceed the observed
censoring time [4]. Hence, CSA–Dragonnet with the loss LCSA−Dragon can balance the
confounders, handle the censored survival data, and avoid balancing the non-confounders
simultaneously.

Remark 1. CSA–Dragonnet is a combination of CSA and Dragonnet. (i) It will reduce to the CSA
model [4] if the middle branch for t̂i in Figure 1 and the cross-entropy distance ∑i∈Dall

CE
(
t̂i, ti

)
in (3) are removed; (ii) CSA–Dragonnet will reduce to Dragonnet if φ is directly connected to hT=1
and hT=0 in the top and bottom branches (i.e., uT=1, gT=1, uT=0, gT=0, ε1 and ε0 are removed), the
IPM distance between the distributions of φ

(
xti=1

i

)
and φ

(
xti=0

i

)
is removed, and the first part of

LCSA−Dragon is replaced with ∑j=0,1 ∑i∈DT=j

(
yt=j

i − ŷt=j
i

)2
, which cannot handle censored data.

4. CSA–Dragonnet with Embedded Prior Knowledge (CDNEPK)
4.1. A Unified Expression of the Prior Knowledge Yielded by RCTs and RCSs

As mentioned in Section 1, the results of RCTs or RCSs can offer valuable information
about the ITE to counterfactual learning. In the following, two examples are given to
illustrate it in detail.

Example 1. McNamara et al. investigated if advanced Hepatocellular Carcinoma (HCC) patients with
liver function in good condition could benefit from “sorafenib” [23] through a systematic review and
meta-analysis of 30 related studies based on RCTs or RCSs, which comprised 8678 patients altogether.
The conclusion was that patients with Child-Pugh grade A could benefit from “sorafenib” significantly,
while the effect of “sorafenib” on patients with Child-Pugh grade B is still controversial [23].

The Child-Pugh (CP) grades mentioned in the conclusion are widely used to describe
the liver functional status of a patient [23]. It is determined by a CP score defined as the
summation of the scores of five covariates in the baseline listed in Table 1, i.e., the covariate
scores of hepatic encephalopathy (HE), ascites (AC), total bilirubin (TBIL), albumin (ALB),
and prothrombin time (PT), which are further assigned according to the conditions given
in Table 1 [24,25]. More concretely, each row of Table 1 gives the rules for how to assign a
score to a corresponding covariate listed in the first column. In addition, a CP score of five
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or six is also banded into the CP grade A, and a CP score of seven, eight, or nine is banded
into the CP grade B [24,25].

Table 1. Child-Pugh score (CP score) [24,25].

Covariates Conditions for Covariate
Score = 1

Conditions for Covariate
Score = 2

Conditions for Covariate
Score = 3

hepatic encephalopathy grade 0 1, 2 3, 4
ascites grade 0 1 2, 3

total bilirubin (g/L) >0 and <34 34~51 >51
albumin (g/L) >35 28~35 >0 and <28

prothrombin time (s) >0 and <4 4~6 >6

Example 2. Wang et al. investigated whether patients with small HCC could benefit from a
hepatectomy through a retrospective control study [26]. A total of 143 patients with HCC were
involved in the trial, all of whom satisfied the inclusion criterion of “with single tumor lower than
2 cm, no distant metastasis (DM), no vascular invasion (VI), and no ascites (AC)”. Comparisons
between the results of the hepatectomy and control groups showed that the hepatectomy could not
significantly extend survival time for patients satisfying the inclusion criterion.

Let YT=1(0)
i denote the potential survival time of patient i receiving “sorafenib” (not

receiving “sorafenib”), the conclusions in Example 1 actually tell us that if a patient i
belongs to the CP grade A, then there is ITEi = ∆Yi = YT=1

i − YT=0
i > 0 with a high

certainty even if the patient was not involved in the meta-analysis conducted by [23]. This
prior knowledge offers valuable information on the counterfactual ITE to the patients
involved in a representation learning. Similarly, let YT=1(0)

i represent the potential survival
time of patient i receiving a hepatectomy (not receiving a hepatectomy), we know from
Example 2 that if patient i meets the condition of “with single tumor lower than 2 cm, no
distant metastasis (DM), no vascular invasion (VI), and no ascites”, there is ∆Yi = 0 with a
high possibility, which is also important prior knowledge for representation learning.

It can be seen that Examples 1 and 2 describe the conditions of the knowledge in
different ways. In Example 2, the original covariates in the baseline are directly evaluated
in the inclusion criterion, which is common in RCTs or RCSs, while in Example 1, the CP
score derived from the original covariates in the baseline is evaluated in the condition.
This is also a way of representativeness to express the conditions of the patients, because
besides the CP score adopted in Example 1, there are also many other different kinds of
scores to measure the initial conditions of the patients related to various diseases, which
may influence the further treatment effects, such as the influence of the lung allocation
score [27] on lung transplantation [28] and the influence of the renal score [29] on renal
cryoablation [30], etc.

In the following, we define a set to denote the group of patients satisfying the two
typical kinds of conditions mentioned above in a unified way, i.e.,

Θ =

{
xi

∣∣∣∣∣ m

∑
j=1

d

∑
l=1

oj,l I(λj,l ≤ xi,j ≤ µj,l) ∈ V

}
(4)

where xi,j denotes the jth element of xi and I(*) is an indicative function which equals 1(0)
when the inequality in the brackets holds (does not hold). The number of indicative func-
tions (i.e., d), the weighting coefficients oj,l for j = 1 . . . m and l = 1, . . . , d, the thresholds
λj,l , µj,l for j = 1, . . . , m and l = 1, . . . , d, and the set V should be determined by the specific
conditions of the corresponding knowledge.

Formula (4) can cover both of the two examples given previously. If we let d = 3,
oj,1 = 1, oj,2 = 2, oj,3 = 3, it is obvious that the group of patients with the CP grade A
mentioned in Example 1 can be described by:
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Θ∆>0 =

xi

∣∣∣∣∣∣ ∑
j∈{HE,AC,TBIL,ALB,PT}

[
I
(

λj,1 ≤ xi,j ≤ µj,1
)
+ 2I

(
λj,2 ≤ xi,j ≤ µj,2

)
+ 3I

(
λj,3 ≤ xi,j ≤ µj,3

)]
∈ {5, 6}

 (5)

where the coefficients λj,l and µj,l for j ∈ {HE, AC, TBIL, ALB, PT} and l = 1, 2, and 3
can be assigned according to Table 1. For example, it is direct that there are λHE,2 = 1,
µHE,2 = 2; λAC,2 = µAC,2 = 1; λPT,1 = 0, µPT,1 =4, and λTBIL,3 = 51, µTBIL,3 = +∞. As for
Example 2, the group of patients satisfying the inclusion criterion of “with single tumor
lower than 2 cm, no distant metastasis (DM), no vascular invasion (VI), and no ascites (AC)”
can be directly written as:

Θ∆=0 =
{

xi
∣∣I(xi,diameter ≤ 2) + I(xi,number = 1) + I(xi,DM = 0) + I(xi,VI = 0) + I(xi,AC = 0) ∈ {5}

}
(6)

where xi,j denotes the jth element of xi for j ∈ {diameter, number, DM, VI, AC}.
So, the knowledge obtained in Examples 1 and 2 can be written as ITE = ∆Yi > 0, if

xi ∈ Θ∆>0 and ITE = ∆Yi = 0, if xi ∈ Θ∆=0. Now consider a general situation: suppose we
can obtain ITE = ∆Yi > 0, if xi ∈ Θτ

∆>0 for τ = 1, . . . , s, and ITE = ∆Yi = 0, if xi ∈ Θρ
∆>0

for ρ = 1, . . . , $, then let:

Ω = ∪s
τ=1Θτ

∆>0 Γ = ∪$
ρ=1Θj

∆=0 (7)

where ∪ represents the union. The prior knowledge can be finally written as{
∆Yi > 0, if xi ∈ Ω
∆Yi = 0, if xi ∈ Γ

(8)

4.2. Importance of Counterfactual Prediction

As shown in Figure 1, during the training process, when predicting ŷti
i for patient i who

has really received treatment ti, CSA–Dragonnet feeds the representation φ
(

xti
i

)
into either

the top branch or the bottom branch according to the actual value of ti, i.e., φ
(

xti
i

)
is only fed

into the branch consisting of gT=ti , hT=ti , and uT=ti because the observed time γ
ti
i is available

for that branch and can serve as the ground truth label (when yti
i is not censored) or at least

as a bound for ŷti
i (when the true survival time yti

i is censored) according to the loss (3).

As defined in Notation (4) in Section 2.1, if φ
(

xti
i

)
is fed into another branch com-

posed of gT=1−ti , hT=1−ti , and uT=1−ti , the output is denoted by ŷT=1−ti
i and is called the

counterfactual prediction because the treatment 1− ti has not happened to patient i. The
reason why ŷT=1−ti

i is not calculated in the existing representation methods is that γ
T=1−ti
i

is counterfactual and therefore there is no ground truth information for training the model
in that situation.

Now let us discuss what benefit the prior knowledge from formula (8) will bring
to the ITE estimation. Although for each patient i in the historical dataset, of the two
potential outputs YT=1

i and YT=0
i , one must have the corresponding observed time γ

ti
i

and the other one must be counterfactual, so the knowledge ∆Yi = YT=1
i − YT=0

i > 0 or
∆Yi = YT=1

i −YT=0
i = 0 obviously may offer additional information on the counterfactual

potential output, which can be further used as some kind of bound for the counterfactual
prediction ŷT=1−ti

i .
So, in order to take full advantage of the prior knowledge given by RCTs or RCSs, in

the following, we will first enhance the CSA–Dragonnet by incorporating counterfactual
prediction branches which can output ŷT=1−ti

i and further by introducing new items into
the loss function to guide the training of the counterfactual prediction outputs. We refer to
the enhanced method as CSA–Dragonnet with Embedded Prior Knowledge (CDNEPK).
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4.3. Architecture of CDNEPK with Incorporated Counterfactual Prediction Branches

To support the counterfactual prediction, two new branches to predict ŷT=1−ti
i for

ti = 1 and 0, i.e., ŷT=0
i and ŷT=1

i , can be added to CSA–Dragonnet, as shown in Figure 2.
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Figure 2. Introducing counterfactual prediction branches into CSA–Dragonnet.

Figure 3 gives a more concise diagram for the CDNEPK, which is equivalent to Figure 2.
In Figure 3, the top branch is for factual prediction, which actually combines the calculations
in both the top and bottom branches of Figure 1 (or the top and 4th branches of Figure 2)
into one branch. Similarly, the bottom branch of Figure 3 is for counterfactual prediction,
which combines the 2nd and 5th branches of Figure 2. For convenience, for a patient i who
has received treatment ti, we call the top branch of Figure 3 (which consists of gT=ti , hT=ti ,
and uT=ti ) the factual prediction branch, and call the bottom branch of Figure 3 (which
consists of gT=1−ti , hT=1−ti , and uT=1−ti ) the counterfactual prediction branch hereafter.
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4.4. Loss Items of CDNEPK with Incorporated Prior Knowledge

As explained in Section 4.2, the prior knowledge ∆Yi = YT=1
i −YT=0

i > 0 for xi ∈ Ω and
∆Yi = YT=1

i −YT=0
i = 0 for xi ∈ Γ offers valuable information for the training of the bottom

counterfactual prediction branch. In this section, we will discuss how to incorporate this
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information into the loss function according to different situations of ti = 1 or 0 (i.e., whether
patient i has actually received the treatment or not), δi = 0 or 1 (i.e., whether the patient’s
survival time is censored or not), and ∆Yi > 0 or ∆Yi = 0 (i.e., whether patient i could greatly
benefit from the treatment T = 1 relative to T = 0 or not according to prior knowledge).

1. Patients with prior knowledge ∆Yi > 0 (xi ∈ Ω)

(i) ti = 0, δi = 1 and ∆Yi > 0.

In this case, since the survival time is not censored, we know that of the two potential
outputs YT=1

i and YT=0
i in the prior knowledge, YT=0

i has the ground truth observation, i.e.,
there is YT=0

i = γ
ti=0
i and γ

ti=0
i is the true survival time, but YT=1

i is counterfactual. Then,
the prior knowledge YT=1

i − YT=0
i >0 for xi ∈ Ω is equivalent to YT=1

i > YT=0
i = γ

ti=0
i ,

which means γ
ti=0
i can be used as a lower bound of the counterfactual prediction of

ŷT=1−ti
i = ŷT=1

i , or in other words, there should be a constraint ŷT=1−ti
i = ŷT=1

i > γ
ti=0
i for

predicting ŷT=1
i . Let Nxi∈Ω denote the number of patients who belong to Ω, we can define

the following loss item:

L11 =
Nxi∈Ω

N ∑
xi∈DT=0∩Ω

δimax(0, γ
ti=0
i − ŷT=1−ti

i ) (9)

whose minimization will penalize γ
ti=0
i − ŷT=1−ti

i > 0 and favors the satisfaction of the
constraint ŷT=1−ti

i = ŷT=1
i > γ

ti=0
i .

(ii) ti = 0, δi = 0 and ∆Yi > 0.

In this case, the survival time is censored, which means at the end of the trial the
patient is still alive. So, the observed time γ

ti=0
i must be less than the true survival time

(i.e., there is YT=0
i > γ

ti=0
i ). Then, of the two potential outputs YT=1

i and YT=0
i , YT=0

i only
has a lower bound γ

ti=0
i instead of the ground truth, and YT=1

i is still counterfactual. Since
YT=0

i > γ
ti=0
i and YT=1

i − YT=0
i > 0 lead to YT=1

i > YT=0
i > γ

ti=0
i for xi ∈ Ω, we still have

the constraint ŷT=1−ti
i = ŷT=1

i > γ
ti=0
i for ŷT=1−ti

i and therefore can define the loss term
by only replacing the δi in (9) with (1− δi) considering δi = 0, i.e.,

L12 =
Nxi∈Ω

N ∑
xi∈DT=0∩Ω

(1− δi)max(0, γ
ti=0
i − ŷT=1−ti

i ) (10)

It is worth mentioning that although γ
ti=0
i is used as the lower bound in both case

(i) and case (ii), it is more conservative in this case than in case (i) because of YT=0
i > γ

ti=0
i .

(iii) ti = 1, δi = 1 and ∆Yi > 0.

In this case, YT=1
i has the ground truth γ

ti=1
i , i.e., YT=1

i = γ
ti=1
i , with γ

ti=1
i equaling

the true survival time, but YT=0
i is counterfactual. So, YT=1

i − YT=0
i > 0 is equivalent to

YT=1
i = γ

ti=1
i > YT=0

i , which means there is a constraint ŷT=1−ti
i = ŷT=0

i < YT=1
i = γ

ti=1
i

for ŷT=0
i with γ

ti=1
i as the upper bound. Then, the loss item can be defined by penalizing

ŷT=1−ti
i − γ

ti=1
i > 0 as follows:

L13 =
Nxi∈Ω

N ∑
xi∈DT=1∩Ω

δimax(0, ŷT=1−ti
i − γ

ti=1
i ) (11)

(iv) ti = 1, δi = 0 and ∆Yi > 0.

In this case, there is YT=1
i > γ

ti=1
i because the survival time is censored, and therefore

YT=1
i has a lower bound γ

ti=1
i but YT=0

i is counterfactual. However, it is obvious that
YT=1

i > γ
ti=1
i and YT=1

i − YT=0
i > 0 cannot yield any bound information for YT=0

i (and
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further for ŷT=0
i ) based on γ

ti=1
i . So, in this case, the prior knowledge does not offer

additional information for the counterfactual model training.

2. Patients with prior knowledge ∆Yi = 0 (xi ∈ Γ)

(i) ti = 1 or 0, δi = 1 and ∆Yi = 0.

In this case, the survival time can be observed, so similar to (1).(i) and (1).(iii), for ti = 1
or 0, YT=ti

i has the ground truth γ
ti
i , i.e., YT=ti

i = γ
ti
i , with γ

ti
i equaling the true survival

time, but YT=1−ti
i is counterfactual. Then, the prior knowledge YT=1

i = YT=0
i for xi ∈ Γ is

equivalent to YT=1−ti
i = YT=ti

i = γ
ti
i for ti = 1 or 0. Hence, γ

ti
i can serve as the label of the

counterfactual predicted survival time ŷT=1−ti
i , and the loss item can be defined as follows:

L21 =
Nxi∈Γ

N ∑
j=0,1

∑
xi∈DT=j∩Γ

1
Nxi∈DT=j∩Γ,T=j

δi

∣∣∣γti
i − ŷT=1−ti

i

∣∣∣ (12)

where Nxi∈Γ denotes the number of patients who belong to Γ and Nxi∈DT=j∩ Γ,T=j denotes
the number of patients who belong to the intersection of DT=j (j = 0 or 1) and Γ.

(ii) ti = 1 or 0, δi = 0 and ∆Yi = 0.

In this case, the survival time cannot be observed, so similar to (1). (ii) and (1).(iv),
there is YT=ti

i > γ
ti
i for ti=1 or 0, and YT=1−ti

i is counterfactual. Then, the prior knowledge
YT=1

i = YT=0
i for xi ∈ Γ is equivalent to YT=1−ti

i = YT=ti
i > γ

ti
i . Hence, we have a

constraint ŷT=1−ti
i > γ

ti
i on the counterfactual predicted survival time ŷT=1−ti

i with γ
ti
i as

the lower bound, and we can define the loss item as:

L22 =
Nxi∈Γ

N ∑
j=0,1

∑
xi∈DT=j∩Γ

1
Nxi∈DT=j∩Γ,T=j

[
(1− δi)max

(
0, γ

ti
i − ŷT=1−ti

i

)]
(13)

whose minimization will penalize γ
ti=0
i − ŷT=1−ti

i > 0.

4.5. Training Algorithm for CDNEPK

The final loss item for the counterfactual prediction ŷT=1−ti
i can be defined as the

summation of (9)–(13), i.e.,

LCP =
Nxi∈Ω

N

{
∑

xi∈Ω∩DT=0

δimax(0, γ
ti=0
i − ŷT=1−ti

i ) + ∑
xi∈Ω∩DT=0

(1− δi)max(0, γ
ti=0
i − ŷT=1−ti

i )

+ ∑
xi∈Ω∩DT=1

δimax(0, ŷT=1−ti
i − γ

ti=1
i )

}
+

Nxi∈Γ
N ∑

j=0,1
∑

xi∈DT=j∩Γ

{
1

Nxi∈DT=j∩Γ,T=j

{
δi

∣∣∣γti
i − ŷT=1−ti

i

∣∣∣+ [(1− δi)max
(

0, γ
ti
i − ŷT=1−ti

i

)]}} (14)

and the loss function for CDNEPK is finally defined as:

min
φ, ψ

gT=1,hT=1,uT=1
gT=0,hT=0,uT=0

LCDNEPK = min
{

LCSA−Dragon + LCP
}

(15)

where LCSA-Dragon has been defined in (3). By now, all of the four problems mentioned in
Section 1, i.e., (i) balancing the confounders, (ii) handling the censored data, (iii) avoiding
balancing the non-confounders, and (iv) taking advantage of prior knowledge have been
properly considered in CDNEPK.

The training algorithm of CDNEPK is summarized as the following.
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Remark 2. It is worth noting that Algorithm 1 can also be used for the training procedure of
CSA–Dragonnet proposed in Section 3 just by replacing the loss function in line four of Algorithm
1 (i.e., Formula (15)) as the loss function of CSA–Dragonnet (i.e., Formula (3)).

Algorithm 1: Training algorithm of CDNEPK.

Input: Dataset Dall, weighting factors α,β, iteration time c1, batch number c2, batch size b, learning
rate r, initial weights of network W;
Output: Trained CDNEPK model
1: for i = 1 to c1 do

2: Resort and divide the dataset Dall into c2 batches
{

Dj
}c2

j=1
3: for j = 1 to c2 do
4: Calculate loss function of jth batch Dj according to Formula (15):

LCDNEPK

(
Dj
)
= LCSA−Dragon

(
Dj
)
+ LCP

(
Dj
)

5: Update W by descending its gradient

W ←W− r · ∇W LCDNEPK

(
Dj
)

6: end for
7: end for

5. Experiments Based on Semi-Synthetic Data
5.1. Data Generating and Experiment Setup

As mentioned in Section 1, the results of RCTs or RCSs can offer valuable information
about the ITE to counterfactual learning. In the following, two examples are given to
illustrate it in detail.

Based on an ACTG dataset which is given by [31] and contains 2139 HIV patients
who received either the treatment of “monotherapy with Zidovudine” or the treatment of
“Diadanosine with combination therapy”, [4] proposes the following scheme for generating
the semi-synthetic dataset Dall = {(γi, xi, δi, ti), i = 1, 2, . . . , N} [4].

xi = ACTG covariates o f patients i
P(ti|xi) = 1/d1 × (d2 + sigmoid(xi,AGE − xi,AGE + λxi,CD40 − µ xi,CD40))

YT=1
i = 1

κT=1
log
[
1− κT=1 log(Z=zi)

χT=1 exp(xi
TηT=1)

]
YT=0

i = 1
κT=0

log
[
1− κT=0 log(Z=zi)

χT=0 exp(xi
TηT=0)

]
yti

i = YT=ti
i

log ycen,i ∼ Normal(µc, σ2
c )

γ
ti
i = min

(
yti

i , ycen,i

)
δi = 1 i f yti

i < ycen,i, else δi = 0

(16)

where the treatment ti is simulated via a logistic model; xi,AGE and xi,CD40 are the average
values of AGE and CD40; the potential outcomes YT=1

i and YT=0
i are simulated via the

Gompertz-COX model; the survival time yti
i equals its corresponding YT=ti

i ; the censored
time ycen,i is assumed to follow a lognormal distribution; and the observed time γi is
the minimum of the survival time yti

i and the censored time ycen,i. δi = 1(0) indicates
that survival time is (is not) censored, which is determined by comparing ycen,i and yti

i
in the simulation, e.g., if ycen,i is longer than yti

i , δi is set as 1 [4]. Λ = {d1 , d2, λ, µ, κT=1,
κT=0, ηT=1, ηT=0, χT=1, χT=0, µc, σ2

c
}

contains the parameters of the simulation scheme.
The Individual Treatment Effect ∆Yi can be acquired by ∆Yi = YT=1

i − YT=0
i . It is worth

mentioning that (16) can output both of the two potential outcomes YT=1
i and YT=0

i ,
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which is impossible in the real world and can be used to evaluate the performance of a
counterfactual learning method which treats yT=ti

i as counterfactual and unobservable.
In this section, to generate semi-synthetic data with simulated prior knowledge, we

divided all the patients’ baselines covered by the ACTG dataset [31] into four cases, i.e.,



Θ1 =

{
xi

∣∣∣∣ 0.5I(xi, AGE > 30) + I(xi, AGE > 40) + 0.5I(xi, CD80 > 500) + I(xi, CD80 > 800) + I(xi, Z30 = 1)
+I(xi, RACE = 1) + I(xi, GENDER = 1) + I(xi, STE = 1) ∈ {5, 5.5, 6}

}
Θ2 =

{
xi

∣∣∣∣ I(xi, AGE > 30) + I(xi, CD80 > 500) + I(xi, Z30 > 0.5) + I(xi, RACE = 1) + I(xi, GENDER = 1)
+I(xi, STE = 1) ∈ {6}

}
Θ3 =

{
xi

∣∣∣∣ 0.5I(xi, AGE > 30) + I(xi, AGE > 40) + 0.5I(xi, CD80 > 500) + I(xi, CD80 > 800) + I(xi, Z30 = 1)
+I(xi, RACE = 1) + I(xi, GENDER = 1) + I(xi, STE = 1) ∈ {0, 0.5, 1, 1.5, 2}

}
Θ4 = {xi|xi /∈ Θ1 ∪Θ2 ∪Θ3}

(17)

and then by setting the parameters in Λ of (16) properly, generated four different datasets satisfying dif-
ferent conditions, respectively, i.e., D1 =

{
xi
∣∣xi ∈ Θ1 and ∆Yi >0

}
, D2 =

{
xi
∣∣xi ∈ Θ2 and ∆Yi >0

}
,

D3 =
{

xi
∣∣xi ∈ Θ3 and ∆Yi = 0

}
, and D4 =

{
xi
∣∣xi ∈ Θ4 and ∆Yi has wide distribution}. The final

semi-synthetic dataset was obtained by Dall = ∪4
i=1Di. Through properly selecting the

parameters in Λ, among the 2139 patients in Dall , there were 417 patients belonging to D1
or D2, 668 patients belonging to D3, and 1054 patients belonging to D4.

From the viewpoint of evaluating an ITE estimation method based on the dataset
Dall , although ∆Yi was generated by the simulation and was known, we treated ∆Yi as
counterfactual (not observable) but assumed that there was the prior knowledge ∆Yi > 0
or ∆Yi = 0 for part of the patients, i.e., there were ∆Yi = YT=1

i − YT=0
i > 0 if xi ∈ Ω and

∆Yi = YT=1
i − YT=0

i = 0 if xi ∈ Γ with a high certainty, where Ω = Θ1 ∪Θ2 and Γ = Θ3,
and we had no prior knowledge for patients not belonging to Ω or Γ, among which ∆Yi
may have randomly varied from negative to positive.

In the experiment, the dataset was randomly divided into the training set, validation
set, and test set with a ratio of 70%:15%:15%. As in CSA [4], the FCNs φ, gT=1, gT=0, uT=1,
uT=0 used in CDNEPK and CSA–Dragonnet were two-layer MLPs of 100 hidden units,
and the FCNs hT=1, hT=0 used in CDNEPK and CSA–Dragonnet were one-layer MLPs. In
addition, all the hidden units in φ, gT=1, gT=0 were characterized by batch normalization
and the dropout probability of p = 0.2 on all layers. As in Dragonnet [10], the FCN ψ used
in CDNEPK and CSA–Dragonnet was a one-layer MLP. Weighting factors α, β in (3) were
set as 1000,100, respectively, which were selected by cross-validation. The iteration time
c was set as 80 and the batch size was set as 850. An Adam optimizer was used with the
learning rate r = 3× 10−3.

5.2. Experimental Results

We compared our proposed CDNEPK and CSA–Dragonnet with the following meth-
ods: (i) CSA [4]; (ii) the accelerate failure time (AFT) model with Weibull distributions [12];
(iii) the random survival forest (RSF) model [13]; and (iv) the COX proportional hazard
model [11]. Among them, CSA was introduced in the preliminary, whose settings for the
FCNs were identical to those in CDNEPK and CSA–Dragonnet in the simulation. Instead
of applying balance representation like the three methods mentioned above, the AFT, RSF,
and COX models took the treatment vector as a covariate directly, which led to the limited
ability to handle selection bias.

In the experiments, we adopted the PEHE (precision in the estimation of a heteroge-
neous effect) and the absolute error of the ATE (average treatment effect), which are widely
used for assessing the Individual Treatment Effect error [4], and are defined as following,
respectively [4]:

εPEHE =

√
1
N ∑

i≤N

(
∆Yi − ∆̂Yi

)2 (18)
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εATE =

∣∣∣∣∣ 1
N ∑

i≤N
∆̂Yi −

1
N ∑

i≤N
∆Yi

∣∣∣∣∣ (19)

It is worth noting that εPEHE and εATE can only be calculated in simulation experiments
where the ground truth ∆Yi is available and they cannot be calculated for real-world data
where ∆Yi is counterfactual [4].

Table 2 presents the comparison results among COX, AFT, RSF, CSA, CSA–Dragonnet,
and CDNEPK. It can be seen that the COX and AFT models had poorer performance since
they adopted linear models and did not consider selection bias. For RSF, although it still
suffered from selection bias, its ability to process nonlinear survival data led to the lower
εPEHE and εATE compared to COX and AFT.

Table 2. Quantitative Results.

εPEHE εATE

COX 375.33 144.65
AFT 342.71 180.08
RSF 292.78 127.29
CSA 291.49 80.34

CSA–Dragonnet 271.23 73.24
CDNEPK 264.59 67.35

CSA, as the baseline method of this paper, dealt with the nonlinearity and selection bias
by representation learning and balancing the confounders. It had a significant enhancement
compared to COX, AFT, and RSF. Compared to the basis of CSA, the proposed CSA–
Dragonnet took the confounder identification into account and improved the performance
on εPEHE and εATE. Furthermore, CDNEPK is proposed to cope with prior knowledge,
which is superior to all other methods.

6. Real-World Experiment on Hepatocellular Carcinoma

As the third most fatal cancer for men in the world, Hepatocellular Carcinoma (HCC)
has a high mortality rate for patients [32]. Although a hepatectomy is the most effective
treatment for HCC, the mortality of some patients after a hepatectomy still remains high
and how long a hepatectomy can prolong the survival time of HCC patients still remains
controversial [33]. In this section, we utilized CDNEPK to estimate the Individual Treatment
Effect for each patient.

The dataset used in this section included records of 1459 patients, which were retro-
spectively collected from three hospitals in China. Among the 1459 patients, 784 patients
were treated with a hepatectomy and the other 675 patients were not treated with liver
resection. Basic information, laboratory tests, and imaging tests were included in the
patients’ records. The basic information included gender, age, and ECOG-PS score. The
laboratory tests consisted of alpha-fetoprotein (AFP), blood tests (i.e., total bilirubin, alanine
transaminase, aspartate aminotransferase, and alkaline phosphatase), and hepatitis tests
(i.e., HBsAg, HBsAb, HBeAg, HBeAb, HBcAb, and HCVAb). The imaging tests contained
tumor numbers, diameters, sites, distant metastasis, vascular invasion, and ascites. All of
the above 21 clinical covariates of the baseline and whether a patient had a hepatectomy
were included in our final analysis.

In Example 2 we mentioned that HCC patients with a single small tumor cannot benefit
from a hepatectomy with a high probability. As for HCC patients in other cases, there
are also RCTs or RCSs that focus on whether they could benefit from a hepatectomy. [34]
summarizes the results as follows: (i) patients with a single tumor lower than 2 cm, no
distant metastasis (DM), no vascular invasion (VI), and no ascites (AC) could not benefit
from a hepatectomy significantly;(ii) patients with 2–3 tumors lower than 2 cm, no distant
metastasis (DM), no vascular invasion (VI), and no ascites (AC) could not significantly
extend survival time from a hepatectomy;(iii) patients with a single tumor between 5–10 cm,
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no distant metastasis (DM), no vascular invasion (VI), and no ascites (AC) could benefit
from a hepatectomy significantly.

Similar to Example 2 of Section 4.1, the results of the RCTs and RCSs given in [34] can
be expressed as the following prior knowledge. Let YT=1(0)

i represent the potential survival
time of patient i receiving a hepatectomy (not receiving a hepatectomy), and we divide all
patients’ baselines covered by the HCC dataset [31] into four cases, i.e.,

D1 =
{

xi|xi ∈ Θ1 and ∆Yi
= 0

}
D2 =

{
xi|xi ∈ Θ2 and ∆Yi

= 0
}

D3 =
{

xi|xi ∈ Θ3 and ∆Yi
> 0

}
D4 =

{
xi|xi ∈ Θ4 and ∆Yi

has wide distribution
} (20)

where
Θ1 =

{
xi
∣∣I(xi,diameter ≤ 2) + I(xi,number = 1) + I(xi,DM = 0) + I(xi,VI = 0) + I(xi,AC = 0) ∈ {4}

}
Θ2 =

{
xi
∣∣I(xi,diameter ≤ 2) + I(2 ≤ xi,number ≤ 3) + I(xi,DM = 0) + I(xi,VI = 0) + I(xi,AC = 0) ∈ {4}

}
Θ3 =

{
xi
∣∣I(5 ≤ xi,diameter ≤ 10) + I(xi,number = 1) + I(xi,DM = 0) + I(xi,VI = 0) + I(xi,AC = 0) ∈ {4}

}
Θ4 = {xi|xi /∈ Θ1 ∪Θ2 ∪Θ3}

(21)

According to Formula (7), there is Γ = Θ1 ∪Θ2 and Ω = Θ3.In addition, for patients not belong-
ing to Ω or Γ, we have no prior knowledge, among which ∆Yi may have a wide distribution.

In the experiment, we obtained a trained CDNEPK by using Algorithm 1 of Section 4.5
based on the data of the 1459 HCC patients, in which the settings of CDNEPK were identical
to those in Section 5.

A direct usage of the obtained CDNEPK is giving the predicted ITE by ∆̂Ynew(xnew) for
a new patient who has not received treatment yet, where ∆̂Ynew(xnew) denotes the output
of CDNEPK with xnew as the input. This kind of prediction may help a doctor or patient
choose the proper treatment. However, the reason why we did not divide the dataset of
the 1459 HCC patients into a training set and a test set to show the predicted ITEs for the
patients in the test set and evaluate their prediction errors is that the ITE is counterfactual
for a patient in the real word data, which means the ground truth data is unavailable for
any patient.

In the following, we will show another usage of the obtained CDNEPK, i.e., analyzing the
importance of each covariate on the ITE. Based on the obtained CDNEPK, we first calculate
∆̂Yi for all of the 1459 patients based on their baselines, then build the relationship between
the estimated ITE and the baseline by solving the following lasso regression problem:

min
v

 1
2N

N

∑
i=1

(
∆̂Yi −v0 −

m

∑
j=1

xijvj

)2

+ ι‖v‖1

 (22)

where v = [v1, . . . vm] and ι are the regression coefficient vector and weighting factor,
respectively. Formula (22) can be solved by the method in [20]. According to the idea of
factor analysis [35], it is intuitive that the absolute values of the m regression coefficients,
i.e., v1, . . . vm, can reflect the contributions of the m covariates of the baseline xi to the
ITE, respectively; i.e., the greater

∣∣vj
∣∣ is, the greater the contribution the jth covariate has

to the ITE. So, through cross-validation, we selected four covariates corresponding to the
regression coefficients with the top four greatest absolute values as the key covariates
which are most important to the ITE, i.e., tumor diameter, alpha fetoprotein, aspartate
aminotransferase, and distant metastasis.

In Figure 4, a box-plot is used to illustrate the relationships between the ITE and the
four key covariates. It is apparent from Figure 4a that the ITE increased with the increase
in tumor diameter when it was less than 8 cm. In contrast, when the diameter was less
than 2 cm, the median ∆Yi was less than zero, which indicates that patients with numbers
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less than 2 cm may not benefit significantly from a hepatectomy. As a whole, patients with
tumors between 5–8 cm could benefit the most from a hepatectomy. Figure 4b indicates that
the ITE increased with the increase in alpha fetoprotein, while Figure 4c shows that the ITE
decreased with the increase in aspartate aminotransferase. It can be inferred that the benefit
of a hepatectomy is positively associated with liver function. Figure 4d shows that patients
without distant metastasis had higher benefit ratios than those with distant metastasis in
terms of the median and upper quartile. Thus, patients without distant metastasis have a
high probability of benefiting from a hepatectomy.
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The above example shows that, with CDNEPK, we can utilize observational historical
data and prior knowledge to estimate the individual surgical benefit for HCC patients and
can further analyze the influence of covariates on the trend of surgical benefits. The results
can offer HCC surgeons quantitative information and valuable assistant treatment advice,
which can never be obtained by RCT or RCS studies.

7. Conclusions

In this paper, we propose CSA–Dragonnet and CDNEPK to estimate the ITE on
survival time from observational data. The key novelty of our methods is that we insert
counterfactual prediction nets into CSA–Dragonnet and extract valuable bound information
for the counterfactual prediction from the prior knowledge yielded by RCTs and RCS to
guide the training of counterfactual outputs. Experiments based on semi-synthetic data
and real-world data showed that CDNEPK had the best performance compared to existing
methods and that it can provide auxiliary treatment advice for surgeons.
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