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a b s t r a c t

HCV genotype 4 is prevalent in many African countries, yet little is known about the genotype's epidemic
history on the continent. We present a comprehensive study of the molecular epidemiology of genotype
4. To address the deficit of data from the Democratic Republic of the Congo (DRC) we PCR amplified 60
new HCV isolates from the DRC, resulting in 33 core- and 48 NS5B-region sequences. Our data, together
with genotype 4 database sequences, were analysed using Bayesian phylogenetic approaches. We find
three well-supported intra-genotypic lineages and estimate that the genotype 4 common ancestor
existed around 1733 (1650–1805). We show that genotype 4 originated in central Africa and that
multiple lineages have been exported to north Africa since �1850, including subtype 4a which
dominates the epidemic in Egypt. We speculate on the causes of the historical intra-continental spread
of genotype 4, including population movements during World War 2.
& 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

Hepatitis C virus (HCV) is a major human pathogen that causes
substantial morbidity and mortality worldwide. It is estimated
that more than 185 million people are chronically infected with
HCV and that there are 3–4 million new infections each year
(Mohd Hanafiah et al., 2013). Infection with the virus is typically
asymptomatic or unspecific in the initial stages, but once it
progresses to long-term chronic infection it can lead to liver
cirrhosis, fibrosis, and sometimes hepatocellular carcinoma
(Lauer and Walker, 2001).

HCV is a genetically diverse virus that is classified into seven
genotypes (1–7) with an average of 35% nucleotide divergence
between strains belonging to different genotypes. All genotypes
except 5 and 7 are subdivided into numerous subtypes (1a, 1b, 1c,
2a, 2b etc.) and the average nucleotide divergence between
subtypes of the same genotype is around 25% (Murphy et al.,
2007a; Simmonds et al., 1993; Smith et al., 2014).

Although the majority of HCV infections worldwide are caused
by a small number of ‘epidemic’ subtypes (e.g. 1a, 1b, 2a and 3a)
that spread rapidly during the twentieth century (Magiorkinis
et al., 2009; Pybus et al., 2005; Simmonds, 2004), there are clear
geographic patterns in the distribution of HCV genetic diversity.
Highly divergent ‘endemic’ strains that belong to the same
genotype are typically found in a restricted geographic area,
indicating the presence of the genotype in that location for
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hundreds or thousands of years (Simmonds, 2004). For example,
HCV genotype 2 is thought to be endemic in West Africa,
genotypes 1 and 4 in Central Africa and the Middle East and
genotype 6 in East Asia (Candotti et al., 2003; Jeannel et al., 1998;
Mellor et al., 1995; Ndjomou et al., 2003; Pybus et al., 2009).

The epidemiology of HCV prior to the discovery of the virus is
poorly understood. Documentary evidence of past HCV transmis-
sion is difficult to establish as symptoms during acute infection
are unspecific and HCV incidence before the widespread use
of injections was likely too low to create notable outbreaks of
disease. Further, samples available for retrospective screening that
were archived before the 1970s are exceptionally rare (Gray et al.,
2013). As a consequence, evolutionary analyses of contemporary
HCV gene sequences using phylogenetic and coalescent-based
methods have been utilised to estimate dates of viral divergence
and to estimate viral effective population size through time. In
addition, previous studies of genotype 2 in Africa (Markov et al.,
2009) and of genotype 6 in Asia (Pybus et al., 2009) employed
phylogeographic and molecular clock methods and provided
insights into the historical geographic spread of HCV, the age of
HCV genotypes and subtypes, and their recent transmission
history.

To date there has been no systematic phylogeographic or
evolutionary study of HCV genotype 4 as a whole. This genotype
is common throughout most of Central Africa and parts of the
Middle East. Recent estimates indicate that there are �8 million
people infected with HCV in Central and Eastern Sub-Saharan
African, and 415 million people infected across North Africa and
the Middle East (Mohd Hanafiah et al., 2013). Genotype 4 (and
subtype 4a in particular) dominates the HCV epidemic in Egypt,
where 15% of adults are antibody-positive for HCV, with a much
higher prevalence seen in older cohorts (El-Zanaty and Way,
2009). HCV in Egypt has been described as a ‘local epidemic’,
whereby the transmission of one or a few subtypes rises rapidly
within a region, but without the international dissemination
observed for the ‘global epidemic’ subtypes such as 1a and 1b.
High HCV seroprevalences and local epidemics associated with
other subtypes of genotype 4 and have also been reported in many
sub-Saharan African countries. For example, 11.2% of people
screened in rural Gabon were seropositive for HCV (Njouom et
al., 2012) of whom 92% were infected with genotype 4. In that
study major risk factors for HCV infection were past injections,
hospital admissions, and age greater than 55. In Cameroon, HCV
seroprevalence was 11% in a group of high-HIV risk individuals and
16% of the HCV infections were classified as genotype 4 (Ndjomou
et al., 2003). In a separate Cameroonian cohort comprising
individuals aged over 60, HCV seroprevalence was 56% and 54%
of infections were genotype 4 (Pépin et al., 2010a). In each of these
studies HCV seroprevalence was strongly associated with age and
subtypes 4a and 4r were observed.

The evolution and genetic history of genotype 4 is worthy of
investigation for several reasons. First, together with genotype 1,
genotype 4 responds less well to interferon-based anti-HCV drug
treatment than genotypes 2 and 3, especially in patients of African
descent (Chen et al., 2012; Rose et al., 2013) and it has been
hypothesised that this phenotype is a consequence of the long-
term presence of genotypes 1 and 4 in Central African populations
(Rose et al., 2013). Second, there are a number of unanswered
questions concerning the origin and spread of HCV genotype
4 within Africa. For example, the current distribution and past
spread of genotype 4 strains among countries is unclear and the
geographic source of the HCV lineages present in Egypt and the
Middle East is currently unknown. In addition, in recent years
there has been rapid growth in the prevalence of HCV subtypes 4a
and 4d in Europe, particularly among injecting drug users (IDUs),
hence a comprehensive overview of genotype 4 diversity may

prove useful for public health assessments outside Africa (Ciccozzi
et al., 2012; De Bruijne et al., 2009; van Asten et al., 2004).

The investigation of HCV evolution in Central Africa is ham-
pered by a lack of information about its epidemiology and genetic
diversity in the region. Mohd Hanafiah et al. (2013) define the
evidentiary support for HCV prevalence in the region as ‘very
limited’. Although recent surveillance studies have explored the
genetic diversity of HCV in Cameroon, Gabon and the Republic of
Congo (Cantaloube et al., 2010; Ndong-Atome et al., 2008;
Nerrienet et al., 2005; Njouom et al., 2007, 2012) there is little
information about the diversity of the virus in the Democratic
Republic of the Congo (DRC). This country is the second largest in
Africa and has 67 million residents, making it the third most
populous in the continent. However, the ongoing conflict there
since 1996 has made disease surveillance difficult. The large size
and central position of the DRC within Central Africa mean that
phylogeographic studies of HCV in the region will be incomplete
without a comprehensive survey of viral diversity in the country.
Further, it is possible that the DRC harbours previously-undetected
variants of the virus: the only published isolate of HCV genotype
7 was isolated from a Canadian resident who had emigrated from
the DRC (Murphy et al., 2007b).

At present there is little information about the genetic diversity
of HCV infections in the DRC. In a previous small-scale survey of
blood samples from the country (Iles et al., 2013) we detected HCV
RNA in 11 individuals. Phylogenetic analysis of HCV core and NS5B
region sequences from these samples indicated that they belonged
to several classified and unclassified subtypes of genotype 4. In
this study we address the deficit of HCV genetic information from
the DRC with the screening and sequencing of 1999 blood samples
from the country. We combine these new data with genotype
4 sequences gathered from online databases and originating from
countries across Africa and worldwide. This enables us to analyse
the DRC samples in context with the larger diversity of HCV
genotype 4 viruses and to investigate the long-term evolutionary
history of the virus within the African continent.

Results

Age distribution

Of the 1999 samples tested, 3% (n¼60) were positive for HCV
50UTR RNA. Of these 60 samples, 33 produced core sequence and
48 produced NS5B sequence. These results are broadly consistent
with our pilot study which detected HCV RNA in 3.7% (n¼11) of
samples and yielded 9 core sequences and 11 NS5B sequences (Iles
et al., 2013).

Fig. 2 shows the age distribution of HCV RNA positivity in our
population, (including data from the pilot study). Samples were
scored as HCV RNA positive if sequence was obtained from at least
one of the 50UTR, core or NS5B regions. When grouped according
to date of birth, samples from older individuals are more likely to
contain HCV RNA than younger ones; the highest prevalence
(9.2%) was observed in the 1930–1945 cohort. Samples from
patients born in or before 1945 were significantly more likely to
contain HCV RNA than those born after (po0.001 using Fisher's
exact test).

Phylogenetic analysis

Maximum-likelihood phylogenies estimated from the core
and NS5B alignments are too large to display here and are thus
provided in Supplementary Figs. 1 and 2. Sequences from all
formally defined subtypes of genotype 4 (Smith et al., 2014) were
present in the alignments, as well as sequences from subtypes that
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are not formally defined due to a lack of whole-genome reference
sequences (e.g. 4e, 4h, and 4u). The numbers of sequences
assigned to each subtype and the most common locations of
sampling of each subtype are shown in Table 3. A total of 74
samples were genetically too divergent to be assigned to a known
subtype, 26 of which appear to belong to a provisional subtype
circulating in the Central African Republic (referred to here as
4car). Sequences from five isolates (including one obtained in this

study) were discordant, i.e. they grouped into different subtypes in
the core and NS5B alignments. The HCV-positive samples
sequenced in this study were genetically diverse and were
classified as belonging to subtypes 4c (n¼17), 4h (n¼2), 4k
(n¼18), and 4r (n¼8). One sample (DRC0387) could not be
classified into any known subtype but grouped with two unclassi-
fied isolates (DRC2431 and DRC2450) from our pilot study (Iles et
al., 2013). This cluster of three strains is denoted 4drc here and
represents a potentially new subtype (see Table 3). One sample
(isolate DRC1427) generated a core sequence that was classified as
4q and a NS5B sequence classified as 4c. Few nodes in the core and
NS5B maximum likelihood trees had high bootstrap support
(Supplementary Figs. 1 and 2), but that is not unexpected for
phylogenies estimated from these short subgenomic regions (as
previously noted in Pybus et al., 2009 and elsewhere).

We discerned four clusters (denoted C1, C2, C3 and C4) that
contained multiple sequences from our study population
(Supplementary Figs. 1 and 2). Cluster C1 was present in subtype
4c in both the core and NS5B trees and contained 10 new DRC
isolates (plus one from the pilot study). Cluster C2 was also found
in subtype 4c and comprised six isolates from this study in the
NS5B tree (only four of which are present in the core tree). Cluster
C3 contained 12 subtype 4k samples from this study (plus two
from the pilot study). C3 also included 15 samples from Tunisia in
the NS5B tree, whereas in the core tree it included seven
sequences from Gabon. Finally, cluster C4 was present in subtype
4r. In the NS5B tree C4 contained eight sequences from this study
(plus two from the pilot study).

Samples from our study population also appeared outside of
these four clusters. Specifically, two further isolates were placed
inside subtype 4c, nine within 4k, two within 4h, one within 4q
and three grouped in the unclassified lineage 4drc (see above). The
pair of subtype 4h sequences grouped significantly, together with
a strain from Brazzaville (Republic of the Congo; GU088141).
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Fig. 2. The age distribution of HCV RNA positivity among 2298 blood samples from
the DRC. Samples are assigned to one of four age categories by year of birth.
Numbers below each category indicate the number of positive samples/total
number of samples. Fifteen samples (all negative) did not have date of birth
information and are not included. The y-axis shows the proportion of samples in
each age category that were HCV RNA-positive. The errors bars represent 95%
confidence limits of this proportion, estimated using the adjusted Wald method
(Agresti and Coull, 1998).
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Whole genome phylogenies

Fig. 3 shows a maximum clade credibility (MCC) phylogeny of
HCV genotype 4, obtained from the Bayesian molecular clock
analysis of the whole genome sequences. An equivalent maximum
likelihood phylogeny is provided in Supplementary Fig. 3. Up to
three genomes per subtype were included and no complete
genome sequences were available for some subtypes (subtypes
4e, 4h, 4s and 4u). As Fig. 3 indicates, there is a great deal of
phylogenetic structure above the subtype level. This structure is
supported by high posterior probability values in the Bayesian
phylogeny and by high bootstrap values in the ML phylogeny
(Fig. 3; Supplementary Fig. 3).

Three intra-genotypic lineages can be discerned and are
denoted here L1, L2, and L3. These lineages correspond to the
three clades closest to the root of genotype 4 with strong statistical

support. Lineage L1 contains subtypes 4a, 4c, 4d, 4l, 4m, 4n, 4o, 4q
and 4v, L2 contains subtypes 4b and 4w and L3 contains subtypes
4g, 4k, and 4r. In the ML phylogeny, L2 is present as an outgroup
(Supplementary Fig. 3) whereas in the Bayesian tree it is placed as
a sister group to L3, albeit with a comparatively low posterior
probability of 0.78 (Fig. 3).

The Bayesian molecular clock analysis provided an estimate of
the date of the most recent common ancestor (MRCA) of genotype 4,
which was 1733 (95% HPD credible region¼1650–1805). This date is
more recent than some previous estimates for the origin of genotype
4. Pybus et al. (2001) estimated HCV evolutionary rates from a small
data set of dated sequences and used these to infer that the MRCA of
genotype 4 existed about 350 years ago. Njouom et al. (2007) used
the same rate estimates during a more comprehensive Bayesian
phylogenetic analysis and dated the MRCA of genotype 4 to 1541
(95% CIs: 1343–1698). The more recent date estimated here is likely
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Fig. 4. Maximum clade credibility molecular clock phylogeny, estimated from the concatenated alignment. Taxa are coloured according to location of sequence origin
(blue¼sub-Saharan Africa; red¼Middle East and North Africa; grey¼rest of the world). The locations of internal branches were inferred using parsimony and are coloured
similarly. Branch lengths represent time (see scale bar at the bottom of the figure). Nodes with a posterior probability 40.9 are labelled with a white circle. Sequences are
labelled as follows: subtype, sampling location using two-letter country codes (ISO 3166; see Table 4), sampling date, isolate name, accession number. XX represents an
unknown location. Subtypes are indicated on the right side of the diagram. The three intra-genotypic lineages discussed in the main text are labelled L1, L2, and L3. The four
clusters of samples obtained in this study discussed in the main text are labelled C1, C2, C3, and C4.

J.C. Iles et al. / Virology 464-465 (2014) 233–243 237



to be more accurate because (i) it is based on whole genome
sequences rather than small subgenomic fragments and (ii) it
employs new HCV evolutionary rates that were estimated using
larger data sets of dated sequences and more powerful methods of
analysis (Gray et al., 2011). We note that the MRCA date provided
here could be underestimated as a result of strong purifying
selection (Wertheim and Kosakovsky Pond, 2011) or overestimated
due to strong among-branch rate variation (Wertheim et al., 2012).
However, Markov et al. (2012) showed that molecular clock esti-
mates of HCV lineage movement between Africa and the Americas
matched the known timeframe of the trans-Atlantic slave trade. This
suggests that among-subtype HCV divergence dates within a geno-
type can be estimated with reasonable accuracy.

Concatenated alignment phylogenies

Fig. 4 shows the MCC phylogeny obtained from the Bayesian
molecular clock analysis of the concatenated sequences (core plus
NS5B). As in the whole genome phylogenies, all subtypes were
monophyletic, and three well-supported intra-genotypic lineages
were again observed. The greater number of subtypes present in
concatenated analysis indicates that L1 contains subtypes 4a, 4c,
4d, 4e, 4l, 4m, 4n, 4o, 4p, 4q, 4t and 4v, L2 contains subtypes 4b
and 4w, and lineage L3 contains subtypes 4g, 4h, 4k and 4r. L2 is
again placed in a basal position (as in the full-genome ML
phylogeny; Supplementary Fig. 3). However the weak posterior
probability for this placement (0.21) suggests that L2 may be in
reality be a sister group to L3 (as in the full genome Bayesian
phylogeny; Fig. 3). Subtype 4f plus one divergent isolate from
Cameroon (98CM9774) did not group into any of these three well
supported intra-genotypic lineages.

The concatenated alignment yielded an estimate of the date of
the genotype 4 common ancestor of 1687 (95% HPD credible region:
1538, 1811). This estimate overlaps considerably with the estimate
from the whole genome alignment and the upper 95% HPD limits of
both are almost identical. The credible region for the concatenated
alignment is wider than that for the whole genome alignment, likely
reflecting the reduced phylogenetic information in the former.

The molecular clock analysis was also used to estimate the date
of origin of the four sequence clusters (C1–4) that contained isolates
from our study population (see above). The estimated date of the
MRCA of cluster C1 was 1953 (95% HPD: 1938, 1982). For cluster C2
the MRCA was dated to 1960 (95% HPD: 1930, 1976) and for cluster
C3 it was 1952 (95% HPD: 1928, 1975). The estimated MRCA for
cluster C4 was somewhat more recent and was dated to 1987 (1976,
2000). While these clusters had low bootstrap scores in the ML
trees (Supplementary Figs. 1 and 2), in this analysis C1, C2 and C4
are all supported with posterior probabilities 40.9, while C3 has a
posterior probability of 0.79. This increased statistical support is
likely due to the combined phylogenetic signal in the concatenated
analysis as compared to that available in the ML reconstruction of
individual genome regions.

The taxa and branches of Fig. 4 have been coloured according to
the known or inferred country of origin for each isolate. The
majority of strains are from sub-Saharan Africa (blue). Sequences
from North Africa/Middle East (red) and from the rest of the world
(grey) cluster together within the greater diversity of genotype
4 from sub-Saharan Africa. Thus it is clear that genotype 4 origi-
nated in central Africa before disseminating elsewhere. Further,
some isolates without location information or which were
sampled outside Africa (e.g. subtypes 4f and 4k strains closely
related to those from Cameroon and Gabon) may also represent
infections that were acquired in Central Africa. Almost all isolates
sampled outside central Africa belong to the intra-genotypic line-
age L1 (Fig. 4). Sequences from Egypt are commonly found in
subtypes 4a, 4l, 4m, 4n and 4u (Supplementary Figs. 1 and 2;

Table 3). Subtype 4d is currently found in many countries,
especially in Western Europe, where it is prevalent among some
injecting drug user populations (De Bruijne et al., 2009).

Fig. 4 provides some clues as to the origin of the most common
subtypes of genotype 4. For example, subtype 4a is found world-
wide but is highly prevalent in Egypt, where it was likely spread by
widespread injection treatment campaigns during the mid-
twentieth century (e.g. Strickland, 2006; Pybus et al., 2003). Using
our results we can explore the question of from where the
Egyptian HCV epidemic originated. Our analysis indicates that
subtypes 4a and 4c diverged from each other around 1870 and that
subtype 4c mainly comprises sequences from Gabon and the DRC.
In the core and NS5B trees (Supplementary Figs. 1 and 2) we can
observe strains sampled from Cameroon and the Central African
Republic that are phylogenetically immediately basal to subtypes
4a, 4n and 4o. Fig. 4 indicates that these subtypes (and subtype
4m) arrived in Egypt from Central Africa no earlier than 1825.

Fifteen subtype 4k isolates from Tunisia cluster together within
the much greater diversity of subtype 4k sampled from central
Africa. The Tunisian strains are closely related to DRC isolates from
this study belonging to cluster C3. Although these Tunisian
samples were not included in the concatenated analysis (because
only NS5B sequences were available) we can combine
Supplementary Figs. 2 and 4 to conclude that the Tunisian subtype
4k infections originated from central Africa (possibly from the
DRC) at around the time of the MRCA of cluster C3, which was
1952 (1928, 1975). A second cluster of six unclassified Tunisian
isolates can be observed in the NS5B phylogeny and form a sister
lineage to subtype 4o (Supplementary Fig. 2).

Bayesian skyline analysis

The epidemic history of genotype 4 was investigated by estimat-
ing a Bayesian skyline plot from the concatenated alignment (Fig. 5).
This plot represents the effective number of HCV infections through
time, back to the estimated TMRCA of the genotype. Fig. 5 shows
that prior to the twentieth century there was an extended period of
endemic transmission of genotype 4, during which the effective
number of infections was low. There is a sharp transition from
endemic infection to rapid exponential growth starting around the
1950s. The epidemic history of genotype 4 after 1975 is much
harder to discern due to very large confidence limits: either
scenario after 1975 of continued growth or a stabilisation of
prevalence are statistically compatible with the data. Previous
studies of genotype 4 in several African countries (Central African
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Fig. 5. Bayesian skyline plot, showing the epidemic history of genotype 4 estimated
from the concatenated alignment. The black line represents the estimated effective
number of infections through time. The blue lines represent the 95% highest
posterior density confidence intervals of this estimate. The earliest date in the plot
is the median estimate of the TMRCA of genotype 4, while the dotted line shows
the upper 95% highest posterior density confidence interval of this date.
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Republic, Republic of Congo, Gabon, Cameroon) have noted similar,
but earlier, transitions to rapid expansion, between 1930 and 1960
(Cantaloube et al., 2010; Njouom et al., 2007, 2009, 2012). The
slightly later date of the epidemic transition reported here is likely
explained by the new evolutionary rates used in our analysis, which
are faster than those employed previously (see above for discus-
sion). The overall shape of the epidemic curve presented in Fig. 5
closely resembles that previously estimated for genotype 6 in Asia
(Pybus et al., 2009). However, as discussed in that paper, skyline
plots that span entire HCV genotypes should be interpreted cau-
tiously, as they exhibit geographic structure and combine subtypes
that have experienced different rates of growth during the twen-
tieth century (see Pybus et al., 2009 for further details). Thus only
the broad qualitative trend of a twentieth-century transition to
epidemic growth is likely to be robust.

Discussion

In this study we report the first large-scale survey of HCV
genetic diversity in the DRC, one of the geographically largest and
most populous African countries. The previously unsurveyed state
of the DRC represented a significant gap in our understanding of
HCV in Africa and our results complement recent surveys of HCV
in neighbouring countries, including Gabon, Cameroon, Republic
of Congo and Central African Republic (e.g. Cantaloube et al., 2010,
Njouom et al., 2007, 2009, 2012, Pépin et al., 2008, 2010a, 2010b).
We observed a high level of HCV genotype 4 diversity in our study
population; isolates were classified as belonging to subtypes 4c,
4k, 4h and 4r, as well as to a potential new subtype circulating in
the DRC (denoted 4drc). One isolate (DRC1427) was classified
discordantly (4c/4q) in two sub-genomic regions sequenced and
may represent a previously undetected recombinant strain. This
diversity, together with the absence of globally-prevalent subtypes
(e.g. 1a, 1b, and 3a), suggests that genotype 4 has been present in
the DRC for a long period of time. However, the genetic diversity of
HCV in the DRC is not as high as that in other central African
countries where various subtypes of multiple HCV genotypes are
sometimes observed (e.g. genotypes 1, 2 and 4 in Cameroon;
Ndjomou et al., 2003, Pépin et al., 2010a). Further, we failed to
detect any genotype 7 isolates despite using the same primers as
those used to initially discover the strain (Murphy et al., 2007b),
indicating that the prevalence of genotype 7 within the DRC is low.
We conclude that the overall pattern of genetic diversity of HCV in
the DRC is fundamentally different to that of HIV-1; the diversity
of HIV-1 in the DRC is as large as that observed worldwide,
implying that the virus originated in central Africa and its diversity
elsewhere is reduced due to founder effects (Vidal et al., 2000;
Rambaut et al., 2001), whereas we observed only one HCV
genotype in the DRC.

Approximately 3% of our samples screened contained detect-
able HCV RNA, slightly less than the 5.2% and 6.4% found in HCV
screening surveys in Gabon and Central African Republic respec-
tively (Njouom et al., 2009, 2012). Past studies of HCV in the DRC
have only assayed seroprevalence, and have found anti-HCV in
6.4% of blood donors (Tibbs et al., 1991), 6.6% of sex workers and
4.3% of pregnant women (Laurent et al., 2001). These seropreva-
lence estimates are again somewhat less than those found in the
Central African Republic (10.5%) and Gabon (11.2%) (Njouom et al.,
2009, 2012). Despite the large size of our survey, sampling was
limited to males and therefore our prevalence estimates may not
equal those of the general population. Cantaloube et al. (2010)
found that men were 43% more likely to be seropositive than
women in the Republic of the Congo, and it is possible that a
similar pattern is true in the DRC. We confirmed that HCV

positivity is significantly associated with older age in our study
population (Fig. 2; Iles et al., 2013). Although the long-term
persistence of most HCV infections means that older subjects are
in general more likely to be infected, the notable increase in HCV
prevalence in those born before 1945 suggests a distinct historical
event. This ‘cohort effect’ has also been reported for HCV genotype
4 in Gabon, Cameroon and Egypt and is thought to be due to past
iatrogenic transmission resulting from public health campaigns
during the twentieth century that involved injections (Frank et al.,
2000; Nerrienet et al., 2005; Njouom et al., 2007, 2012). In the
absence of any epidemiological data we cannot speculate further
on the possible causes in our study population of the age effect.
However, our reconstruction of the epidemic history of genotype 4
(Fig. 5) clearly shows a transition from low to high prevalence,
likely representing the combined effects of iatrogenic transmission
events in many different African countries during the middle of
the twentieth century (Pépin and Labbé, 2008).

The molecular clock and phylogeographic results reported here
clearly indicate that genotype 4 epidemics in North Africa, the
Middle East and Europe all originated from central Africa (Fig. 4).
Fig. 4 can be also used to estimate the time of exportation of
lineages from central Africa to elsewhere; however, the ages of
these movement events will often be overestimated due to the
exclusion from the concatenated alignment of many central
African strains that were sequenced in only the core or NS5B
regions (Supplementary Figs. 1 and 2). Genotype 4 lineages pre-
sent in Egypt are of particular interest, as the country has the
highest prevalence of HCV worldwide (Frank et al., 2000; El-
Zanaty and Way, 2009). We estimate that subtype 4a, which
accounts for the majority of the Egyptian epidemic, arrived there
from central Africa sometime between 1860 and 1925 (the
estimated date of the MRCA of subtype 4a). This time frame
precedes World War II, during which an 8000-man contingent of
the Force Publique (an army composed of soldiers from the Congo
serving in the Free Belgian Forces) was stationed in Egypt between
1943 and 1944 (Nigel, 1991). However, these dates can be
reconciled if two or more genetically-distinct subtype 4a lineages
arrived in Egypt during World War II. It is clear that the Egyptian
HCV epidemic originated frommore than one Central Africa strain,
as subtypes 4a, 4m, 4n and 4o each independently moved to
Egypt. Stronger evidence for the role of historical events in the
trans-African movement of genotype 4 comes from the presence of
Tunisian isolates closely related to strains from the DRC, within
subtype 4k. Our molecular clock results date the MRCA of the
Tunisian 4k strains to between 1928 and 1975. Tunisian troops
were deployed in the DRC as part of the UN peacekeeping forces
during the Congo crisis of 1960–65 (Mays, 2010) and may there-
fore have transported the virus to Tunisia upon their return. The
movements of large numbers of troops among populations,
combined with a high likelihood of blood transfusions and/or
parenteral medical treatments, provided an ideal scenario for the
spread of HCV out of central Africa.

Our NS5B phylogeny contains a very high diversity of genotype
4 sequences sampled from France (Supplementary. Fig. 2). This can
be explained by the historical presence of the French colonial
empire in central Africa, followed by more recent immigration of
individuals to France from former colonies (see also Nicot et al.,
2005). We also noted that subtype 4w has, to date, been found
only in Portugal. Portugal was one of the first nations to have a
foothold in the Congo region (Appiah and Gates, 1999) and was
present in both mainland Angola and in the Cabinda exclave that
lies between the DRC and the Republic of the Congo. Our
phylogenetic results suggest that subtype 4w is a sub-lineage of
4b, the latter being a highly diverse subtype found in several
countries, including countries that neighbour Cabinda (Fig. 3;
Supplementary. Fig. 2).
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Other previously unrecognised geographic trends can be dis-
cerned from our analysis. For example, the majority of isolates
belonging to subtypes 4q and 4v (9 out of 14) were sampled from
Rwanda and Burundi, and samples from these two countries are
rarely found in other subtypes. This implies that there has been
little further viral dissemination from these countries following
the introduction of subtypes 4q and 4v there. The reverse pattern
is observed in several adjacent countries of central Africa, speci-
fically the DRC, Republic of the Congo, Cameroon and Gabon
Multiple subtypes of genotype 4 are present in each of these
countries, and sequences from them appear in all three of the
intra-genotypic lineages L1, L2 and L3. This indicates that historical
viral movement among these locations was comparatively com-
mon. This might be explained by historical demographic move-
ments and trading links during the African colonial era. However,
genotype 4 does not appear to have spread to the Americas via the
slave trade, unlike genotype 2 which is endemic in west Africa
(Markov et al., 2009). This may reflect the various ways that
European colonial powers exploited different African regions; the
western Atlantic coast, including the Gold Coast, was the main hub
for the transatlantic slave trade, whereas Central and Eastern
Africa were more commonly used to provide natural resources
and labour (Suret-Canale, 1971).

Approximately 9% (74 out of 806) of all isolates examined in our
study are not classified into a currently defined subtype, and all
unclassified isolates were from central African countries. Detection
of divergent yet uncommon strains is to be expected if HCV
genotype 4 originated and has circulated endemically in central
Africa for several centuries. Under this hypothesis the more
prevalent subtypes of genotype 4 likely represent those few
lineages that by chance were amplified by changes in human
behaviour during the previous century (as previously suggested
for subtypes 1a, 1b, 3a globally, and for genotype 6 in Asia; e.g.
Simmonds, 2004; Magiorkinis et al., 2009; Pybus et al., 2009).
We noted two lineages (4car and 4drc) that represent candidates
for possible new subtypes. Full genome sequencing of isolates
from 4car and 4drc would confirm their subtype status. Lineages
that are currently rare and geographically-restricted could poten-
tially spread epidemically and internationally if introduced
into high risk groups, as presumably occurred to subtype 4d (De
Bruijne et al., 2009, Ciccozzi et al., 2012). This risk is of particular
relevance to genotype 4 which, like genotype 1, is more refractory
to standard anti-viral drug treatment than other genotypes (e.g.
Chen et al., 2012). There are no large scale surveys of HCV diversity
in several highly populous African countries—Ethiopia, Tanzania,
Angola and Chad among them—and some other countries are
represented only by surveys with small sample sizes. Further
screening of HCV genetic diversity in Africa is required to help
plan effective treatment strategies in the region and inform future
vaccine design.

Methods

Study population

A total of 1999 EDTA blood samples were collected from
informed consenting members of the uniformed services as part
of a screening programme for infectious diseases. This collection
has been studied previously for HIV-1 (Djoko et al., 2011), human
parvovirus 4 (Sharp et al., 2010) and human pegiviruses (Iles et al.,
2013). A preliminary small scale survey (n¼299) of this collection
for HCV discovered HCV RNA in �4% of samples (Iles et al., 2013).
Collection took place during 2007 in Kinshasa, capital of the DRC.
The samples were anonymised although patient year of birth were
available for most. All samples were from male individuals, whose
mean age was 44 (range 22–77 years).

Screening, RT-PCR and sequencing

All samples were tested for HCV RNA. Viral RNA was extracted
from sera using the Nucleospin 96 RNA kit (Macherey-Nagel) as per
the manufacturer’s instructions. The reaction product was screened for
HCV RNA with a one-step RT-PCR amplification of the 50UTR region
using Superscript III with Platinum taq (Invitrogen, Life Sciences);
primers are listed in Table 1. Samples positive for HCV RNA were
subsequently amplified and sequenced in the core and NS5B regions
using the same enzymes as used for the 50UTR, noted above. Controls
were run in parallel at each step. Primers were obtained from previous
studies or were designed using a large alignment of whole HCV
genome sequences that included subtypes belonging to all 7 genotypes
(Table 1). The internal primers were used for sequencing with BigDye
Terminator (Applied Biosystems). Traces were examined using 4Peaks
(Nucleobytes). A total of 34 core sequences (accession numbers
KF813071-KF813095, KJ408429-KJ408436 and KJ416140) and 48
NS5B sequences (KF826150-KF826197) were obtained in this study.

Sequence collation

All available genotype 4 sequences were downloaded from the
Los Alamos HCV sequence database (Kuiken et al., 2005) and from
GenBank. Sequences were retained if they spanned either of the
two subgenomic regions sequenced in this study: core (positions
342–1265 relative to H77) or NS5B (positions 8265–8624). Only
one sample per region from each infected individual was retained
and sequences from non-human subjects were excluded, as were
sequence fragments shorter than 200 nucleotides. We noted a
disproportionate number of sequences from subtype 4a, largely
resulting from the high number of published studies concerning
the Egyptian HCV epidemic. To bring the number of 4a sequences
approximately in line with those of other subtypes we randomly

Table 1
Details of primers used in this study.

Primer name Source Sequence (50-30) Positiona

Murphy 50UTR F Murphy et al. (2007b) GAAAGCGTCTAGCCATGGCGTTAGT 71–95
Murphy 50UTR R Murphy et al. (2007b) CTCGCAAGCACCCTATCAGG 311–292
50 UTR Ex 400F This study CCTTGTGGTACTGCCTGATAG 279–299
CHV core 980 Rex This study AGTGCCARRAGGAACATAGA 883–864
50UTR In 405 F This study CTGATAGGGTGCTTGCGAGTG 293–313
CHV core 973 Rin This study AGTGCCARRAGGAAGATAGARAA 883–861
NS5B Ex 8274 F This study TGGGGATCCCGTATGATACCCGCTGCTTTGA 8245–8275
NS5B Ex 8616 R This study CGGAATTCCTGGTCATAGCCTCCGTGAA 8643–8616
NS5B In 8378 for This study GACACCCGCTGCTTTGACTC 8259–8278
NS5B In 8611 rev This study GAGTCTTCACGGAGGCTATGACNAGGTA 8638–8611

a Numbering relative to isolate H77 (Genbank accession number AF009606).
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removed sequences separately from each of the three main sub-
genotypic lineages of the 4a phylogeny, thereby maintaining the
full genetic diversity of the subtype in our data set. We also
reduced in a similar manner the disproportionate number of
subtype 4d sequences sampled in France.

The reference database sequences were collated with the new
sequences obtained in this study, resulting in a total of 806 isolates
across all genome regions. All sequences were aligned by hand
using Se-Al v2.0 (available from http://tree.bio.ed.ac.uk), resulting
in a ‘core alignment’ containing 177 core sequences and an ‘NS5B
alignment’ containing 765 NS5B sequences. Subsequently, a ‘con-
catenated alignment’ was created by combining and concatenating
core and NS5B sequences if they were sampled from the same
individual and covered both genome regions. The resulting joint
alignment contained 136 taxa. In order to best estimate the
branching order among HCV subtypes within genotype 4, we also
compiled a ‘whole genome’ alignment that contained all genotype
4 reference genome sequences described in Smith et al. (2014).

For each isolate we surveyed online databases and the primary
literature for two pieces of information: year of sampling and
country of origin. Most isolates (83%) were sampled from African
or Middle Eastern countries. A search of the primary literature
revealed that some HCV strains sampled in Europe or North
America represent infections from recent immigrants from Africa
or the Middle East. In these instances, the ‘country of origin’ of the
infection is defined as the country from which the individual
emigrated. A summary of the geographic distribution of the
sequences used in this study is provided in Fig. 1.

Phylogenetic analysis

Phylogenies were estimated for the core, NS5B and whole
genome alignments using maximum likelihood (ML) as imple-
mented in GARLI v0.951 (Zwickl, 2006). The analysis used a
General Time-Reversible (GTR) nucleotide substitution model,
estimated base frequencies, and a gamma distribution model of
among-site rate variation. Statistical support for phylogenetic
clustering was calculated using an ML bootstrap approach with
500 bootstrap replicates; bootstrap scores were summarised using
TreeAnnotator (http://beast.bio.ed.ac.uk/TreeAnnotator). Phyloge-
nies were visualised and annotated using FigTree v1.4 (http://tree.
bio.ed.ac.uk/software/figtree). Newly-generated sequences were
classified by computing p-distances to the HCV subtype reference
sequences provided in Smith et al. (2014). A p-distance threshold
of o0.1 was used to assign subtypes. p-distances between
sequences were calculated using DNAdist in the Phylip package
(Felsenstein, 1989).

Calibration of the molecular clock

Molecular clock models can be used to reconstruct the evolution-
ary history of HCV genotype 4 on a timescale of years, provided that
estimates of the rate of molecular evolution are available for the viral
genomes regions being investigated. As in previous studies, we cannot
directly estimate reliable HCV evolutionary rates from the alignments

in hand as the range of sampling times is too narrow (Pybus et al.,
2009; Salemi and Vandamme, 2002). Therefore we estimated evolu-
tionary rates for the core and NS5B regions using independent sets of
HCV sequences that have been shown to contain good temporal
information. These estimates were then used as informative prior
distributions for evolutionary rate parameters in all subsequent
Bayesian evolutionary analyses (see next section).

Gray et al. (2011) undertook a comprehensive analysis of HCV
evolutionary rates and we use their alignments to estimate rates
that are specific to the core and NS5B genome regions sequenced
here (positions 342–945 and 8265–8624, respectively). We ana-
lysed two alignments, comprising 65 subtype 1a sequences and 54
subtype 1b sequences, respectively (Gray et al., 2011). These rates
are likely to be accurate for our genotype 4 study because
genotypes 1 and 4 are more closely related than other subtypes
(Salemi and Vandamme, 2002) and because HCV evolutionary
rates vary considerably more between genome regions than they
do between genotypes and subtypes (Gray et al., 2011). Evolu-
tionary rates were estimated using the Bayesian Markov Chain
Monte Carlo (MCMC) inference method implemented in BEAST
v1.7.5 (Drummond et al., 2012). These analyses employed a SDR06
nucleotide substitution model (two independent HKYþΓ substi-
tution models—one for the first and second codon positions, and
one for the third), an uncorrelated lognormal relaxed molecular
clock model, and a Bayesian skyline plot coalescent model
(Shapiro et al., 2006). Nucleotide frequencies were estimated from
the data. Rates of molecular evolution were estimated for three
different partitions of the whole genome alignment: (i) a core
partition (sites 342–945), (ii) a NS5B partition (sites 8265–8624),

Table 2
Estimated evolutionary rate parameters.

Genome region Genome positionsa Estimated nucleotide
substitution rate (subs/site/year)

95% credible region

(i) Core 342–944 5.39�10–4 3.41–7.46�10–4

(ii) NS5B 8274–8612 9.87�10–4 6.74–14.4�10–4

(iii) Concatenated (CoreþNS5B) 342–944 and 8274–8612 7.43�10–4 4.91–10.4�10–4

(iv) Complete genome 342–9374 13.5�10–4 9.97–17.0�10–4

a Numbering relative to isolate H77 (Genbank accession number AF009606).

Table 3
Subtype summary.

Subtype Samples
(Core)

Samples
(NS5B)

Most common sampling location of
core and NS5B sequences

4a 11 46 Egypt
4b 1 10 Democratic Republic of the Congo
4c 35 80 Gabon
4d 17 45 France
4e 29 142 Gabon
4f 16 106 Cameroon
4g 4 7 Gabon
4h 1 15 Cameroon
4k 23 77 Democratic Republic of the Congo
4l 1 10 Egypt
4m 2 14 Egypt
4n 1 7 Egypt
4o 3 24 Egypt
4p 1 13 Cameroon
4q 2 6 Rwanda
4r 12 40 Democratic Republic of the Congo
4t 9 31 Cameroon
4u 1 14 Egypt
4v 2 7 Rwanda
4w 5 3 Portugal
4car 0 26 Central African Republic
4drc 0 3 Democratic Republic of the Congo
Unclassified 0 45
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and (iii) a concatenated coreþNS5B partition (sites 342–945 plus
8265–8624). The rate parameters estimated for these three parti-
tions are shown in Table 2. Each MCMC analysis was run for at
least 100,000,000 states. Table 2 also includes evolutionary rate
estimates for whole genome sequences, which were taken directly
from Gray et al. (2011).

Bayesian evolutionary analysis

To estimate the epidemic and movement history of HCV
genotype 4 we analysed the ‘whole genome’ and ‘concatenated’
alignments using the Bayesian Markov Chain Monte Carlo (MCMC)
inference method implemented in BEAST v. 1.7.5 (Drummond et
al., 2012).

As with the evolutionary rate estimation analyses described above,
we used the SDR06 substitution model, an uncorrelated lognormal
relaxed molecular clock, and a Bayesian Skyline coalescent model with
10 groups. For both the ‘whole genome’ and ‘concatenated’ data sets,
Bayesian model selection tests showed that the SDR06 substitution
model substantially outperformed the GTRþΓ model (Bayes Factor
4100; calculated using Tracer v1.5). For both data sets, a normal prior
distributionwas placed on themean evolutionary rate parameter, such
that the mean and variance of the prior distribution matched the
‘concatenated’ and ‘whole genome’ rate estimates shown in Table 2.
Each MCMC run contained 200 million states, sampled once every
5000 states; trees were sampled every 50,000 states. Multiple MCMC
runs were calculated to ensure convergence and were combined to
increase the accuracy of parameter estimates. MCMC convergence and
effective sample sizes were monitored using Tracer v. 1.5. Maximum
clade credibility trees were calculated and annotated using

TreeAnnotator 1.7.5 (Drummond et al., 2012). FigTree v1.3.1 was used
to colour lineages according to their sampling location using the
parsimony criterion. We deliberately chose not to apply more sophis-
ticated Bayesian discrete state phylogeographic models (e.g. Lemey
et al., 2009) to our data. Such models are highly parametric and are
unlikely to be informative when applied to phylogenies with com-
paratively few location state changes and no sampled sequences close
to the phylogeny root (such as the tree presented in Fig. 4).
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