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Children in developing countries experience multiple exposures that are harmful to their growth and develop-
ment. An emerging concern is frequent exposure to mycotoxins that contaminate a wide range of staple foods,
including maize and groundnuts. Three mycotoxins are suspected to contribute to poor child health and devel-
opment: aflatoxin, fumonisin, and deoxynivalenol. We summarize the evidence that mycotoxin exposure is as-
sociated with stunting, and propose that the causal pathway may be through environmental enteric dysfunction
(EED) and disturbance of the insulin-like growth factor 1 (IGF-1) axis. The objectives of this substudy are to
assess the relationship between agricultural and harvest practices and mycotoxin exposure; to evaluate associ-
ations between mycotoxin exposure and child stunting; and to investigate EED as a potential pathway linking
mycotoxin exposure to child stunting, to inform potential areas for intervention.
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Children in developing countries experience multiple
exposures that are harmful to their health, growth,
and development, particularly during the critical first
1000 days, including nutrient deficiencies, recurrent in-
fections, and exposure to human and animal feces. An
emerging additional concern is frequent exposure to
mycotoxins [1], which are toxic secondary metabolites
of fungi that contaminate a wide range of staple foods
such as maize and groundnuts. Recent developments in
biomarkers now enable exposure measurement to 3 my-
cotoxins that may be important causes of poor child
health and development: aflatoxin, fumonisin, and de-
oxynivalenol [1]. This article describes the rationale and
methods for the investigation of the potential role of

mycotoxins as a contributor to stunting among children
enrolled in the Sanitation Hygiene Infant Nutrition
Efficacy (SHINE) trial in Zimbabwe.

The SHINE trial will evaluate the independent and
combined effects of an integrated water, sanitation, and
hygiene (WASH) intervention and an infant and young
child feeding (IYCF) intervention on stunting and ane-
mia in rural Zimbabwean infants through 18 months of
age [2]. We hypothesize that protection from fecal mi-
crobes will prevent environmental enteric dysfunction
(EED) [3]and systemic inflammation and thereby remove
constraints on the growth hormone insulin-like growth
factor 1 (IGF-1) axis that governs linear growth [4, 5]. It
is also possible that exposure to mycotoxins pre- and
postnatally contributes to stunting, in part through com-
mon pathways of EED and IGF-1 suppression [1, 6].

EVIDENCE THAT MYCOTOXINS ARE
ASSOCIATED WITH CHILD STUNTING

It is estimated that approximately 4.5 billion people, pre-
dominantly those living in developing countries, are at
risk of exposure to the dietary mycotoxin family of afla-
toxins (AFs), with people in some regions experiencing
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chronic exposure at high levels [7]. AFs have been most widely
studied and demonstrated as a cause of liver cancer [8]. AFs ad-
ditionally inhibit protein synthesis and are cytotoxic, teratogen-
ic, and immunotoxic [8]. Epidemiologic evidence from multiple
countries documents AF exposure in pregnant women, infant
cord blood, and young children [9–18], suggesting that exposure
to AF is widespread during early life. Gong et al [16] found that
serum aflatoxin-albumin (AF-alb) adducts were associated with
stunting in children (aged 9–60 months) in rural Benin and
Togo, and demonstrated a significant dose-response relation-
ship with height-for-age and weight-for-age z scores. In a sub-
sequent 8-month longitudinal study in rural Benin, infants
(aged 16–37 months at recruitment) were on average 1.7 cm
shorter in the highest quartile of AF-alb compared with the
lowest quartile of exposure [19]. In a separate study from The
Gambia, maternal exposure during pregnancy was strongly in-
versely associated with infant growth velocity during the first 12
months of life, with a predicted 0.8-kg increase in weight and
2-cm increase in height, if measures of maternal AF exposure
(AF-alb) were reduced from 110 pg/mg to 10 pg/mg [18]. The
range of exposure measures in these 3 regions was 3–1080 pg/
mg [17, 18, 20].This height difference is meaningful and large in
public health terms, compared to the effects of efficacious nu-
trition interventions [20].

Two other mycotoxins, fumonisin (FUM) and deoxynivalenol
(DON), also often contaminate staple foods, and both have plau-
sible links to impaired infant growth. FUM inhibits ceramide
synthase, an enzyme essential to sphingolipid metabolism [21].
Complex sphingolipids are integral to cell membrane integrity,
and disturbance in this biosynthetic pathway could affect intesti-
nal epithelial cell viability and proliferation, modify cytokine pro-
duction, and modulate intestinal barrier function. A urinary
biomarker for FUM (urinary fumonisin B1 [FB1]) was recently
reported [22], and the first population-based longitudinal study
in Tanzanian infants (aged 6–14 months at recruitment) found
a significant association between urinary FB1 and growth falter-
ing [23]. In this study from 3 regions of Tanzania, 98% of infants
(157/160) were exposed to FUM and 67% (98/157) were exposed
to AF [23]. AF exposures were lower than those in the Beninese
and Gambian studies, and the observed inverse relationship with
growth faltering did not reach statistical significance [23].

It is plausible that DON has a negative effect on growth be-
cause of decreased food intake and reduced weight gain, which
has been observed in animal studies [6]. Rotter et al [24] found
that pigs fed grain contaminated with DON had 20% lower feed
intake and 13% lower weight gain than the control group and
suggested that DON induces feed refusal in pigs. In a recent
study, Amuzie and Pestka [25] found that DON intake in
mice induced a decrease in circulating levels of IGF-1, the pre-
dominant mediator of growth hormone activity, and hepatic in-
sulin-like growth factor acid-labile subunit, which forms a

complex with circulating IGF-1. The effects of DON exposure
on child growth have not yet been studied; however, in the
same group of Tanzanian infants (mentioned above), 51%
had detectable levels of DON [26]. In another study of pregnant
Egyptian women, AF and DON biomarkers were concurrently
found in 41% of the women [27]. Recent biomarker surveys
from Cameroon and Nigeria support the concept of frequent
coexposures to mixtures of mycotoxins [28, 29]; thus, exposure
to 1 or more mycotoxins during pregnancy and infancy is likely
common and may contribute to the complex etiology of
stunting.

A HYPOTHESIZED PATHWAY THROUGH EED

All 3 mycotoxins may plausibly contribute to stunting through
EED [3], a subclinical condition of the small intestine that
impairs nutrient absorption and causes systemic immune acti-
vation [2, 3]. EED has most commonly been attributed to envi-
ronmental contamination with fecal bacteria in disadvantaged
settings, where sanitation, hygiene practices, and drinking
water quality are frequently poor [2]. However, there are multi-
ple overlapping causes of enteropathies in developing countries
[4], and the role of mycotoxins in mediating enteropathy has
received little attention to date. Although the mycotoxins de-
scribed here have distinct actions, they all mediate intestinal
damage in experimental animal models through (1) inhibition
of protein synthesis (AF, DON); (2) increased local and system-
ic proinflammatory cytokines (AF, DON); (3) inhibition of cer-
amide synthase (FUM) (reviewed in [6]); and (4) tight junction
protein expression (DON, FUM) [30]. AF and DON may also
directly cause immunomodulation toward an inflammatory
state, potentially interfering with the IGF-1 axis [31–34]. In
vitro models additionally support a role for mycotoxins disrupt-
ing intestinal cell monolayer integrity (AF) [35]. AF, FUM, and
DON may therefore share a convergent pathway in which mu-
cosal damage can lead to impaired nutrient absorption and/or
increased intestinal permeability, pathology that resembles the
changes seen in EED [6].

MYCOTOXIN INVESTIGATIONS IN THE SHINE
TRIAL

The overall objective of this substudy is to describe the risk fac-
tors contributing to mycotoxin exposure and to assess the po-
tential role of mycotoxin exposure in the pathogenesis of
stunting. Our overarching hypothesis is that AF exposure,
alone or in combination with FUM and DON, contributes to
EED and is an important cause of child stunting. Specifically,
this substudy will assess the relationship between agricultural
and harvest practices and mycotoxin exposure; assess the rela-
tionship between mycotoxin exposure and child stunting; and
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investigate EED as a potential pathway linking mycotoxin
exposure to child stunting.

INVESTIGATION OF AGRICULTURAL AND
HARVEST PRACTICES ASSOCIATED WITH
MYCOTOXIN EXPOSURE

Pre- and postharvest crop management has a significant influ-
ence on the accumulation of AF in maize and groundnuts [36,
37]. Smallholder farming practices are shaped by the ecological
and social context, and information is scarce about farmers’
practices and how their decisions affect household-level expo-
sure to mycotoxins. With a view to increasing local knowledge
and informing future preventive intervention strategies, we seek
to understand the drivers of AF exposure in rural Zimbabwe.

We found no precedent in the literature for a survey module
designed to assess mycotoxin risk according to agricultural
practices by smallholder farmers. We therefore designed a sur-
vey module comprising closed-ended questions regarding pre-
and postharvest practices relevant to maize and groundnuts
(Table 1 in Supplementary Appendix). This module was
translated, pilot-tested among rural households, and revised
for clarity before implementation within the SHINE baseline
survey. The baseline survey includes additional modules related
to household wealth, land ownership, food security, infant feed-
ing practices, and dietary diversity, which complement the
mycotoxin risk module.

These data will be analyzed to provide a description of rele-
vant agricultural practices, including a summary mycotoxin risk
indicator. In addition, we will describe the association between
mycotoxin risk and household characteristics (eg, wealth, land
ownership), geographic locale, season, year, and rainfall. Last,
we will ascertain the extent to which overall mycotoxin risk
(measured as a summary score) and/or specific practices are as-
sociated with biomarkers of mycotoxin exposure in SHINE
mothers and infants.

ASSESSING THE RELATIONSHIP BETWEEN
MYCOTOXIN EXPOSURE AND CHILD
STUNTING

We will assess the longitudinal relationship between infant my-
cotoxin exposure and growth from 0–18 months, in human im-
munodeficiency virus (HIV)–uninfected mother–infant dyads.
Eligible infants will include all HIV-unexposed infants born
from November 2014 through September 2015 (N = 1000),
and will include approximately equal numbers of infants from
the WASH and IYCF arms of the SHINE trial. Because HIV
exposure affects postnatal growth independent of mycotoxins
[38], we will exclude infants born to HIV-infected mothers
to avoid this source of variation. Maternal HIV testing is

undertaken at baseline and at 32 weeks of gestation; women
testing negative at these time-points will be included in this sub-
study. There is little basis for sample size calculations; however,
previous studies reporting positive associations between AF or
FUM biomarkers and child growth have employed sample sizes
ranging from around 100 to several hundred [16, 18, 23].

Serum AF-alb and urinary FUM and DON will be measured
using liquid chromatography–mass spectrometry [39, 40]; these
parent mycotoxins and metabolites have a quantitative relation-
ship with dietary intake of the toxin and therefore serve as use-
ful quantitative exposure biomarkers [22, 41, 42]. AF-alb adduct
will be measured in all mothers at enrollment (median, 14
weeks’ gestation) and around 32 weeks’ gestation, and in infants
at 12 and 18 months of age. All 3 mycotoxins (AF-alb adduct,
urinary FB1, and urinary DON) will be measured in a subgroup
of 200 infants at 6, 12, and 18 months. These multiple exposure
analyses will be exploratory in nature but will be important
findings because only 2 studies to date have evaluated FUM
and DON biomarkers in African infants [23, 26].

Our first step in the analysis will be to describe the prevalence
and severity of mycotoxin exposures in Zimbabwean infants by
age and by season. In the 200 infants with multiple mycotoxin
assessments, we will describe the frequency, concentration, and
covariance of the 3 exposures. We will test the association with
stunting using multivariate regression models, with linear
growth as the outcome variable and mycotoxin exposure as
the independent variable. Linear growth will be modeled both
as a continuous variable (attained height-for-age z score)
using logistic regression and as a dichotomous variable (stunted
vs not stunted), and using ordinal logistic regression with 3 lev-
els (nonstunted, moderately stunted, and severely stunted). We
will explore whether the mycotoxin–stunting relationships are
independent of the SHINE WASH intervention, by examining
these models for the WASH and non-WASH groups separately.

INVESTIGATION OF EED AS A CAUSAL
PATHWAY LINKING MYCOTOXINS TO
STUNTING

We hypothesize that mycotoxin exposure will be associated with
EED and that this is an important causal pathway through
which mycotoxins mediate stunting. The biomarkers used in
this analysis will evaluate multiple domains of EED, as de-
scribed elsewhere [2, 3]. Our statistical approach will be the
same as that described above for the outcome of stunting.
We will additionally test whether EED, diarrhea, and decreased
appetite mediate the association between mycotoxins and stunt-
ing [43].

We have estimated our power using the Vittinghoff method
for sample size calculation for evaluating mediation [44]. With
1000 infants, we will be able to detect an effect size of 30% of 1
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standard deviation, with lactulose-mannitol ratio [3] as our pri-
mary mediator.

DISCUSSION

In summary, the analyses described in this article will provide
foundations for future research by exploring the potential mech-
anisms linking mycotoxin exposure to child stunting, and will
provide knowledge about relevant agricultural practices that
could be targeted in the development of interventions to reduce
mycotoxin exposure in vulnerable populations. This study will
provide data on levels and frequencies of multiple mycotoxin ex-
posures in our study population, thereby capturing typical expo-
sure patterns within a region. The longitudinal assessment of
mycotoxins will allow us to understand the effect of multiple in-
teracting exposures in a well-characterized cohort of infants. To
our knowledge, only 1 previous study has investigated multiple
mycotoxin exposure in infants longitudinally, and no study has
assessed the combined effects of multiple mycotoxins on stunting
while testing a specific causal pathway through EED and the IGF-
1 axis. Our additional data on agricultural and harvest practices
associated with mycotoxin exposure will allow the direct transla-
tion of this work into the development of interventions targeting
modifiable behaviors to prevent future exposure.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.
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