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ABSTRACT
Objectives: The study explores the protective role of the peripheral serum of limb remote ischemic
postconditioning (LRIP) in reducing the reactive oxygen species (ROS) levels and neutrophil
activation, which are responsible for the deleterious reperfusion injury.
Methods: LRIP was induced in Sprague–Dawley rats by three cycles of 5 min occlusion /5 min
reperfusion on the left hind limb. The blood samples were collected before LRIP or 0 and 1 h after
LRIP (named SerumSham, SerumLRIP0, SerumLRIP1, respectively). The effects of LRIP serum on ROS
level and neutrophils activation were determined. The expression of MyD88-TRAF6-MAPKs and
PI3K/AKT pathways in neutrophils were examined.
Results: When compared with SerumSham, SerumLRIP0 and SerumLRIP1 significantly reduced the ROS
released from neutrophils activated by fMLP. Meanwhile, the mRNA expression levels of NADPH
oxidase subunit p22phox and multiple ROS-producing related key proteins, such as NADPH oxidase
subunit p47phox ser 304, ser 345. MyD88, p-ERK, p-JNK and p-P38 expression of neutrophils were
downregulated by SerumLRIP0 and SerumLRIP1. SerumLRIP1 also downregulated p47phox mRNA
expression and tumor necrosis factor receptor-associated factor 6 (TRAF6) protein expression.
Conclusion: LRIP serum protects against ROS level and neutrophils activation involving the MyD88-
TRAF6-MAPKs. This finding provides new insight into the understanding of LRIP mechanisms.
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Introduction

Limb remote ischemic postconditioning (LRIP) refers to the
repeated limb ischemia after a serious ischemic brain or myo-
cardial injury. LRIP protects against cerebral or myocardial
ischemia/reperfusion (I/R) injury [1,2], eventually promoting
the recovery in ischemic disease patients. Thus, LRIP has
exhibited a promising therapeutic potential. I/R injury is a
complicated pathophysiological process that occurs
through various pathways including oxidative stress and
inflammation. However, the underlying mechanisms remain
to be fully elucidated. Recent studies support that the reac-
tive oxygen species (ROS) and proteases released from the
migrated neutrophils play a major role in acute reperfusion
injury following ischemic stroke [3].

Our previous study revealed that the limb operated with
LRIP can ‘attract’ the activated neutrophils, thereby reducing
the neutrophils migration to the cerebral ischemic area [3].
Meanwhile, LRIP in rats inhibits the NADPH oxidase activation
in neutrophils, a key enzyme which is dedicated to ROS pro-
duction [4], through TLR4-MyD88-TRAF6 signaling pathway.
A recent report presented that the serum extracted from
humans who were subjected to remote ischemic precondi-
tioning (RIPC) has a protective effect on human endothelial
and intestinal cells against hypoxia-induced damage [5,6].
However, whether the serum of LRIP mediates the protective
effect through inhibiting neutrophils activation or migration.

We hypothesized that the LRIP serum from rats could
directly reduce the ROS release from neutrophils through
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inhibiting NADPH oxidase. The associated pathways were
examined. The finding contributes to the elucidation of the
LRIP protective mechanism.

Materials and methods

Animals

Adult male Sprague–Dawley rats (Qinglongshan, Nanjing,
China) weighing 250–280 g were used in this study. All
animal experiment protocols were approved by the Animal
Ethics Committee of China Pharmaceutical University (No.
81503284) and were conducted according to the guidelines
of the Institutional Animal Care and Use Committee at
China Pharmaceutical University. Animals were housed in a
temperature and light-controlled room (23 ± 1°C; 12 h light/
12 h dark cycle) and allowed to freely access to food and
water.

Reagents

Hanks’ Balanced Salt Solution (HBSS), Trizol (R0016) and
SB203580 (SB, S1863) were obtained from Beyotime Biotech-
nology Co Ltd. RPMI 1640 and Fetal bovine serum (FBS,
26140-079) were obtained from Wisent Biotechnology Co.,
Ltd. Formyl-methionyl-leucyl-phenylalanine (fMLP, C-1711)
and Apocynin (APO, HY-N0088) were obtained from Sigma-
Aldrich and MedChemExpress.

Collection and preparation of LRIP serum of rat

The rats were randomly divided into SerumSham (SSham),
SerumLRIP0h (SLRIP0) and SerumLRIP1h (SLRIP1) groups (n = 5).
SLRIP0 and SLRIP1 rats were anesthetized with 10% chloral
hydrate and placed on the surgical plate. The femoral artery
of the left hindlimb of rats was clamped with a modified
blood pressure cuff for 5 min (ischemia) and blood flow
was restored for 5 min (reperfusion), which was regarded as
a cycle and repeated three cycles [3]. Interruption of the
blood supply to the hindlimb was confirmed by cyanosis of
the skin on the limb. The blood was collected from the
abdominal aorta of rats immediately (SLRIP0) or at 1 h after
the completion of LRIP (SLRIP1) or without LRIP operation
(SSham) [6]. After clotted for 10 min at room temperature, all
of the blood samples were then centrifuged at 5000 rpm
for 10 min. The serum was collected and stored at −80°C
for further use.

Isolation and culture of rat bone marrow neutrophils

The neutrophils were isolated from rat bone marrow and
purified following the manufacturer’s instructions of Rat
Bone Marrow Isolation Kit (TBD2013NR, Tianjin Haoyang Bio-
logical Manufacture CO., Ltd., Tianjin, China). Rats were
sacrificed by cervical dislocation under anesthesia. The
femur and tibia of rat were isolated and the soft tissue attach-
ment were carefully removed. F solution in Rat Bone Marrow
Isolation Kit was forced through the bone with a 10 mL
syringe. After dispersing cell clumps, the cell suspension
was centrifuged (500 g, 10 min, room temperature) and resus-
pended in HBSS (Ca2+, Mg2+) solution. Cells were then overlay
two-layer solution A gradient of 100% and 80% solution A
(diluted in diluent with 100% solution A), and centrifuged

(750 g, 25 min, room temperature). Neutrophils from the
upper phases were harvested and the remaining red cells
were eliminated by red blood cell lysis. After washed twice
with cell detergent, the purity of neutrophils was identified
by using Wright-Gemssa staining (purity > 90%). The isolated
neutrophils were adjusted to 2.5×106/mL with RPMI 1640
complete medium, then subjected to the following treat-
ments and measurements.

Detection of neutrophil viability

To detect the neutrophil viability, cells were separated into 2
groups. In group 1, cells were cultured with RPMI 1640 con-
taining 10% FBS [7]. In group 2, cells were cultured with
RPMI 1640 containing 10% SSham at 37 °C under 95% O2,
5% CO2. The neutrophil viability was detected at 0, 3, 6, 12,
24 and 48 h by using the Cell Titer-Lumi™ Cell Viability
Assay Kit (C0068S, Beyotime Biotechnology Co., Ltd., Shang-
hai, China) according to the manufacturer’s instructions.

Release of ROS in neutrophils

To measure the release of ROS and the mRNA/protein levels
of associated markers, the neutrophils were randomly distrib-
uted into 6 groups: SSham group, SSham + ROS inducer fMLP
group, SLRIP0 group, SLRIP1 group, SSham+ p38 MAPK inhibitor
SB group, SSham+ NADPH oxidase inhibitor APO group [8,9].
SLRIP0 and SLRIP1 group cultured with RPMI 1640 containing
10% SLRIP0 or 10% SLRIP1, respectively, the other four groups
cultured with RPMI 1640 containing 10% SSham. 200 μL cell
suspension was inoculated into the 96-well culture plate
coated with 0.1% gelatin, then cultured at 37 °C under 95%
O2 and 5% CO2. 24 h later, p38 MAPK inhibitor SB (10 μM,
DMSO) [10] and NADPH oxidase inhibitor APO (100 μM,
DMSO) [11] were added into SB and APO groups, respectively,
then SB group was cultured for 30 min and APO group for 15
min, followed by stimulation with fMLP (10 μM, DMSO) [12]
for 10 min. After carefully transferred into 96-well plate and
gently washed with PBS, the culture medium was added
with 100 μL of 2, 7 dichlorofluorescein diacetate (DCFH-DA)
diluted (1:1000) to PBS, then incubated at 37°C for 25 min.
Fluorescence value was measured at the excitation at 488
nm and emission at 525 nm with an automated microplate
reader (Varioskan Flash, ThermoFisher Scientific, Waltham,
MA, USA).

qPCR

Total RNA of neutrophils was extracted by Trizol similar as
previously described [3]. Then 1 μL cDNA product and 2 μL
primer were added into qPCR super mixture with a final
volume of 10 μL [3]. qPCR was performed with 1 cycle for
30 s at 94°C, followed by 5 s at 94°C, 40 cycles (1 cycle for
30 s) at 60°C using a Real-time quantitative PCR instrument
(Bio-Rad, USA). The following primer sequences were used
(5′ to 3′): p47phox (AC008033.9), forward, ATTTTCTTGGTGATT-
GATG, reverse, GAGGGATGTTACTTACTGG; p22phox (AC0080
80.1) forward, CAGCCACCCGAGATTGAGCA, reverse, AGG-
CACGGACAGCAGTAA; GAPDH (LC627775.1), forward,
TCCTGCACCACCAACTGCTTAG, reverse, AGTGGCAGTGATGGC
ATGGACT.
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Western blot

Western blot was performed as described previously [3]. The
total protein was extracted with cold RIPA lysis buffer from
neutrophils and protein concentration was measured using
BCA Protein Assay Kit (P0012S, Beyotime Biotechnology
Co., Ltd., Shanghai, China), then 40 µg protein from each
group were used for protein gel electrophoresis. After the
electrophoresis, the protein band was transferred onto the
PVDF membrane and blocked with 3% BSA. Followed by
incubation with the first antibody overnight at 4°C, (anti-
bodies as below, p47phox (sc-17845, Santa Cruz
Biotechnology, Texas, USA), p-p47phox Ser 345
(SAB4301368, Sigma-Aldrich, St. Louis, MO, USA), p-p47phox

Ser 304 (P14598, Bioworld, Beijing, China), TRAF6
(ab33915, Abcam, Cambridge, MA, USA), MyD88
(ab133739, Abcam, Cambridge, MA, USA), p38 MAPK
(8690S, CST, Danvers, Massachusetts, USA), p-p38 MAPK
(4511S, CST, Danvers, Massachusetts, USA), PI3K (17366S,
CST, Danvers, Massachusetts, USA), AKT (4685S,
CST, Danvers, Massachusetts, USA), p-AKT (4685S,
CST, Danvers, Massachusetts, USA), ERK (4695S,
CST, Danvers, Massachusetts, USA), p-ERK (4370S,
CST, Danvers, Massachusetts, USA), JNK (2305S,
CST, Danvers, Massachusetts, USA) and p-JNK (9255S,
CST, Danvers, Massachusetts, USA)), the membranes were
washed and incubated with the horseradish labeled
second antibody for 2 h at room temperature. The protein
band was analyzed with the gel-imaging system (Bio-Rad,
Hercules, CA, USA). The values were calculated after normal-
ization to the amount of GAPDH.

Statistical analysis

All data was statistically analyzed by using GraphPad
Prism 5 software (GraphPad Software, Inc., La Jolla, CA,
USA). Results were expressed as mean ± SEM. Student’s t-
test was used for the comparison between the two
groups. One-way ANOVA analysis was used for the com-
parison of three or more groups, followed by using Dun-
nett’s test, P < .05 was considered to be statistically
significant.

Results

LRIP serum collection and neutrophil viability
determination

Blood was collected from the abdominal aorta and SSham,
SLRIP0 and SLRIP1 were obtained (Figure 1(A)). Bone marrow
neutrophils were separated and the quality was determined
by Wright-Giemsa staining assay (purity > 90%). The neutro-
phil viability was evaluated at 0, 3, 6, 12, 24 and 48 h to
compare the effect of rat serum and FBS. Results showed
that the viability of neutrophils cultured with FBS significantly
decreased at 3 h compared with viability at 0 h (Figure 1(B))
(P < .05). It is interesting to find that neutrophils cultured
with rat serum still remained at 90% viability (0 h viability
as 100%) and remained at higher viability even at 48 h
(Figure 1(C)). Based on these results, we selected 24 h as
the time point for testing the effects of LRIP serums on
neutrophils.

LRIP serum inhibits fMLP-induced neutrophil ROS
release

Compared with SSham group, SSham + fMLP group significantly
increased the excessive of ROS (P < .001). SLRIP0, SLRIP1,
SB203580 and APO all could significantly inhibit ROS pro-
duction (Figure 2).

LRIP serum inhibits the activation of neutrophil
NADPH oxidase induced by fMLP

The mRNA expression of p47phox and p22phox, two key regu-
lators of NADPH oxidase, were significantly upregulated in
the SSham + fMLP group (P < .05). Similar to the SSham group,
the phosphorylation of p47phox Ser 304 and p47phox Ser 345
were also significantly upregulated (Figure 3), p47phox

mRNA of SLRIP1 + fMLP, SB and APO groups, as well as
p22phox mRNA of SLRIP0, SLRIP1 and SB groups were signifi-
cantly downregulated (P < .05). SLRIP0, SLRIP1, SB and APO all
could significantly inhibited the phosphorylation of p47phox

Ser 304 and Ser 345. These results indicated that LRIP
serum can inhibit the activation of neutrophil NADPH
oxidase induced by fMLP.

LRIP serum inhibits the activation of neutrophil
NADPH oxidase induced by fMLP

To determine whether LRIP serum inhibits the activation of
neutrophil NADPH oxidase induced by fMLP, neutrophils
were treated with SSham, SLRIP0, SLRIP1, SB and APO before
being activated by fMLP. Compared with SSham group, the
mRNA expression of p47phox and p22phox, as well as the phos-
phorylation of p47phox Ser 304 and p47phox Ser 345 was sig-
nificantly increased in the SSham + fMLP group (P < .05,
Figure 3). SLRIP1, SB and APO all could downregulate the
expression of p47phox mRNA (P < .05). SLRIP0, SLRIP1, SB and
APO all could significantly inhibit the phosphorylation of
p47phox Ser 304 and Ser 345, SLRIP0, SLRIP1, SB also could down-
regulate the expression of p22phox mRNA (P < .05). These
results indicated that LRIP serum could inhibit the activation
of neutrophil NADPH oxidase induced by fMLP.

LRIP serum inhibits the activation neutrophil induced
by fMLP via MyD88-TRAF6-MAPKs signaling pathway

Compared with SSham group, the protein expression of
MyD88, TRAF6, p-ERK, p-JNK and p-p38 MAPK of SSham +
fMLP groups were significantly upregulated. SLRIP0, SLRIP1, SB
and APO all could downregulated the protein expression of
MyD88, TRAF6, p-ERK, p-JNK and p-p38 MAPK. These results
proved that the LRIP serum could inhibit the activation of
neutrophil NADPH oxidase induced by fMLP via the MyD88-
TRAF6-MAPKs signaling pathway (Figure 4).

LRIP serum inhibits the activation of neutrophil
induced by fMLP independently of PI3 K/AKT
signaling pathway

Continuously, to determine whether PI3K/Akt pathway is
involved. As shown in Figure 5, compared with the SSham
group, the expression of PI3K of the SSham + fMLP group
was significantly upregulated but the p-Akt expression
levels were downregulated by fMLP. SLRIP0, SLRIP1, SB and
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APO all could downregulate the expression of PI3K. These
results revealed that LRIP serum inhibits the activation of neu-
trophil induced by fMLP, the PI3K may play a role in it but
independently of p-AKT.

Discussion

In this study, we wanted to test the effect and mechanism of
LRIP serum on a neutrophil respiratory burst model in vitro.
The lifespan of neutrophils in culture with FBS or rat serum
was tested. Recent studies have confirmed that the lifespan
of neutrophils in the blood circulation of mice is 18 h [13],
and in humans, neutrophils can survive in the blood for 5.4

days [14]. Previous research has proved that there are a
great amount of functionally competent neutrophils in mice
bone marrow, the half-life of neutrophils from bone marrow
is longer than the neutrophils from blood [15]. This study
showed that the activity of neutrophils cultured with FBS
decreased significantly after 3 h, this is similar to previous
studies [15]. It is very interesting to find that neutrophils cul-
tured with SSham remained more than 90% viability after a 24
h culture (Figure 1). This proved that there should be some
nutritional factors in SSham, which satisfied the rat neutrophil
survival needs. Based on this result, we chose neutrophils
extracted from the bone marrow and the rat serum as the
cell culture media, 24 h as the culture time in this study. In
addition, SLRIP0, SLRIP1, SB and APO were all found to inhibit
the ROS production from neutrophils activated by fMLP
(Figure 2). This result proved the inhibiting effect of SLRIP0,
SLRIP1 on the ROS release from neutrophils under the stimu-
lated I/R condition and also proved LRIP can exert protective
effects through the serum route. Futhermore, results of qPCR
and western blot showed that SLRIP1 could downregulate the
mRNA expression of p47phox. Both SLRIP0 and SLRIP1 could
downregulate the mRNA and protein expression of p22phox,
p47phox ser 304 and p47phox ser 345 (Figure 3).

ROS was thought to be the major cause of I/R injury [16–
18] and the activated neutrophil NADPH oxidase was
thought to be the main source of ROS [19–21]. The reperfu-
sion injury would occur [22,23] after the thrombolytic
therapy was used on ischemic disease patients to restore
blood flow into the ischemic regions [24,25]. LRIP is
effective in alleviating I/R injury of brain, heart, kidney and
other organs [3,26,27]. The related mechanisms include rever-
sing the eNOS uncoupling [28], upregulating the expression
of Nrf2 along with heme oxygenase-1 (HO-1) [29], quinone
oxidoreductase 1 (NQO-1) [30], inhibiting the inflammation
[31–33]. Our previous work has proved that LRIP can inhibit

Figure 1. Combine LRIP serum collecting and neutrophil viability cultured in vitro. (A) Blood was collected before LRIP operation, or 0, 1 h after LRIP operation,
serum was named SSham, SLRIP0, SLRIP1 separately. The viability of bone marrow neutrophils was assessed at 0, 3, 6, 12, 24, 48 h under different serum conditions:(B)
Cultured with FBS; (C) Cultured with SSham. Data are expressed as mean ± SEM, n = 4–5, ***P < .001 vs. 0 h, *P < .05 vs. 0 h.

Figure 2. The inhibiting effects of LRIP serum on intracellular superoxide gen-
eration from neutrophils. Neutrophils were cultured with RPMI 1640 containing
SSham, SLRIP0 or SLRIP1 serum for 24 h, followed by incubating with DMSO, Apoc-
ynin (100 μM) for 15 min or incubated with SB203580 (10 μM) for 30 min, then
activated with fMLP (10 μM) for 10 min. Data are expressed as mean ± SEM, n
= 5, ###P < .001 vs. SSham

*** P < .0001 vs. SSham + F.
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the activation of neutrophil NADPH oxidase through the
TLR4-MyD88-TRAF6 pathway, working to reduce the cerebral
I/R injury [3]. But till now, no researches have been done to
clarify the effect and mechanism of LRIP serum in the acti-
vation of neutrophil NADPH oxidase in vitro. In this study,
we wanted to check the protective effect of LRIP serum and
clarify the related mechanisms.

The activation of neutrophil NADPH oxidase induced by
fMLP will produce a great deal of ROS [34], which can simulate
the respiratory burst of neutrophils under I/R injury. In our
study, 10 μM fMLP was used to stimulate neutrophils [35].
The catalytic core of NADPH oxidase in neutrophils is
gp91phox (Nox2). Activation of Nox2 needs the active
p47phox (the adaptor protein) to bind onto p22phox [36] and

Figure 3. The inhibiting effects of LRIP serum on activation of neutrophil NADPH oxidase. qPCR results showed the mRNA expression of p47phox (A) and (B)
p22phox, GAPDH was used as the internal control, (n = 3); (C–D) Western bolt analysis of p47phox phosphorylation at Ser 304 and Ser 345 of neutrophils (n =
5). Data are expressed as mean ± SEM, ###P < .001 vs. SSham,

#P < .05 vs. SSham, ***P < .001 vs. SSham + F, **P < .01 vs. SSham + F, *P < .05 vs. SSham + F.

Figure 4. The inhibiting effects of LRIP serum on fMLP-induced neutrophil activation via MyD88/TRAF6/p38MAPK pathway. Representative images of Western bolt
assessments and quantitative analysis of the ratio of MyD88 (A); TRAF6 (B); p-ERK (C); p-JNK (D); and p-p38 MAPK (E). Data are expressed as mean ± SEM, n = 5, ###P
< .001 vs. SSham,

#P < .05 vs. SSham, ***P < .001 vs. SSham + F, **P < .01 vs. SSham + F, *P < .05 vs. SSham + F.
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p67phox onto Nox2. The function of p47phox is governed by
serine phosphorylation, which occurs during activation of the
NADPH oxidase. Phosphorylation of Ser-304 [37] and Ser-345
[38] on p47phox is a necessary event in the priming of neutro-
phils. Results in this study proved fMLP could upregulate the
mRNA expression of p22phox, p47phox in neutrophils and upre-
gulate the phosphorylation of ERK, JNK, P38, p47phox ser 304,
ser 345, also upregulate the expression of MyD88, TRAF6 in
neutrophils. These proved the activation of neutrophil
NADPH oxidase simulated by fMLP was based on the
MyD88/TRAF6/p38 MAPK pathway (Figure 6). The results also
showed that this kind of activation can be inhibited by SLRIP0
and SLRIP1. This demonstrates that SLRIP0 and SLRIP1 inhibited
the production of ROS from activated neutrophils by inhibiting
the activation of neutrophil NADPH oxidase.

This study still has some limitations. For example, the kind
of serum factor/factors which mediated the protective effect
of the LRIP serum and how PI3K regulated the protective
effect of LRIP serum, both remain to be identified.

Conclusion

In conclusion, the rat serum is more adept to keeping viability
of the bone marrow neutrophils. LRIP operation can induce
some serum factors to inhibit the activation of neutrophil
NADPH oxidase via the MyD88/TRAF6/p38 MAPK pathway,
which then alleviate the I/R injury. This study might be mean-
ingful for clarifying the protection mechanisms of LRIP and
allowing for further research and development of biological
drugs related to I/R injury.

Figure 5. The inhibiting effects of LRIP serum independently of PI3K/Akt in fMLP-induced neutrophil. Representative images of Western bolt assessments and
quantitative analysis of the ratio of: PI3K (A); p-AKT/Akt (B). Data are expressed as mean ± SEM, n = 4, #P < .05 vs. SSham, **P < .01 vs. SSham + F, *P < .05 vs.
SSham + F.

Figure 6. Serum of LRIP inhibits fMLP-triggered activation and ROS releasing of rat neutrophils through MyD88/TRAF6/p38 MAPK pathway.
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