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Abstract

Recent experiments have demonstrated that visual cortex engages in spatio-temporal

sequence learning and prediction. The cellular basis of this learning remains unclear, how-

ever. Here we present a spiking neural network model that explains a recent study on

sequence learning in the primary visual cortex of rats. The model posits that the sequence

learning and prediction abilities of cortical circuits result from the interaction of spike-timing

dependent plasticity (STDP) and homeostatic plasticity mechanisms. It also reproduces

changes in stimulus-evoked multi-unit activity during learning. Furthermore, it makes pre-

cise predictions regarding how training shapes network connectivity to establish its predic-

tion ability. Finally, it predicts that the adapted connectivity gives rise to systematic changes

in spontaneous network activity. Taken together, our model establishes a new conceptual

bridge between the structure and function of cortical circuits in the context of sequence

learning and prediction.

Author summary

A central goal of Neuroscience is to understand the relationship between the structure

and function of brain networks. Of particular interest are the circuits of the neocortex, the

seat of our highest cognitive abilities. Here we provide a new link between the structure

and function of neocortical circuits in the context of sequence learning. We study a spik-

ing neural network model that self-organizes its connectivity and activity via a combina-

tion of different plasticity mechanisms known to operate in cortical circuits. We use this

model to explain various findings from a recent experimental study on sequence learning

and prediction in rat visual cortex. Our model reproduces the changes in activity patterns

as the animal learns the sequential pattern of visual stimulation. In addition, the model

predicts what stimulation-induced structural changes underlie this sequence learning abil-

ity. Finally, the model also predicts how the adapted network structure influences sponta-

neous network activity when there is no visual stimulation. Hence, our model provides

new insights about the relationship between structure and function of cortical circuits.
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Introduction

The ability to predict the future is a fundamental challenge for cortical circuits. At the heart of

prediction is the capacity to learn sequential patterns, i.e., the ability for sequence learning.

Recent experiments have shown that even early sensory cortices such as rat primary visual cor-

tex are capable of sequence learning [1]. Specifically, Xu et al. [1] have shown that the visual

cortex can learn a repeated spatio-temporal stimulation pattern in the form of a light spot

moving across a portion of the visual field. Intriguingly, when only the start location of the

sequence is stimulated by the light spot after learning, the network will anticipate the continua-

tion of the sequence as revealed by its spiking activity. While these results are remarkable, the

cellular basis of this ability has remained elusive. A natural candidate for a cellular mechanism

of sequence learning is spike-timing dependent plasticity (STDP) [2, 3]. Theoretical work has

suggested that the inherent temporal asymmetry of STDP seems ideally suited for learning

temporal sequences and storing them into the structure of cortical circuits [4–8]. At present, it

is still unknown, however, exactly how such sequence memories are stored in real cortical cir-

cuits and how they become reflected in the structure of these circuits. Yet, a number of generic

structural features of cortical circuits have been established in recent years. Among them is the

lognormal-like distribution of synaptic efficacies between excitatory neurons [9–13], the dis-

tance-dependence of synaptic connection probabilities [12, 14], and an abundance of bidirec-

tional connections between excitatory neurons [12, 15]. While recent theoretical studies have

successfully modeled the origins of these generic structural features of cortical circuits, there is

currently no unified model that explains both the emergence of structural features of cortical

circuits and their sequence learning abilities. Here we present such a model and therefore

establish a new conceptual bridge between the structure and function of cortical circuits.

Our model is a recurrently connected network of excitatory and inhibitory spiking neurons

endowed with STDP, combined with a form of structural plasticity that creates new synapses

at a low rate and destroys synapses whose efficacies have fallen below a threshold, as well as

several homeostatic plasticity mechanisms. We used this network to model recent experiments

on sequence learning in rat primary visual cortex [1]. The model successfully captured how

multi-unit activity is changing during learning and explained these changes on the basis of

STDP and the other plasticity mechanisms adapting the circuit during learning. It additionally

demonstrated how homeostatic mechanisms prevent the runaway connection growth and

unstable overlearning [16–19] that otherwise tends to occur from STDP alone. Furthermore,

the model predicted that the changes to the network during learning also alter spontaneous

activity patterns in systematic ways leading to an increased probability of spontaneous sequen-

tial activation. Finally, the model also captured the experimental finding that the training effect

is only short-lasting. In sum, we present the first spiking neural network model that explains

recent sequence learning data from rat primary visual cortex while also reproducing key struc-

tural features of cortical connectivity.

Results

Model summary

The network model we used is a member of the class of self-organizing recurrent neural net-

work (SORN) models (see e.g. [6, 20–23]). Specifically, we used the leaky integrate-and-fire

SORN (LIF-SORN) introduced by Miner and Triesch [22]. The LIF-SORN is a model of a

small section of L5 of the rodent cortex. Here, we used a version of it consisting of NE = 1000

excitatory and NI = 0.2 ×NE = 200 inhibitory leaky integrate-and-fire neurons with conduc-

tance based synapses and Gaussian membrane noise. The neurons are placed randomly on a

2500 μm × 1000 μm grid (Fig 1A) and their connectivity is distance-dependent, meaning a
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neuron is more likely to form a connection with a neuron nearby than with a remote neuron.

While the weights of connections involving inhibitory neurons are fixed, recurrent excitatory

connections are subject to a set of biologically motivated plasticity mechanisms. Exponential

STDP with an asymmetric time window endows the network with the ability to learn correla-

tions in external input. It is complemented by a form of structural plasticity (SP), which creates

new and prunes weak connections. The network dynamics are stabilized by three additional

plasticity mechanisms. First, synaptic normalization (SN) keeps the total incoming weight for

each excitatory neuron constant. Second, intrinsic plasticity (IP) regulates the threshold poten-

tial of each excitatory neuron to counteract overly high or low firing rates. Third, short-term

plasticity (STP) facilitates or impedes signal transmission along a specific connection based on

the firing history of the presynaptic neuron.

Using this network model, we replicated the study by Xu et al. [1]. In this experiment, a

multielectrode array was inserted in the primary visual cortex of rats and the receptive field of

each channel was determined. The rats were then presented with a bright light spot, which was

moved from a start point ~S to an end, or goal, point ~G along the distribution of receptive fields.

The effect of this conditioning was assessed by measuring the responses to different kinds of

cues of the full motion sequence. Xu et al. [1] investigated both awake and anesthetized rats,

but unless noted otherwise, we compared our results to the results from awake animals. In

the LIF-SORN, we modeled the movement of the light spot by sweeping a spot from

x~S ¼ ð375 mm; 500 mmÞT to x ~G ¼ ð2125 mm; 500 mmÞT. The amplitude of this spot at the

position xne
of an excitatory neuron ne represents the rate rspotðxne

; tÞ of external Poissonian

Fig 1. Network architecture and modeling of the study by Xu et al. [1] in the LIF-SORN. (A) Distribution of neurons on the 2D grid of one

network instance. Blue lines show all connections projecting from the excitatory population to an example excitatory neuron after 500 s of

simulation time. Connections spanning a larger distance are unlikely to exist, due to the distance dependent connection probability. (B) Cross-

section of the rate rspot of the Poissonian input spike trains with Δx being the distance to the center of the spot. (C) Distribution of the excitatory

neurons including the start point ~S, mid point ~M and end point ~G of the trajectory of the moving spot used in most experiments. The colored circles

define the neurons that are pooled together for the analysis of the sequence learning ability.

https://doi.org/10.1371/journal.pcbi.1006187.g001
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spike trains, which this neuron receives (Fig 1B). Furthermore, we approximated recording

with a multielectrode array by introducing clusters of excitatory neurons. These clusters are

located between x~S and x ~G and are named A to H according to their distance to x~S (Fig 1C).

For the analysis of the sequence learning task, we only considered the activity of these clusters,

which we defined to be the pooled spikes of the neurons part of a cluster. See the Materials and

methods section for a more detailed description of our model.

Basic network properties

To get an impression of the behavior of the LIF-SORN, we simulated the network for 500 s

solely under the influence of the background noise, i.e., without external input. Thereby we

also showed that it exhibits some basic properties of both the activity and connectivity in bio-

logical neural networks. We began by analyzing the spiking activity after an initial equilibra-

tion phase (Fig 2).

Both excitatory and inhibitory neurons seemed to exhibit unstructured firing (Fig 2A and

2B) with the excitatory neurons firing with frequencies distributed closely around 3 Hz due to

the IP (Fig 2C) and inhibitory neurons firing with roughly twice this frequency (Fig 2D). The

activity of the cortex in the absence of external stimuli is often assumed to lie in a regime of

asynchronous irregular spiking. Synchrony refers, in this context, to the joint spiking of a set

of neurons. Biological data shows that population level activity in the cortex is highly asynchro-

nous [24, 25]. Mostly, the pairwise correlation coefficient is used to quantify synchrony (see

e.g. [26]). The pairwise correlation coefficient between a neuron m and n is defined as

cmn ¼
covðCm;CnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðCmÞVarðCnÞ

p ; ð1Þ

where Cm is the time series of spike counts of neuron m within successive time bins. Fig 2E

shows the distribution of pairwise correlation coefficients of all disjoint pairs of excitatory neu-

rons in the LIF-SORN for time bins of 20 ms duration. The pairwise correlation coefficients

were closely distributed around zero, implying a low level of synchrony in the LIF-SORN.

When varying the duration of the time bins, the mean of the distribution of pairwise correla-

tion coefficients stayed close to zero while its width increased (decreased) with increasing

(decreasing) duration of the time bins.

Regularity refers to the variability of the spiking of individual neurons. In the cortex, this

spiking is highly irregular and can, apart from the refractory period, often be quite accurately

described by a Poisson process [27], in which the interspike intervals follow an exponential

distribution with a coefficient of variation equal to unity. We found that interspike intervals of

excitatory neurons in the LIF-SORN were approximately exponentially distributed with a dis-

tortion caused by the refractory period (Fig 2F) and that the coefficients of variation were gen-

erally close to one (Fig 2G), indicating irregular spiking.

Next, we considered the structural properties of the LIF-SORN. The LIF-SORN was initial-

ized without recurrent excitatory connections, but due to SP, these connections grew for about

200 s, as can be seen in Fig 3A. Afterwards the pruning rate of existing synapses approached

the growth rate of new synapses and the network entered a stable phase in which the connec-

tion fraction of excitatory connections did not change anymore. The values of individual

weights were, on the other hand, still fluctuating (Fig 3B). This constant change was also found

in biological networks [13]. Additionally, the excitatory weights assumed an approximately

lognormal-like distribution (Fig 3C) as observed in cortical circuits [9–13]. We also converted

the connection weights in approximate amplitudes of the corresponding postsynaptic poten-

tials (PSP). In excitatory neurons, the mean excitatory PSP (EPSP) amplitude was 0.72 mV
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and the mean inhibitory PSP (IPSP) amplitude was 0.96 mV and in inhibitory neurons, the

mean EPSP amplitude was 0.74 mV and the mean IPSP amplitude was 0.94 mV. These values

lie within the experimentally observed range [11, 12, 28]. See S1 Appendix for a description

of how this conversion was done and figures of the distribution of PSP amplitudes and their

ratios.

Taken together, the LIF-SORN displayed key features of both the activity and connectivity

in cortical circuits. Besides the here mentioned structural properties, the LIF-SORN has also

already been shown to reproduce more complex properties of cortical wiring, namely the over-

representation of bidirectional connections and certain triangular graph motifs compared to a

random network and various aspects of synaptic dynamics [22].

Fig 2. Characterization of spiking activity (based on activity in the time window 400s–500s). (A) Spike trains of excitatory neurons. (C) Firing rate

distribution of excitatory neurons. (B,D) Same as (A,C) for inhibitory neurons. (E) Distribution of pairwise correlation coefficients of the excitatory

population, computed for time bins of 20 ms duration. (F) Interspike interval distribution of all excitatory neurons (Exponential function is fitted to the data

points with tISI > 50 ms). (G) Distribution of coefficients of variation of the interspike interval distribution of each excitatory neuron. Data from a single

network instance.

https://doi.org/10.1371/journal.pcbi.1006187.g002
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Cue-triggered sequence recall

To investigate the sequence learning ability of the LIF-SORN, we employed a similar test para-

digm as Xu et al. [1]. That means we trained the network with the moving spot as described

above and tested it by stimulating the network with brief flashes of the spot at the start point

x~S ¼ ð375 mm; 500 mmÞT, the mid point x ~M ¼ ð1250 mm; 500 mmÞT and the end point

x ~G ¼ ð2125 mm; 500 mmÞT. This testing was performed before and after training and the

responses to each of the stimuli after training were compared to their counterpart before

training.

Specifically, our simulation protocol started with a growth phase of 400 s duration, to ini-

tialize a network that exhibits key features of cortical circuits. It followed a test phase, during

which one of the cues, i.e. a brief flash of the spot at the start point, mid point or end point,

was presented once every two seconds. This first test phase lasted 100 s, leading to a total of 50

repetitions. After this test phase, the network was given a short relaxation phase of 10 s such

that its activity got back to base level. Afterwards, the full motion sequence was shown to the

network in the training phase, which lasted 200 s. The sequence was also presented once

every two seconds leading to a total of 100 repetitions. After another relaxation phase of 10 s,

the simulation ended with another test phase, during which the same cue as in the first test

phase was shown to the network. This second test phase lasted 100 s leading to a total of 50

repetitions.

The purpose of the presentation of the test cue at the start point was to examine if the net-

work learned the sequential structure of the motion sequence. Fig 4A shows the spike trains of

Fig 3. Characterization of network connectivity. (A) Connection fraction of recurrent excitatory connections. (B) Time course of the weights of 10

randomly selected recurrent excitatory connections after the connection fraction has stabilized. (C) Distribution of the weights of existing recurrent

excitatory connections, determined after 500 s of simulation time. Data from a single network instance.

https://doi.org/10.1371/journal.pcbi.1006187.g003
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the neurons that are part of one of the clusters A to H during training in response to one pre-

sentation of the full motion sequence as well as before and after training in response to one

trial of cue presentation at the start point. While the spiking was clearly sequential during

training, such sequential spiking was much less pronounced in response to the test cue before

and after learning. Additionally, the spiking was quite variable over trials and different net-

works. Similar results were found by Xu et al. [1].

A common method to assess the sequential spiking in animal studies of sequence replay is

to compute the cross-correlation between pairs of spike trains [1, 29]. We performed such an

analysis in a similar way as Xu et al. [1] by pooling the spikes for each cluster and than comput-

ing the correlation between these spike trains for each trial and for all cluster combinations.

Therefor, we only considered spikes within the window 0 ms–500 ms relative to stimulus

onset to minimize the impact of spontaneous activity. Next, we pooled the cross-correlations

according to the corresponding difference in cluster position. This was done for the test phases

before and after training. We then also took the difference between the resulting cross-correlo-

grams and finally normalized each of the three cross-correlograms to the range between 0 and

1. This was done independently for each of the sets of cross-correlations corresponding to a

specific difference in cluster position. Fig 4B shows the thereby obtained cross-correlograms,

which qualitatively resembled the cross-correlograms obtained from rats [1] in that the corre-

lation function took on higher values for positive time delays compared to negative time delays

even before learning—an observation that can be linked to the spread of activity from ~S
towards ~G—and in that this rightward slant enhanced due to training. This increase of the cor-

relation function for positive time delays indicated that the network indeed learned about the

sequential structure of the motion sequence.

To quantify the cue-triggered sequence recall, we again adapted the analysis used by Xu

et al. [1]. That is to say we pooled the spikes of all neurons for each cluster and calculated their

Fig 4. Cue-triggered sequence replay. (A) Example spike trains of neurons part of clusters in response to a brief flash of the light spot at ~S before and after training

and in response to the full motion sequence during training. Top and bottom row show spike trains for two different network instances. Neurons are ordered

according to the projection of their location on the ~S ! ~G axis. (B) Normalized pairwise cross-correlation between spikes of neurons part of clusters in response to

a brief flash of the light spot at ~S before (top) and after (middle) training and normalized difference between the cross-correlograms after and before training

(bottom). Panel B shows results from 20 instances of the LIF-SORN.

https://doi.org/10.1371/journal.pcbi.1006187.g004
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rate by convolving them with a Gaussian filter with width τrate = 50 ms. We only considered

spikes within the window 0 ms–500 ms relative to stimulus onset to minimize the impact of

spontaneous activity and defined the firing time of a cluster as the first peak of its rate curve.

Then we computed for each test trial the Spearman correlation coefficient between the firing

times of the clusters and their location on the ~S ! ~G axis. The Spearman correlation coeffi-

cient between two variables is defined as the Pearson correlation coefficient between the rank

values of those variables. Hence, it measured how much the replay order resembled the train-

ing order of clusters.

For the test phases with a cue at ~S, we found a significant rightward shift of the correlation

coefficient distribution after learning with a change in mean from 0.26 to 0.30 (P = 7.9 × 10−3;

Kolmogorov-Smirnov test) as shown in Fig 5A. Thus, there was enhanced sequential spiking

after training compared to before training as found by Xu et al. [1], who observed a change in

mean from 0.21 to 0.29 (P = 1.5 × 10−3; Kolmogorov-Smirnov test; Fig 5A).

The purpose of the presentation of the test cue at the mid point was to avoid having a right-

ward bias even before training. For that case, Xu et al. [1] also found a significant rightward

shift of the correlation coefficient distribution with a change in mean from −0.08 to −0.02

(P = 1.3 × 10−4; Kolmogorov-Smirnov test; Fig 5B). In the LIF-SORN, we observed only a very

small rightward shift, which wasn’t significant, however (change in mean from 0.0 to 0.02;

P = 0.31; Kolmogorov-Smirnov test; Fig 5B).

The purpose of the presentation of the test cue at the end point was to examine if the cue-

triggered replay was specific to the direction of the motion sequence. Thereby, Xu et al. [1]

computed the Spearman correlation coefficients between the firing times of the clusters and

their location on the ~G ! ~S axis and found no significant shift in the correlation coefficient

distribution (change in mean from 0.20 to 0.20, P = 0.59; Kolmogorov-Smirnov test; Fig 5C),

Fig 5. Analysis of cue-triggered sequence replay. (A) Top: Cumulative distribution of Spearman correlation coefficients when testing with a cue presented at ~S.

The distribution is shifted to the right after (solid) compared to before (dotted) training. Bottom: Same as top but for results in rats [1]. (B,C) Same as A but for
~M-evoked (B) and ~G-evoked (C) responses. Top plots of all panels show results from 20 instances of the LIF-SORN. Bottom plots show approximate

experimental data that were obtained from [1] using WebPlotDigitizer [30].

https://doi.org/10.1371/journal.pcbi.1006187.g005
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indicating that the direction of replay was indeed specific to the direction of the motion

sequence used during training. In the LIF-SORN, we found a small but not significant leftward

shift (change in mean from 0.22 to 0.20, P = 0.53; Kolmogorov-Smirnov test; Fig 5C). The

small leftward shift can be explained by the weakening of connections between the clusters

pointing in the opposite direction of the motion sequence due to STDP, since this decreased

the correlation between the activity of one cluster and a cluster located further along the

~G ! ~S axis. Although Xu et al. [1] did not observe even a small leftward shift, it may still be

that STDP was also responsible for the training effect in rats as the weakening of connections

pointing in the opposite direction of the motion sequence could have been too small to have

an observable effect. Furthermore, Xu et al. [1] showed that blocking NMDA receptors lead to

the disappearance of the training effect indicating that some form of NMDA-dependent plas-

ticity was indeed responsible for the training effect.

To test whether the training effect was restricted to a small region of V1 or if it was also

apparent elsewhere in V1, Xu et al. [1] performed an experiment where, during training, the

motion sequence was shifted orthogonal to the long axis of the recorded distribution of the

receptive fields, i.e. orthogonal to the ~S ! ~G axis. They neither found a significant shift in the

correlation coefficient distribution for ~S-evoked nor for ~G-evoked responses and concluded

that the effect of learning was indeed specific to the location of the motion sequence. As in the

animal study, the LIF-SORN exhibited for this scenario no significant shift in the correlation

coefficient distribution for both ~S-evoked and ~G-evoked responses (S1 Fig).

To examine if training with a dynamic stimulus is actually necessary to achieve a more dis-

tinctive sequence replay, two different experiments using a static stimulus during training

were performed by Xu et al. [1]. In the first one, this stimulus was a flashed bar spanning the

region between ~S and ~G. In the second one, the stimulus used during training was just a briefly

flashed spot at ~S. A significant shift in the correlation coefficient distribution was neither

found for ~S-evoked nor for ~G-evoked responses. Again, the LIF-SORN also didn’t show signif-

icant training effects for these scenarios (S1 Fig).

Training induces stripe-like connectivity

The activity of the LIF-SORN is determined by the input and its connectivity. In this section,

we show how the training with a moving spot modulated the connectivity through the plastic-

ity mechanisms. Therefore, we analyzed the weight matrix of the recurrent excitatory connec-

tions before and after training with the full motion sequence from ~S to ~G. This allowed us to

connect a large part of the results of the previous sections with the change in connectivity.

We start by considering the weights between neurons part of one of the clusters A–H for

one network instance. Fig 6A–6C show the connection weight matrix before and after training

and their difference. Before training, we observed a structure with stronger weights distributed

symmetrically around the diagonal. This reflected the distance dependency of the connectivity.

After training, the symmetry was broken and the connections running in the direction of the

moving spot used during training were strengthened while the connections in the opposite

direction were weakened. To get a clearer picture of the weight change, we also determined the

average connection weights between the different clusters A–H (Fig 6D). The connection

weights between adjacent clusters in the forward direction were increasing due to training,

while the opposite was true for the backward direction. The increase in connection weight was

strongest for the A! B connections as these connections didn’t have as much SN-induced

competition as the connections between adjacent clusters further along the ~S ! ~G axis, since

they had to compete with connections starting from other clusters located closer to ~S.

A model of sequence learning and prediction in primary visual cortex
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This stripe-like connectivity was a result of STDP and caused the increase in sequential

spiking when triggering the sequence with a cue at ~S and the decrease when triggering the

sequence with a cue at ~G.

Training affects spontaneous activity

Next, we examined if the training with a sequence had an impact on the spontaneous activity

of the LIF-SORN. Therefor, we utilized the simulation protocol as described above with the

difference that during testing no external input was used. Thus, only the noise drove the net-

work during testing. As before, we determined the rate of each cluster by pooling the spikes of

all neurons which were part of that cluster and convolving them with a Gaussian. However, we

considered all spikes during the test phases and not only spikes within a window of 500 ms

after stimulus presentation. Next we computed the times of all relative maxima of the firing

rate for each cluster and ordered them. In the resulting sequence of firing times, we replaced

each firing time with the corresponding cluster name A–H. Finally, we computed the transi-

tion probabilities between all clusters from this sequence. The transition probability from A to

D, for example, was computed by dividing the number of times D was the cluster that fired

Fig 6. Effect of training with a moving spot along the ~S ! ~G axis on connectivity. (A,B,C) Connection weights between neurons part of the clusters

before (A) and after (B) training and their difference (C) for a single network instance. Neurons are ordered according to the projection of their

position on the ~S ! ~G axis. (D) Change of the mean weight of all possible connections between neurons part of the clusters. Averaged over 20 network

instances.

https://doi.org/10.1371/journal.pcbi.1006187.g006
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directly after A by the total number of times A appeared. This was done for all combinations of

clusters A–H and for the test phases before and after training.

Fig 7 shows the resulting transition probabilities before and after learning and their differ-

ences. Before and after learning, the transition probabilities from a cluster to itself were negli-

gible and the transition probabilities between adjacent clusters as for example A to B or D to C
were higher compared to the other transitions. This is not surprising as neurons close to one

another strongly influenced each other due to the distance dependency of the connectivity.

When considering the change in transition probabilities caused by the training, we observed

that transitions between clusters in the ~S ! ~G direction, which were separated by at most one

other cluster, tended to be more likely while transitions between clusters in the opposite direc-

tion, which were separated by at most one other cluster, tended to be less likely. This finding

was consistent with the weight change caused by the training (Fig 6D).

Thus, the characteristics of the sequence used during training were imprinted in the sponta-

neous activity of the LIF-SORN.

Fig 7. Effect of training with a moving spot along the ~S ! ~G axis on spontaneous activity. (A,B,C) Transition probabilities between clusters

before training (A), after training (B) and their difference (C). Colored frames indicate transitions in the forward (green) and backward (purple)

direction. (D) Mean of the changes of transition probabilities in the forward (green) and backward (purple) direction corresponding to the framed

transitions in (C). Errorbars show sem over network instances. Data from 30 network instances. Stars in panel D show significance (??? P< 0.001;

Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pcbi.1006187.g007
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Recall speed is independent of training speed

So far, we were only concerned with the order of the replayed sequence and did not pay atten-

tion to its speed. In this section, we examine the recall speed vrc after presentation of the test

cue at ~S with varying velocities vspot of the motion sequence during training. We adopted the

analysis of Xu et al. [1]. That is to say we considered only the test trials after learning for which

the Spearman correlation coefficient was greater than 0.9. Then, we determined the recall

speed for each of those trials by linear regression of the positions of the centers of each cluster

as a function of their firing times. We found that the mean recall speed was independent of the

training speed (Fig 8). It rather seemed to be determined by the network’s parameters.

Similar results were found by Xu et al. [1], i.e. they also observed no dependence of the

recall speed on the speed used during training for anesthetized rats. Furthermore, spontaneous

replay in cortex and hippocampus was found to be accelerated compared to training [29, 31].

All of these results suggest that only sequence order is learned and that the recall speed is pri-

marily determined by the network’s dynamics and not the speed of the trained sequence. This

observation on the level of local circuitry matches with the trivial fact that the recall of memo-

ries doesn’t happen with the speed with which they were experienced.

Training effect is short-lasting

Xu et al. [1] also tested the persistence of the increase in sequential spiking caused by the train-

ing. To test this persistence in the LIF-SORN, we used a similar simulation protocol as before,

i.e., training consisted of a moving spot shown along the ~S ! ~G axis and testing of a briefly

flashed spot at ~S. The duration of the test phase after training was tripled.

We adapted the analysis of Xu et al. [1] in that we defined a match as a test trial whose

Spearman correlation coefficient was above a threshold of 0.6 and computed the change in

percentage of matches during the test phase after training compared to the test phase before

training. This was done for different times after training. We found that the effect of training

as measured by the change in percentage of matches decayed within approximately 5 min (Fig

9A). The training effect decayed within a similar time, namely within around 7 min, in rats

(Fig 9A). Hence, the training effect was short-lasting in both rats and the LIF-SORN.

Fig 8. Mean recall speed as a function of the training speed. Mean recall speed of test trials with cue presentation at ~S
and a Spearman correlation coefficient greater than 0.9. Data from 20 network instances. Errorbars show sem.

https://doi.org/10.1371/journal.pcbi.1006187.g008
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Again, we can link the results obtained from the LIF-SORN’s activity with its connectivity.

During training, the forward weights between adjacent clusters were increasing for approxi-

mately 100 s and then stayed roughly constant until the training ended as a consequence of the

synaptic normalization. In the following test phase, the values of the weights from one cluster

to the next were decaying back to their initial values, resulting in the simultaneous decay of the

training effect on the network’s activity (Fig 9B). This decay was caused by the interplay of

STDP with the asynchronous, irregular network activity.

Discussion

Establishing the relationship between structure and function of cortical circuits remains a

major challenge. Here we have presented a spiking neural network model of sequence learning

in primary visual cortex that establishes a new conceptual bridge between structural and func-

tional changes in cortical circuits. The model posits that STDP is the cellular basis for the

sequence learning abilities of visual cortex. The temporally asymmetric shape of the STDP

window (pre-before-post firing leads to potentiation, post-before-pre firing leads to depres-

sion) allows the circuit to detect the spatio-temporal structure of the stimulation sequence and

lay it down in the circuit structure. The homeostatic mechanisms prevent runaway weight

growth, among other functions. Importantly, while doing so the model also explains the origin

of key structural features of the connectivity between the population of excitatory neurons.

Among them are the lognormal-like distribution of synaptic efficacies, the distance-depen-

dence of synaptic connection probabilities and the abundance of bidirectional connections

between excitatory neurons.

There are many studies that have addressed the functioning of STDP in feed-forward mod-

els (e.g. [32, 33]). In addition, several previous studies have successfully modeled elements of

sequence learning with STDP in recurrent networks [5, 6, 34–37], and another set of studies

has attempted to account for the development of structural features of cortical wiring [20, 22,

38, 39]. However, our model is the first to combine both. Thereby it offers the most advanced

unified account of the relation between structure and function of cortical circuits in the con-

text of sequence learning. Furthermore, it does so from a self-organizing, bottom-up perspec-

tive, a critical component missing in most other examples of artificial sequence learning in

recurrent neural networks [40–42].

Fig 9. Persistence of training effect and time course of connection weights during and after training. (A) Change in percentage of matches as a

function of time after training in the LIF-SORN and in rats [1]. (B) Time course of the connection weights between adjacent clusters in the forward

(green) and backward (purple) direction before, during and after training. Shaded area marks the training phase. Data from 30 network instances.

Dotted line in panel A shows approximate experimental data that were obtained from [1] using WebPlotDigitizer [30]. Errorbars show sem in all

plots. Stars in panels A show significance (? P< 0.05; ?? P< 0.01; ??? P< 0.001; Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pcbi.1006187.g009
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Equally important, however, the model makes precise and testable predictions regarding

how the excitatory-to-excitatory connectivity changes during learning. Specifically, it predicts

that synaptic connections that project “in the direction of” the stimulation sequence are

strengthened, while the reverse connections are weakened. Furthermore, it makes the testable

prediction that spontaneous activity after learning should reflect the altered connectivity such

that it leads to an increased probability of sequential activation. Similarly, replay of activity pat-

terns is a well-known and widely studied phenomenon in hippocampus [43], but has also been

observed in the neocortex [29, 31]. Despite these contributions, our model also has several

limitations.

First, while our network reproduced most of the experimentally observed results by Xu

et al. [1], namely enhanced sequential spiking in response to a cue at the start point of the

sequence (Figs 4B and 5A), independence of the recall speed on the training speed (Fig 8) and

a short persistence of the training effect (Fig 9A), it did not show the experimentally observed

significant rightward shift of the Spearman correlation coefficient distribution in response to a

cue at the midpoint (Fig 5B) and it exhibited an, experimentally not observed, small leftward

shift of the Spearman correlation coefficient distribution in response to a cue at the goal point

(Fig 5C).

Second, most of the chosen neuron and network parameters were taken from studies on

layer 5 of rodent cortex [11, 12, 14], while Xu et al. [1] recorded from both deep and superficial

layers.

Third, synaptic plasticity in our model was restricted to the connections among excitatory

neurons. As a consequence, inhibition is unspecific in our network. From a functional per-

spective, this shouldn’t make much of a difference for the simple sequence learning task we

considered. For more complex situations, such as multiple disparate assemblies, multiple

sequences or branching sequences, this may be different, however. Adding plasticity mecha-

nisms to the other connection types would also make the model more realistic and may allow

it to establish additional links between the structure and function of cortical circuits in the

context of sequence learning. This will be an interesting topic for future work.

Additional limitations exist in the model as a function of computational practicality. These

include network size and related subsampling effects, as well as more complex input structures,

noise correlations, etc. Overcoming these limitations would also be an interesting topic for

future investigation.

Finally, in both the experiments of Xu et al. [1] and our model the training effect persists

for only a short time. Xu et al. [1] astutely noted that even such short term storage can be quite

useful for perceptual inference [44, 45], as repeated experiences in the recent past are often a

good predictor of similar experiences in the near future. It is also clear, however, from percep-

tual learning experiments that visual cortex can store information for long periods of time

[46]. So how are new memories protected from being quickly forgotten? How can they be sta-

bilized for weeks, months, and years? This is an important question for future work.

Methods

Network model

The LIF-SORN is a recurrent neural network model of a small section of L5 of the rodent cor-

tex. It consists of noisy leaky integrate-and-fire neurons and utilizes several biologically moti-

vated plasticity mechanisms to self-organize its structure and activity. It was introduced by

Miner and Triesch [22] with the plasticity mechanisms being short-term plasticity (STP),

spike-timing dependent plasticity (STDP), synaptic normalization (SN), structural plasticity

(SP), and intrinsic plasticity (IP). Here, we employed a modified version in comparison to this
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study. The most major changes were the use of a conductance based model instead of an addi-

tive model of synaptic transmission to make the synaptic signaling more realistic, the adjust-

ment of the SN mechanism to account for boundary effects and the enlargement of the

network to a size that is similar to size of the cortical region considered by Xu et al. [1].

The parameter values in the LIF-SORN are set in accordance to experimental data from L5

of the cortex, although the timescales of SN, SP and IP are accelerated compared to biological

findings in order to decrease the necessary simulation time. See [22] for a more detailed expla-

nation of the selection of the individual values than the explanations given below. The network

was simulated with the help of the Brian spiking neural network simulator [47] using a simula-

tion timestep of Δtsim = 0.1 ms.

Network architecture. The LIF-SORN as used in this study consists of NE = 1000

excitatory and NI = 0.2 ×NE = 200 inhibitory neurons, which are placed randomly on a

2500 μm × 1000 μm grid (Fig 1A). The connectivity between them is distance-dependent in

approximate accordance to experimental data [12, 14], i.e., all possible connections are assigned

a probability according to their length, determined from a Gaussian probability function with a

mean of 0 μm and a half width of 200 μm. A connection fraction of 0.1 of possible synapses

between excitatory and inhibitory neurons and vice versa are realized as well as a connection

fraction of 0.5 of reciprocal potential connections between inhibitory neurons corresponding

to experimentally observed values from L5 of the rodent cortex [11]. Connections among excit-

atory neurons are initially not realized, but are created during a growth phase as a consequence

of SP. Those recurrent excitatory synapses are the only type of connections subject to plasticity.

Neuron and synapse model. The subthreshold dynamics of the membrane potential Vn

of a neuron n, which could be either excitatory or inhibitory, is governed by

dVn

dt
ðtÞ ¼ �

VnðtÞ � EL

t

�
ðge;nðtÞ þ gext;nðtÞÞðVnðtÞ � EeÞ

t

�
gi;nðtÞðVnðtÞ � EiÞ

t
þ

sxðtÞ
ffiffiffi
t
p ;

ð2Þ

where EL = −60 mV is the resting potential, τ = 20 ms is the membrane time constant, ξ(t) is

Gaussian white noise and σ = 16 mV is the standard deviation of the noise. Ee = 0 mV is the

reversal potential for connections starting at excitatory neurons and ge,n(t) is a dimensionless

measure for their synaptic conductance. It is determined by

dge;n
dt
ðtÞ ¼ �

ge;nðtÞ
te
þ
X

me

Weff
men
ðtÞ
X

fme

dðt � tfme
� tmen

Þ; ð3Þ

where τe = 3 ms is the synaptic time constant for excitatory connections, me indexes the excit-

atory neurons, Weff
men
ðtÞ is the dimensionless effective connection weight between neuron me

and n, tmen
is the conduction delay between neuron me and n and fme

indexes the spike times of

neuron me. gext,n(t) describes potential synaptic input originating from outside the network

(see below). Similarly, Ei = −80 mV is the reversal potential for connections starting at inhibi-

tory neurons and gi,n(t) is a dimensionless measure for their synaptic conductance. Its time

evolution is governed by

dgi;n
dt
ðtÞ ¼ �

gi;nðtÞ
ti
þ
X

mi

Wmin

X

fmi

dðt � tfmi
� tmin

Þ; ð4Þ
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where τi = 5 ms is the synaptic time constant for inhibitory connections, mi indexes the inhibi-

tory neurons, Wmi n is the connection weight between neuron mi and n, tmin
is the conduction

delay between neuron mi and n and fmi
indexes the spike times of neuron mi.

If the membrane potential rises above a threshold potential, the model neuron fires a spike.

Afterwards, the membrane potential is returned to a reset potential. For excitatory neurons,

the threshold potential VE
TðtÞ is variable due to intrinsic plasticity and the reset potential is

given by VE
reset ¼ � 70mV. For inhibitory neurons, the threshold potential reads V I

T ¼ � 48mV
and the reset potential is V I

reset ¼ � 60mV.

The connections starting from inhibitory neurons are initially inserted with a weight of 0.4

and a conduction delay of 2 ms, the connections between excitatory and inhibitory units are

inserted with a weight of 0.15 and exhibit a conduction delay of 1 ms and the conduction delay

between excitatory neurons is 3 ms while the connection strength is variable because of the plas-

ticity mechanisms. All conduction delays are assumed to be homogeneous and purely axonal.

Plasticity mechanisms. Short term plasticity (STP) modulates the weight Wmene
ðtÞ of the

connection between excitatory neurons me and ne on a short time scale based on the firing his-

tory of the presynaptic neuron me [48]. Specifically, short term facilitation is described by a

variable ume
ðtÞ and short term depression by a variable xme

ðtÞ. Their dynamics are governed by

dume

dt
ðtÞ ¼

U � ume
ðtÞ

tf
þ Uð1 � ume

ðt� ÞÞ
X

fme

dðt � tfme
� teeÞ; ð5Þ

dxme

dt
ðtÞ ¼

1 � xme
ðtÞ

td
þ xme

ðt� Þume
ðt� Þ

X

fme

dðt � tfme
� teeÞ; ð6Þ

where tee = 3 ms is the conduction delay between excitatory neurons, U = 0.04 is the increment

of ume
ðtÞ produced by a presynaptic spike and τd = 500 ms and τf = 2000 ms are the respective

depression and facilitation timescales. The parameter values approximate the experimentally

observed values from [48] and [49]. fme
indexes the presynaptic spikes and t− indicates the

point in time right before spike arrival at the synapse. The effective connection weight at spike

arrival is then given by Weff
mene
ðtÞ ¼Wmene

ðtÞ � ume
ðt� Þ � xme

ðt� Þ. STP increases network stabil-

ity in that it leads to a larger parameter regime in which the network exhibits asynchronous

irregular firing.

Exponential spike-timing dependent plasticity (STDP) changes the weight Wmene
ðtÞ of the

connection between excitatory neurons me and ne by adding

DWmene
¼
X

fme

X

jne

Wðtjne � tfme
� teeÞ ð7Þ

to it upon a spike of one of the neurons, wherein Wmene
ðtÞ has a lower bound of 0 mV. Here,

fme
indexes the presynaptic and jne the postsynaptic spikes. tee = 3 ms is the conduction delay

between excitatory neurons. The weight change is determined by an asymmetric STDP win-

dow that reads

WðDtÞ ¼

Aþ exp �
Dt
tþ

� �

if Dt > 0 ;

A� exp
Dt
t�

� �

if Dt < 0 ;

0 if Dt ¼ 0 ;

8
>>>>>><

>>>>>>:

ð8Þ
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where A+ = 4.8 × 10−2 and A− = −2.4 × 10−2 are the amplitudes and τ+ = 15 ms and τ− = 30 ms

the time constants of the weight change in rough accordance to [2] and [50]. To save simula-

tion time, only the nearest neighbors of pre- and postsynaptic spikes are considered [51].

STDP endows the network with the ability to learn correlations in external input. However,

when using recurrent neural networks that solely include STDP, one encounters problems

arising from a positive feedback loop: a change in the connectivity modifies the network activ-

ity which again modulates the connectivity and so on. This feedback process happens in an

uncontrolled fashion and can lead to unbounded growth of synaptic strengths, which destabi-

lizes the network. Furthermore, as STDP is changing the connection weights individually, the

neurons are potentially loosing their selectivity for different synaptic inputs. Thus the ability of

those neural networks to process information is highly suppressed. To cope with this problem,

the LIF-SORN is endowed with homeostatic plasticity mechanisms [16–19].

Synaptic normalization (SN) is one of the homeostatic plasticity mechanisms used in our

model. It scales the total synaptic drive the neurons receive. SN is implemented by updating all

recurrent excitatory weights according to the rule

Wmene
ðtÞ !WtotalðneÞ

Wmene
ðtÞ

P
me
Wmene

ð9Þ

once per second. Here, Wtotal(ne) is the target total input for neuron ne. It is calculated by mul-

tiplying the target connection fraction by the size of the incoming neuron population, the

mean synapse strength, which is chosen to be 0.8 for the recurrent excitatory synapses, and the

factor

Z 2500 mm

0 mm
dx
Z 1000 mm

0 mm
dy

1

2ps2
exp

kx � xne
k2

2s2

� �

; ð10Þ

where xne
is the position of neuron ne and σ = 200 μm is the half width of the Gaussian proba-

bility function used to assign a distance-dependent probability to each possible connection.

This factor accounts for the fact that neurons close to the network boundaries form less con-

nections than neurons in the middle of the network. Hence, the mean weights of the connec-

tions projecting to neurons close to the boundaries are, without this factor, higher than the

mean weights of the neurons in the middle of the network. This leads to spontaneous activity

waves that start at the corners of the network and subsequently lead to the firing of all other

network neurons. To avoid these waves, we introduced the aforementioned factor, which is

simply the integral of a normal distribution centered at the neuron’s position over the network

dimension. Furthermore, the other connection types are normalized in the same way once

before the simulation starts.

The SN mechanism of our network is motivated by the phenomenon observed in [52], in

which it was shown that, during long-term potentiation, the overall density of postsynaptic

AMPA receptors per micrometer of dendrite is approximately preserved, while the density at

some synapses increases.

In addition to STDP and SN, which modify the weights of existing connections, a form of

structural plasticity (SP) that implements growth and pruning of recurrent excitatory connec-

tions is included in the LIF-SORN. Synaptic growth is modeled by adding once per second a

random number of connections with an initial weight of 1 × 10−3 to the network. The number

of new synapses is drawn from a Gaussian distribution with a mean of 6000 connections per

second and a standard deviation of
ffiffiffiffiffiffiffiffiffiffi
6000
p

connections per second in order to achieve a con-

nection fraction of approximately 0.1 [11, 12]. The specific connections that are to be added to

the network are selected according to the distance-dependent probability assigned to each
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connection. As described above, this connection probability is calculated from a Gaussian

probability function with a mean of 0 μm and a standard deviation of 200 μm. Synaptic prun-

ing is implemented by eliminating all connections whose weight is below a threshold of

1 × 10−4 once per second.

In addition to the synaptic plasticity mechanisms and the structural plasticity, an intrinsic

plasticity (IP) mechanism that regulates the firing threshold VT;ne
ðtÞ for each excitatory neuron

ne is used. IP is implemented by updating the threshold at every simulation timestep according

to the rule

VT;ne
ðtÞ ! VT;ne

ðtÞ þ ZIPðNspikes � hIPÞ ; ð11Þ

where Nspikes = 1 if the neuron has spiked in the previous timestep and Nspikes = 0 otherwise,

ηIP = 0.1 mV is the learning rate and hIP = rtarget × Δtsim = 3 × 10−4 is the target number of

spikes per update interval with rtarget = 3 Hz being the target firing rate. IP is a homeostatic

mechanism that stabilizes network activity at the level of individual neurons. Note that this

simple IP mechanism assigns the same target firing rate to each neuron. A more complex dif-

fusive IP mechanism has recently been shown to produce a broad distribution of firing rates

[53] as observed in the cortex. The inclusion of such a mechanism is currently being worked

on.

While it is, at least to our knowledge, not possible to pinpoint a single biological mechanism

that matches the IP in our network, a couple of mechanisms that affect the intrinsic excitability

of neurons have been observed. One of these mechanisms is spike-rate adaptation, which

quickly reduces neuronal firing in response to continuous drive [54]. Other observed mecha-

nisms modify intrinsic excitability on slower timescales [55, 56].

Modeling of sequence learning

Summary of experimental set-up used by Xu et al. [1]. We tried to match our simulation

of sequence learning closely to the experimental set-up and stimulation paradigm of the study

by Xu et al. [1]. Their experimental set-up comprised head-fixed rats with a multielectrode

array inserted in their primary visual cortex and a LCD-screen placed in front of their left eye.

Both awake and anesthetized rats were investigated, but since the LIF-SORN acts in a regime

of asynchronous irregular spiking, we focused on their results from awake rats. The multielec-

trode array consisted of 2 × 8 channels with 250 μm between neighboring channels and was

inserted in the right primary visual cortex. Before the actual experiments, the receptive field of

each channel was determined. In most experiments, the visual stimulus was a bright light spot,

which was moved during conditioning along the long axis of the distribution of receptive fields

from a start point ~S to an end, or goal, point ~G over a period of 400 ms–600 ms. The moving

spot evoked sequential responses recorded by the multielectrode array. To examine the effect

of the conditioning, the responses to different cues, as for example a brief flash of the light spot

at ~S, were recorded before and after conditioning.

Modeling input in LIF-SORN. We modeled the movement of the light stimulus and its

influence on the network by sweeping a spot that drives the excitatory neurons across the net-

work. Assuming that the stimulus is presented to the network in an interval Ispot = [t0, t0 +

tspot], the trajectory of the spot is given by

uðtÞ ¼ x~S þ ðx ~G � x~SÞ
t � t0
tspot

; ð12Þ

where x~S ¼ ð375 mm; 500 mmÞT is the start and x ~G ¼ ð2125 mm; 500 mmÞT the end point of
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the movement (Fig 1C). The spot reflected the activity of input spike trains, i.e., an excitatory

neuron ne located at position xne
received Ninput Poissonian spike trains with rate

rspotðxne ; tÞ ¼
rmaxexp �

k xne � uðtÞ k
a

� �b
 !

ift 2 Ispot;

0Hz else;

8
>><

>>:

where rmax is the maximal rate of the spike trains, α determines the scale and β the shape of the

spot. These spike trains drive the excitatory neurons via extra input conductances. For neuron

ne, the time evolution of this extra conductance is governed by

dgext;ne
d
ðtÞ ¼ �

gext;neðtÞ
te

þ
XNinput

l¼1

WFF

X

kl

dðt � tklÞ; ð13Þ

where WFF is the weight of the feedforward input and the tkl are the spike times of the Poisso-

nian input spike trains.

The values of the parameters were set to achieve similar activity as in [1]. Unless noted oth-

erwise, we used rmax = 50 Hz, Ninput = 100, WFF = 0.04, α = 150 μm, β = 4 and tspot ¼
kx ~G � x~S k

vspot

with vspot = 4 μm/ms. Fig 1B shows the cross-section of rspot(x, t). To model the presentation of

a cue as for example a brief flash of the light spot at the starting point, we used tspot = 100 ms

and kept u(t) fixed to one position (e.g. x~S ) independent of time.

Modeling recording in LIF-SORN. For the analysis of the sequence learning, we defined

nclu = 8 clusters of excitatory neurons that were encompassed by circles with a radius of rclu =

100 μm. Their centers were placed equidistantly on the line between x~S and x ~G with the bound-

aries of the outermost circles touching x~S and x ~G, respectively (Fig 1C). We then defined the

activity of each cluster to comprise the spikes of the neurons of the cluster. For the sake of

readability, we named the clusters A to H according to their distance to x~S . These clusters and

their parameters were chosen to achieve a middle ground between two goals. The first goal

was the reproduction of the recording with a multi-electrode array, where one electrode is

actually only recording the activity of few neurons close to the electrode. The second goal was

the inclusion of enough neurons per cluster to obtain a number of spikes sufficient to get

meaningful results since the spiking of the neurons was quite variable.

Supporting information

S1 Appendix. Conversion of weights to PSP amplitudes.

(PDF)

S1 Fig. Cumulative distribution of Spearman correlation coefficients for different training

paradigms. (A,B) Results for training with a moving spot whose trajectory is shifted in a

direction orthogonal to the ~S ! ~G axis. In the LIF-SORN, the clusters were aligned between

x~S ¼ ð375 mm; 350 mmÞT and x ~G ¼ ð2125 mm; 350 mmÞT, while the spot moved from (375

μm, 650 μm)T to (2125 μm, 650 μm)T during training. (C,D) Results for training by flashing a

bar that spans from ~S to ~G. (E,F) Results for training by flashing a spot at ~S. Plots showing

results of the LIF-SORN are based on data from 10 network instances. Plots showing results of

rats were obtained from awake (bar-stimulus) and anesthetized (parallel shifted sequence,

flash-stimulus) rats and were extracted from [1] using WebPlotDigitizer [30].

(TIF)
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38. Clopath C, Büsing L, Vasilaki E, Gerstner W. Connectivity reflects coding: a model of voltage-based

STDP with homeostasis. Nat Neurosci. 2010; 13(3):344–352. https://doi.org/10.1038/nn.2479 PMID:

20098420

39. Bourjaily MA, Miller P. Excitatory, Inhibitory, and Structural Plasticity Produce Correlated Connectivity

in Random Networks Trained to Solve Paired-Stimulus Tasks. Front Comput Neurosci. 2011; 5:37.

https://doi.org/10.3389/fncom.2011.00037 PMID: 21991253

40. Brea J, Senn W, Pfister JP. Matching Recall and Storage in Sequence Learning with Spiking Neural

Networks. J Neurosci. 2013; 33(23):9565–9575. https://doi.org/10.1523/JNEUROSCI.4098-12.2013

PMID: 23739954

41. Rajan K, Harvey CD, Tank DW. Recurrent Network Models of Sequence Generation and Memory. Neu-

ron. 2016; 90(1):128–142. https://doi.org/10.1016/j.neuron.2016.02.009 PMID: 26971945

42. Tully PJ, Linden H, Hennig MH, Lansner A. Spike-Based Bayesian-Hebbian Learning of Temporal

Sequences. PLoS Comput Biol. 2016; 12(5):e1004954. https://doi.org/10.1371/journal.pcbi.1004954

PMID: 27213810

43. Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for mem-

ory consolidation and retrieval. Nat Neurosci. 2011; 14(2):147–153. https://doi.org/10.1038/nn.2732

PMID: 21270783

44. Kersten D, Mamassian P, Yuille A. Object perception as Bayesian inference. Annu Rev Psychol. 2004;

55(1):271–304. https://doi.org/10.1146/annurev.psych.55.090902.142005 PMID: 14744217

45. Friston K. A theory of cortical responses. Philos Trans R Soc B Biol Sci. 2005; 360:815–836. https://doi.

org/10.1098/rstb.2005.1622

46. Seitz AR. Perceptual learning. Curr Biol. 2017; 27(13):R631–R636. https://doi.org/10.1016/j.cub.2017.

05.053 PMID: 28697356

47. Goodman DFM, Brette R. The brian simulator. Front Neurosci. 2009; 3:192–197. https://doi.org/10.

3389/neuro.01.026.2009 PMID: 20011141

48. Goodman H, Wang T, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neu-

rons. Proc Natl Acad Sci. 1998; 95(9):5323–5328. https://doi.org/10.1073/pnas.95.9.5323

49. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002; 64:355–405. https://

doi.org/10.1146/annurev.physiol.64.092501.114547 PMID: 11826273

50. Froemke R, Poo MM, Dan Y. Spike-timing-dependent synaptic plasticity depends on dendritic location.

Nature. 2005; 434(7030):221–225. https://doi.org/10.1038/nature03366 PMID: 15759002
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