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Signal quality as Achilles’ heel 
of graph theory in functional 
magnetic resonance imaging 
in multiple sclerosis
Johan Baijot  1,7,8*, Stijn Denissen1,8, Lars Costers1, Jeroen Gielen1, Melissa Cambron1,2, 
Miguel D’Haeseleer1,3, Marie B. D’hooghe1,3, Anne‑Marie Vanbinst1, Johan De Mey4, 
Guy Nagels1,3,5,9 & Jeroen Van Schependom1,4,6,9 

Graph-theoretical analysis is a novel tool to understand the organisation of the brain.
We assessed whether altered graph theoretical parameters, as observed in multiple sclerosis (MS), 
reflect pathology-induced restructuring of the brain’s functioning or result from a reduced signal 
quality in functional MRI (fMRI). In a cohort of 49 people with MS and a matched group of 25 healthy 
subjects (HS), we performed a cognitive evaluation and acquired fMRI. From the fMRI measurement, 
Pearson correlation-based networks were calculated and graph theoretical parameters reflecting 
global and local brain organisation were obtained. Additionally, we assessed metrics of scanning 
quality (signal to noise ratio (SNR)) and fMRI signal quality (temporal SNR and contrast to noise 
ratio (CNR)). In accordance with the literature, we found that the network parameters were altered 
in MS compared to HS. However, no significant link was found with cognition. Scanning quality 
(SNR) did not differ between both cohorts. In contrast, measures of fMRI signal quality were 
significantly different and explained the observed differences in GTA parameters. Our results suggest 
that differences in network parameters between MS and HS in fMRI do not reflect a functional 
reorganisation of the brain, but rather occur due to reduced fMRI signal quality.

The human brain is regarded as a complex architecture of regions, characterized by their unique contribution to 
brain functioning. Mutual connection between these regions give rise to a complex network. Graph theoretical 
analysis (GTA) enhances interpretability by reducing its complexity to a limited number of characteristics from 
a network, namely by representing brain regions and functional connections respectively as the nodes and edges 
of a simplified network1.

GTA can be applied to a wide variety of medical imaging and neurophysiology data. In recent years, this 
field has gained great popularity and has been proposed as a potential key to unravel the mystery of brain 
functioning1,2. Brain diseases alter the properties of brain networks and understanding these changes offers 
insight in the nature of the underlying disorders2,3.

Since multiple sclerosis (MS) causes damage to the central nervous system by inflammation, demyelination 
and neurodegeneration4, it is hypothesized that damage and response to damage are reflected in the graphs 
that are derived from brain imaging. Several studies5–7 in fact demonstrated a disruption of different network 
parameters derived from functional Magnetic Resonance Imaging (fMRI) in people with MS (PwMS) compared 
to healthy subject (HS). GTA has also shed new light on our understanding of cognitive impairment in MS. Net-
work parameters were deviant when comparing cognitively impaired (CI) patients to cognitively preserved (CP) 
patients, and allowed to categorize MS patients in these groups3,5. In general, these findings seemed to indicate a 
reduced global, but relatively spared local connectivity in MS. Yet some discrepancy exists across studies regard-
ing alterations of network parameters3.
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The overall purpose of investigating these network parameters is to find a potential new biomarker for cogni-
tion in MS. Hence our interest in assessing whether earlier findings truly suffice to be termed a “biomarker”, and 
thus reflect a genuine change in brain functioning, or by measurement bias in fMRI as evoked by side effects of 
MS. Since fMRI relies on the blood oxygen level dependent (BOLD) signal to indirectly measure the brain activ-
ity, and because of the vulnerability of this method to pathology-induced pitfalls8, this study aims to reconsider 
network alterations in MS in the light of fMRI quality issues.

Methods
Compliance with ethical standards.  The study was approved by the ethical committee of the Univer-
sity Hospital Brussels (Commissie medische ethiek (O.G. 016) Reflectiegroep Biomedische Ethiek) on the 15th 
of July 2014 for the protocol B.U.N. 143201421363 and a second ethical approval was obtained on the 25th of 
February 2015 for the protocol B.U.N. 143201423263. The data analysis was performed according to these study 
protocols and following the local applicable regulations. A written informed consent of all participants of the 
study was obtained prior to the measurements.

Data collection.  Fifty PwMS and twenty-six HS were included in this study. Anatomical T1-weighted MR 
images, resting state fMRI (rsfMRI), cognitive test results and demographical data were acquired for each study 
participant. PwMS were recruited in the National MS Center of Melsbroek and in the UZ Brussel. The HS were 
recruited in the community of the PwMS and amongst hospital staff, and were matched for gender, age and edu-
cation level. All study participants were aged between 18 and 65 years and were able to undergo MRI (absence 
of contra-indications, e.g. pacemaker, prosthesis). Moreover, only PwMS with an MS diagnosis as defined by the 
revised McDonald criteria9 and an Expanded Disability Status Scale score10 (EDSS) lower than 6 were consid-
ered. First-degree relatives to a person with MS were excluded as HS.

Cognitive testing.  The neuropsychological test battery contained the Symbol Digit Modalities Test (SDMT, 
information processing speed), California Verbal Learning Test-II (CVLT-II, verbal memory and learning), 
Brief Visuospatial Memory Test Revised (BVMT-R, visual memory and learning) and Controlled Oral Word 
Association Test (COWAT, verbal fluency). The SDMT, CVLT-II and BVMT-R together form the BICAMS test 
battery11, which was validated in Belgium12.

MRI scanning.  All scans were done at UZ Brussel on a 3 T Philips Achieva scanner. The sagittal T1 weighted 
brain MRIs were acquired with the following parameters: field of view: 240 mm × 240 mm and 310slices, voxel 
size: 0.5 mm × 0.5 mm × 0.5 mm voxels, flip angle: 8°, repetition time (TR): 5.19 s, echo time (TE): 2.30 s. The 
rsfMRI’s were acquired with eyes closed while staying awake. Following parameters were used: field of view: 
230 mm × 230 mm and 48 slices, voxel size: 1.8 mm × 1.8 mm × 2.7 mm voxels, flip angle: 90°, TR: 3 s, TE: 35 s.

Pre‑processing.  The pre-processing of the images was performed using MATLAB 2017a and SPM1213. The 
different steps and their sequence were based on the technical papers on fMRI pre-processing from Weissenbach 
et al., Liang et al. and Jo et al.14–16 The first and last ten timeframes were removed to avoid any transition or start-
up phenomenon. The images were realigned, and patients requiring an excessive correction above 1 mm trans-
lational or 0.0125 radians rotational deformation were discarded to ensure measurement of a quasi-stationary 
subject17,18. Slice timing correction was applied and rigid-body co-registration to the T1 image was performed 
for each subject individually. Once individual co-registrations between the fMRI and the T1 were obtained, ana-
tomical variations between persons needed to be compensated. This was achieved by estimating the deformation 
field from the T1 segmentation in comparison to the tissue probability maps in Montreal Neurological Institute 
(MNI) space from SPM1213 for grey and white matter, cerebrospinal fluid, skull or bone tissue and soft tissue. For 
each subject, an fMRI sequence in MNI space was interpolated based on the inverse of the obtained deformation 
field and the corresponding co-registered fMRI. Spatial smoothing was not applied as we used a parcellation 
atlas19. Subsequently, only extracranial signals were used to correct for background noise14,20–22, as an alternative 
to global signal regression. The latter is suboptimal since it removes a part of the neuronal signal20.

Signal extraction to network parameters.  Next, the averaged time course was extracted and bandpass 
filtered between 0.009 Hz and 0.08 Hz14 for each of the 94 cortical regions as defined in the AAL2 parcellation 
atlas23. Each of these regions was considered as a node in our network. All nodes are interconnected through 
edges. The weights of these edges were determined by calculating the Pearson’s correlation between the signals 
of the respective regions and were subsequently orderly grouped in an adjacency matrix. We used a threshold 
on the edge weight varying from 0 to the highest value before the network splits in disconnected subnetworks, 
and calculated the following GTA parameters on the different binarized networks: degree for the amount of con-
nections, clustering coefficient and transitivity to describe interconnectivity of the graph, shortest path length, 
local efficiency and global efficiency to quantify the ease of information transfer through the network, and small-
worldness to understand the influence of the network topology on communication within the network1,24.

fMRI data quality.  An fMRI is a sequence of fast acquired MRI images. A distinction is made between the 
measured signal, which is the magnetic recovery over time of an excited region/voxel, and the signal of interest, 
reflecting the fluctuation of the measured signal in a region. Quality metrics of fMRI include measures of scan-
ning quality (signal to noise ratio (SNR)) and signal quality (temporal SNR (tSNR) and contrast to noise ratio 
(CNR)). All three parameters are explained both visually (Fig. 1) and narratively (cfr infra).
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The SNR is a measure of scanning quality of the individual images which together form the fMRI, namely the 
mean fMRI signal divided by the standard deviation of the background noise. The background noise is evaluated 
by measuring the scanned voxels of the region where no anatomical matter is present. This has been done using 
the probability map available in SPM12 for air or background to select the correct voxels25.

The tSNR is the mean fMRI signal divided by its standard deviation and shows overtime signal variation. It 
therefore assesses the quality of the fMRI signal25.

The CNR is the amplitude of the signal (absolute value of maximum signal peak minus signal average) divided 
by the standard deviation of the noise. This parameter also assesses the quality of the fMRI signal, in this case 
by quantifying the detectability of the contrast of interest25.

The data quality parameters are evaluated on the fMRI images in standard space (after pre-processing).

Graph analysis.  At every threshold, the network parameters are calculated for every subject. A linear regres-
sion on the obtained network parameters was performed for age and education level. The network parameters 
of PwMS were compared to HS using permutation tests of 10,000 permutations. To establish if there is a link 
between brain changes caused by MS and cognitive deterioration, the Pearson’s correlations between all seven 
studied GTA parameters and the seven cognitive parameters (SDMT, CVLT, BVMT, COWAT, FSMC, BICAMS 
scaled score and BICAMS z-score) were evaluated. Correction for multiple comparison was performed with a 
familywise error correction method. We used the method of Dunn-Šidák26. This was repeated including CNR 
and tSNR as covariates in the model.

Second, the entire process was repeated including CNR and tSNR in the regression equation to assess their 
impact on GTA parameters. Moreover, their contributions to the equation were compared between PwMS and 
HS using 10,000 permutations.

Results
Study population.  We included 50 PwMS and 26 HS. One of each group was discarded due to motion 
during scanning. The characteristics and cognitive test results of the remaining PwMS and HS are presented in 
Table 1. PwMS and HS differed with respect to fatigue and depression, but were similar with respect to age, level 
of education and gender distribution. HS scored significantly higher on both verbal and visual memory as tested 
by CVLT-II and BVMT-R respectively.

GTA group differences.  All pre-processing steps were checked for outliers and similarity between all 
patients and both groups. Since the first disconnected network occurred at a threshold of 0.39, we evaluated 
the earlier discussed GTA parameters for thresholds varying from 0 to 0.38. The results are presented in Fig. 2. 
All network parameters show differences between PwMS and HS. Number of edges, global efficiency, clustering 
coefficient local efficiency and transitivity were significantly smaller in MS versus HS in the entire considered 
threshold range. The characteristic path length was significantly larger in MS within the same range. Small-
worldness did not differ between MS and HS for thresholds below 0.2. Small-worldness was larger in MS above 
of the threshold of 0.2.

Correlation with cognition.  We evaluated the Pearson’s correlation between all GTA parameters for every 
cut-off and all elements of the neuropsychological test battery. However, none of the correlations were statisti-
cally significant We observed at best p = 0.008 for CVLT and global efficiency, which does not survive correction 
for multiple comparisons.

Figure 1.   Illustration of the fMRI quality metrics. The red and blue signal represent brain activity and 
background noise respectively.   S is the mean of the brain activity, σS is the standard deviation of the brain 
activity, σN is the standard deviation of the background noise, and A is the amplitude of the maximum peak of 
the brain activity.
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Adjacency matrix and MS model.  When observing the edges individually, as shown in Fig. 3, no edge 
significantly differs between HS and PwMS after correction for multiple comparisons. A trend towards a general 
lowered functional connectivity (FC) is visible especially between the edges connecting ipsilateral central/frontal 
and lateral/temporal regions. In HS, the overall mean FC is 0.27, compared to 0.23 in PwMS.

SNR, CNR and tSNR.  As shown in Fig. 4, the CNR is smaller (p = 0.04) and the tSNR larger (p = 0.003) in 
MS compared to HS. We did not find any difference in SNR. More details about the data quality components are 
available in supplementary Table 1.

Group differences in GTA parameters after correction for fMRI signal quality.  After linear cor-
rection of the GTA-parameters for tSNR and CNR, differences between both populations completely disap-
peared. Figure 5 also shows when CNR and tSNR contributed significantly to the linear regression.

Table 1.   Demographics and cognitive scores of the PwMS and HS group. P-values were generally derived 
from two-sample t-tests, with the exception of a Chi-square test for age. (y: years; IQR: Interquartile range). 
p-values below the statistical threshold of significance (0.05) are indicated in bold.

PwMS (n = 49) HS (n = 25) p-value

Age in y (Mean ± SD) 44.7 (± 11.1) 41.6 (± 12.7) 0.28

Gender (Men/Women) 6/43 5/20 0.38

Education level in y (Mean ± SD) 14.2 (± 2.8) 14.8 (± 2.4) 0.53

Beck’s Depression Inventory (Mean ± SD) 12.2 (± 9.0) 5.8 (± 4.8) 0.0017

Fatigue Scale for Motor and Cognitive Functions (Mean ± SD) 63.8 (± 18.2) 37.6 (± 10.0)  < 0.0001

Expanded disability status Scale (Median [IQR]) 2.5 [1–3] – –

Disease duration in y (Mean ± SD) 10.9 (± 8.1) – –

Cognitive evaluation:

SDMT (Mean ± SD) 53.7 (± 12.3) 53.6 (± 9.0) 0.98

CVLT-II (Mean ± SD) 61.4 (± 11.1) 68.1 (± 6.3) 0.007

BVMT-R (Mean ± SD) 25.9 (± 6.7) 29.6 (± 4.2) 0.013

COWAT (Mean ± SD) 32.2 (± 11.1) 35.0 (± 9.8) 0.21

Figure 2.   Graphs (a) to (d) show the global network parameters and (e) to (g) show the local network 
parameters. The median value and interquartile range of PwMS (red) and HS (blue) are presented. The x-axis 
represents the thresholds from the adjacency matrix from which networks were extracted. The background 
is shown in grey for the regions where the permutation test between the two groups showed a significant 
difference (p < 0.05).
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Figure 3.   (a) the adjacency matrix of HS in the upper triangle matrix and PwMS in the lower triangle matrix. 
(b) results of the permutation tests between all edges, PwMS relative to HS (c) distribution of all effect sizes of 
the permutations with p-value < 0.05.

Figure 4.   Group distributions of scanning quality (SNR) and signal quality (tSNR and CNR) of the fMRI scans 
in standard space. * indicates statistical significance (p < 0.05).

Figure 5.   Graphs (a) to (d) show the global network parameters and e to g show the local network parameters. 
The median value and interquartile range of the GTA parameters, corrected for CNR and tSNR, are presented 
for PwMS (red) and HS (blue). The x-axis represents the thresholds from the adjacency matrix from which 
networks were extracted. The background is shown in grey and yellow for CNR and tSNR respectively to 
indicate at what thresholds they contributed significantly.
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Discussion
In this study, we assessed whether changes in GTA parameters could be explained by fMRI signal quality, 
rather than pathology. Before correcting for differences in fMRI signal quality, our data show differences in 
GTA parameters in MS with respect to HS, comparable to those reported in previous literature3,5,6. Once we 
corrected for fMRI signal quality by including CNR and tSNR as covariates in our analyses, the observed dif-
ferences disappeared.

Our network analysis before correction showed a decrease in both global and local connectivity in the MS 
group. However, after thresholding, the number of remaining edges in PwMS was lower than in HS which 
is a direct result of the apparent diffuse decrease in edge weights. This means that after thresholding, we are 
comparing networks with different numbers of edges between PwMS and HS, biasing all the measured GTA 
parameters. The network extraction method is of paramount importance in the interpretation of the difference 
in mean connectivity. This was underlined by adopting an alternative method of network extraction whereby 
equal network sizes are assured, thus enhancing comparability. Networks extracted by the latter method do not 
show differences in GTA parameters.

Underlying causes of data quality differences.  The apparent reduction in FC influencing network 
parameters is reflected by a significantly increased tSNR. This increase is caused by both a (non-significant) 
increase in the mean signal and a (non-significant) decrease in signal variation. Post-hoc analysis revealed that 
the data quality parameters did not differ when calculated in subject space and a voxel-wise comparison indi-
cated that increases in tSNR occurred predominantly in the vicinity of the cerebral ventricular system. This 
indicates that standard registration procedures as applied in this study and many others5–7 may not be suitable to 
analyse fMRI data in patients with neurodegenerative diseases. Additionally, we looked at the different available 
co-registration steps within SPM. For a more elaborate visual and narrative explanation, we refer to the supple-
mentary data, although it is justified to mention here that varying the registration and normalisation parameters 
in SPM resulted in similar periventricular discrepancies. However, there are two causes that may affect signal 
quality. First, we used a non-linear co-registration method (SPM Lesion Normalization with Tissue Probabil-
ity Maps13 as used before5,27 and recommended14,28). This algorithm can cause a general inflation of voxels, as 
smaller MS brains are co-registered to the same standard MNI space as non-atrophied healthy brains.

Secondly, the presence of lesions in the MS population. While most MS patients have some lesions or atrophy 
around the ventricles, cortical lesions are more diffusely spread across the cortex (without preferential location). 
This explains why signal quality is most obviously altered around the ventricles and not over the full cortex. 
Unfortunately, cortical lesions cannot be measured through the acquired scans and a double inversion recovery 
sequence is not available for these patients. Lesion filling can to some extent be used to counter these effects28,29. 
We did not apply lesion filling in our study as we wanted to be able to compare our results to previously published 
papers on graph theoretical measures in MS patients5–7,27.

Phantom studies reveal that tSNR is inversely correlated to dynamic fidelity which is the degree to which 
fMRI captures the true BOLD fluctuations30. Thus, the observed decreased tSNR in the control group indicates 
an increased capability to capture BOLD fluctuations in comparison to MS.

The decrease in CNR is plausibly explained by a reduced vascular coupling in MS8,31. The reduced blood 
flow26, will generate a slower replenishment of the metabolic demand and thus a diminished BOLD signal and 
lower signal peak8. This hypothesis is further strengthened by the fact that noise levels were comparable between 
both groups. More specifically, a second post-hoc analysis showed no significant difference in motion of subjects 
within the scanner (translation and rotation) between PwMS and HS.

Regarding SNR, we did not find a significant difference between groups. This is not surprising since SNR 
strongly depends on hardware and scanning sequence used for the fMRI acquisition, being identical for all sub-
jects in our study. The observed individual variations in SNR depend on anatomical variations between subjects 
and variations in the background noise at the time of measurement25.

Lastly, as neural activation could also influence the functional connectivity, we performed a third post-hoc 
analysis to compare the amplitude of low-frequency fluctuations, defined as the power between 0.01 and 0.08 
Hz32 between PwMS and HS. However, no differences in ALFF could be observed (data shown in the supple-
mentary material).

In summary, we hypothesize that a reduced vascular coupling and registrational issues of individual MS brain 
images from subject space to MNI space underly our observed differences in signal quality between PwMS and 
HS.

How signal quality affects functional connectivity and thus GTA parameters.  Both a higher 
tSNR (r = 0.3, p = 0.0045) and CNR (r = -0.43, p = 0.00013) are correlated with a higher FC and as such affect 
all GTA metrics they summarise the network’s properties1. Whereas most papers interpret changes in GTA 
measures as expressions of a neurological reorganization, our results suggest that the origin lies in differences in 
signal quality between MS and HS. This is further corroborated by simulations (see supplementary material) that 
clearly demonstrate that lower CNR and higher tSNR are accompanied by lower correlation.

Extension of results to other neurodegenerative pathologies.  The differences in GTA parameters 
between PwMS and HS that were initially observed, disappeared after correcting for fMRI signal quality. This 
means that alterations in GTA parameters in MS are driven by fMRI signal quality and should not be appointed 
to cerebral reorganizational processes. This potentially extends to other neurodegenerative pathologies lead-
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ing to cognitive impairment, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD). In FTD, 
cognitive problems were associated with increased characteristic path length, decreased global efficiency and 
clustering coefficient, and a decreased average network degree33, which reflects lowered connectivity. These find-
ings are in accordance with MS literature. In AD, fMRI studies suggested a decrement in small-worldness and 
diminished global organisation34–36. These studies used a different method to extract networks, namely by using 
a proportional method that fixed the number of edges. However, this approach does not guarantee that connec-
tions of equal strengths are compared1, again obfuscating the comparison.

Limitations.  Some limitations should be mentioned regarding the adopted methodology. First, when 
extracting the networks, only one linear bivariate connectivity measure (Pearson’s correlation) was considered. 
Another connectivity measure (e.g. Granger Causality37 and mutual information38) might reveal a more com-
plex relation that has now been overlooked. Nonetheless, these methods likely suffer from the same registration 
issues. Second, we focussed on the effect of fMRI signal quality on graph theory in MS, not the underlying cause 
of this quality decrement. An arterial spin labelling study31, further research on the BOLD signal8 could offer 
valuable insight. Third, we did not account for the influence of pharmacological treatment, possibly altering 
brain perfusion and brain activity. Some drug treatments impact the neurovascular coupling generating the 
BOLD signal8. Due to heterogeneity in type and dose of medication among the PwMS included in our study, we 
were unable to perform a sensitivity analysis taking this additional variable into account.

Recommendations for best practice.  GTA parameters are sophisticated analytical parameters to sum-
marize characteristics of networks, for example the brain. Changes in these parameters will often depend on 
how the network was built, implying cautious interpretation of their relationship with clinical symptoms like 
cognitive disturbances in MS.

FMRI indirectly measures brain activity, and complex disease activity in MS, like atrophy or cardiovascular 
disturbances, can bias its interpretation. By compensating for fMRI signal quality metrics (CNR and tSNR), this 
could be mitigated.

Conclusion
In conclusion, this study confirmed changes in graph-theoretical measures in multiple sclerosis patients in 
accordance with previously reported results. However, we demonstrate that these changes may result from 
decreased fMRI signal quality, rather than pointing towards a functional reorganization of the brain. Hence, 
fMRI results obtained in MS should be interpreted carefully.

Data availability
Data sharing is not possible due to privacy and ethical restrictions.
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