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Abstract: Chalcogenodiazoles have been intensively studied in recent years in the context of their
supramolecular chemistry. In contrast, the newly discovered cationic 1,2,4-selenodiazole supramolec-
ular building blocks, which can be obtained via coupling between 2-pyridylselenyl halides and
nitriles, are virtually unexplored. A significant advantage of the latter is their facile structural tunabil-
ity via the variation of nitriles, which could allow a fine tuning of their self-assembly in the solid state.
Here, we explore the influence of the substituent (which derives from the nitrile) and counterions on
the supramolecular assembly of cationic 1,2,4-selenodiazoles via chalcogen bonding.

Keywords: selenodiazoles; non-covalent interactions; chalcogen bonding; cyclization reactions;
cycloaddition; nitriles; selenium heterocycles

1. Introduction

Recent decades have seen significant progress in the creation of artificial supramolecu-
lar systems with increasing complexity. Hydrogen bonding (HB) and coordination at the
metal center has been employed often in the creation of complex structures from simpler
building blocks [1–4]. Although the construction of larger and more complex structures
is an important task within this field, the other major challenges include the utilization of
other weak interactions (apart of HB and metal coordination) for obtaining more complex
aggregates, determining recognition units, as well as designing and synthesizing novel
recognition units. The attractive non-covalent interactions between polarizable main group
elements and Lewis basic species, which include chalcogen bonding (ChB) and halogen
bonding (XB), have recently attracted considerable attention and emerged as powerful
alternatives to complexation and HB in supramolecular chemistry [5–12].

The progress in ChB chemistry includes broad applications in organocatalysis, molec-
ular recognition, anion transport, self-assembly, etc. [13–16]. Chalcogenodiazoles have
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gained particular interest within ChB research and have been extensively studied in re-
cent years in the context of their applications in anion recognition and as supramolecular
building blocks [6,17–21].

We recently introduced novel cationic 1,2,4-selenodiazole building blocks, which
can be easily prepared via the coupling between 2-pyridylselenyl halides and nitriles in
high yields [22,23]. In contrast to the exhaustively studied earlier chalcogenodiazoles,
the supramolecular chemistry of these novel 1,2,4-selenodiazole is virtually unexplored,
but could be a fruitful research field in the near future. A significant advantage of novel
1,2,4-selenodiazole building blocks is their facile structural tunability via the variation of
nitriles, which could allow the fine tuning of their self-assembly in the solid state. Here, we
explore the effect of the substituent (which derives from the nitrile) on the supramolecular
assembly of cationic 1,2,4-selenodiazoles via ChB non-covalent interactions.

2. Results and Discussion

Cationic 1,2,4-selenadiazoles 3–10 studied within the framework of the current work
were synthesized in high yields, according to our method, with small variations when
necessary (Scheme 1, Experimental Section).

Scheme 1. Synthesis of 3–10. For the conditions, see the Materials and Methods.

1H and 13C{1H} NMR spectra in D2O confirmed the formation of cyclic 1,2,4-selenadiazoles
3–10. The adducts 3–10 readily recrystallized from dichloromethane or methanol to give
single crystals suitable for analysis by single-crystal X-ray crystallography, which confirmed
the formation of cationic 1,2,4-selenadiazoles (Figure 1). The N–Se distance for 3–10 was
in the interval between 1.824(3) Å and 1.860(4) Å, and was typical for the N–Se single
bond. The C=N separation (1.25(1)–1.291(5) Å for 3–10) corresponded to a typical double
bond [24–33].

Earlier, we established that the adduct derived from propionitrile formed [Se–Cl]2 squares
in the solid state. Interestingly, when we switched higher homologs (i.e., n-butyronitrile and
even n-hexanenitrile), the corresponding adducts 3 and 4 did not form dimers in the solid
state, but self-assembled into 1-D supramolecular polymers via Se···Cl ChB and H···Cl HB
(Figure 2). In these cases, other weak interactions outcompeted [Se–Cl]2 and [Se–N]2 square
formations in the solid state. Expectedly, the transoid position towards the N atom around
the selenium center was occupied by the chloride due to the presence of the supporting
H···Cl HB, but the cisoid position remained unoccupied in the crystals of 3 and 4.
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Figure 1. Ball-and-stick representations of the crystal structures of 3–5 and 7–10. Grey and light-grey
spheres represent carbon and hydrogen, respectively.

Figure 2. Ball-and-stick representations of the crystal structures of 3 and 4, demonstrating their
self-assembly into 1-D supramolecular polymers via Se···Cl and H···Cl interactions. Green, purple,
blue, grey, and light-grey spheres represent chlorine, selenium, nitrogen, carbon, and hydrogen,
respectively.
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When the solution of 3 was slowly crystallized from dichloromethane over a period
of ca. one month, aside from the major product 3, a minor amount of crystals of 6 also
precipitated (Figure 3).

Figure 3. Ball-and-stick representation of the crystal structure of 6, demonstrating attractive Se···N,
Se···Cl, and H···Cl interactions. Grey and light-grey spheres represent carbon and hydrogen, respectively.

Compound 6 represented an adduct of 1,2,4-selenadiazole 3 with 2-pyridylselenylchloride
hydrochloride. The heterodimer 6 featured Se–N–Se–Cl squares, which we have not
observed previously for the adducts of nitriles with 2-pyridylselenylhalides. Compound 6
could potentially form via partial hydrolysis of 3, which results in the formation of HCl,
and could react with another molecule of 3 to generate 2-PySeCl HCl. The latter could
coprecipitate with an additional molecule of 3 to form 6. However, further investigations
are required for detailed insight of unusual heterodimers containing Se–N–Se–Cl squares.

Further we switched to a bulkier diphenylacetonitrile, which formed an expected
adduct 5 with 2-pyridylselenylchloride and self-assembled into 1-D chains via Se···Cl
and H···Cl interactions (Figure 4) in the solid state, in the same fashion as 3 and 4. How-
ever, in contrast to 3 and 4, adduct 5 contained a cocrystallized CH2Cl2 molecule which
featured a ChB interaction with a selenium center and occupied a cisoid position at the
selenium atom (Figure 4). Arguably, this was allowed by the pocket formed by the bulky
diphenylmethyl substituent.

Figure 4. Ball-and-stick representation of the crystal structure of 5, demonstrating its self-assembly
into 1-D supramolecular polymer via Se···Cl and H···Cl interactions and ChB interactions with a
cocrystallized CH2Cl2 molecule. Green, purple, blue, grey, and light-grey spheres represent chlorine,
selenium, nitrogen, carbon, and hydrogen, respectively.
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Previously, we showed that 2-pyridylselenylchloride eagerly reacts with cyanogen
bromide forming a corresponding cationic 1,2,4-selenadiazole in an almost quantitative
yield [23]. Within this work, we explored the reaction of 2-pyridylselenylbromide with
cyanogen bromide, which also resulted in the formation of the adduct 8, which self-
assembled in the solid state in the same manner as its chloride analog, which featured
[Se–Cl]2 square dimers in the solid state (Figure 5). Interestingly, switching from a chloride
to a bromide resulted in an intriguing peculiarity: the Br(C)–Br distance (3.678 Å) in the
crystal of 8 was shorter than the Br(C)–Cl separation (3.774 Å) in the analogous adduct of
2-pyridylselenylchloride with cyanogen bromide [23]. This indirectly indicates that the
Br···Br interactions in 8 are attractive. Overall, molecules of 8 formed 1-D polymer via
Se···Br ChB and Br···Br XB in the crystal.

Figure 5. Ball-and-stick representation of the crystal structure of 8, demonstrating its self-assembly
into 1-D supramolecular polymer via Se···Br and Br···Br interactions. Brown, purple, blue, grey, and
light-grey spheres represent bromine, selenium, nitrogen, carbon, and hydrogen, respectively.

Further, we were interested in how variation of the anion would affect the self-
assembly of the adduct 2-pyridylselenylchloride with cyanogen bromide. For this reason,
we performed an addition of a saturated solution of NaBPh4 in MeOH to a solution of 8 in
the same solvent, which resulted in an immediate formation of microcrystalline precipitate
of 9 (Figure 6).

Figure 6. Ball-and-stick representation of the crystal structure of 9, demonstrating attractive Se···π
interactions between the selenadiazole cation and two neighboring BPh4 anions. Grey and light-grey
spheres represent carbon and hydrogen, respectively.
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Introduction of the bulky anion resulted in the destruction of the polymeric chain.
The solid-state structure of 9 featured “isolated” 1,2,4-selenadiazole cations which were
involved in two chalcogen–π interactions. It should be noted that chalcogen–π interactions
are a bonding motif found in biological systems such as proteins [34]. Thus, compound 9
could be an interesting potential model structure for the exploration of chalcogen–π ChB.

Further, we explored the influence of charged (cationic) substituents by the nitrile group on
the cyclization with 2-pyridylselenylchloride. p-Cyano-N-methylpyridinium methanesulphonate
and o-cyanodiazonium tetrafluoroborate readily reacted with 2-pyridylselenylchloride, which
resulted in the formation of adducts 7 and 10 in high yields. Interestingly, the presence of
the diazonium group did not affect the cyclization, demonstrating a remarkable functional
group tolerance of the coupling with nitriles.

The structural analysis revealed that dicationic 1,2,4-selenadiazoles in 7 formed [Se–
Cl]2 squares (Figure 7), which we observed earlier [22]. It should be noted that the second
chloride did not participate in ChB (Figure 7).

Figure 7. Ball-and-stick representation of the crystal structure of 7, demonstrating attractive Se···Cl,
H···Cl, and H···O interactions. Grey and light-grey spheres represent carbon and hydrogen, respectively.

The adduct 10 featuring diazonium moiety and two BF4 anions did not form supramolec-
ular dimers or polymers in the solid state (Figure 8). The Se center was involved in two
Se···F ChBs, while the N2

+ group—in three N···F pnictogen bonding interactions (Figure 8).

Figure 8. Ball-and-stick representation of the crystal structure of 10, demonstrating attractive Se···F, H···F,
and N···F interactions. Grey and light-grey spheres represent carbon and hydrogen, respectively.
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Inspection of the crystallographic data revealed the presence of various non-trivial
non-covalent interactions in the crystal structures of 3–10. To understand the nature and
quantify strength of these non-covalent interactions, DFT calculations followed by a topo-
logical analysis of the electron-density distribution within the QTAIM approach [35] were
carried out at the ωB97X-D3/Sapporo-DZP-2012 level of theory for model supramolecular
associates (see Computational Details in the Materials and Methods, and the attached xyz-
files in the Supplementary Materials). The results of the QTAIM analysis are summarized
in Table S2 (the Poincaré–Hopf relationship was satisfied in all cases). The contour line
diagrams of the Laplacian of electron density distribution ∇2ρ(r), bond paths, selected
zero-flux surfaces, visualization of electron localization function (ELF), and reduced density
gradient (RDG) analyses for some of these non-covalent interactions are shown in Figure 9
and Figures S1–S6.

Figure 9. Contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths,
and selected zero-flux surfaces (left panel), and visualization of electron localization function (ELF,
center panel) and reduced density gradient (RDG, right panel) analyses for non-covalent interactions
H6···Cl30 and Se1···Cl30 in the model supramolecular associate 4. Bond critical points (3, −1) are
shown in blue, nuclear critical points (3, −3) in pale brown, ring critical points in orange. Bond paths
are shown as pale brown lines, length units are in Å, and the color scale for the ELF and RDG maps is
presented in a.u. The numeration of atoms corresponds to their ordering in the attached xyz-files for
model supramolecular associates (Supplementary Materials).

The QTAIM analysis of model supramolecular associates 3–10 demonstrated the pres-
ence of bond critical points (3, –1) for the non-covalent interactions listed in Table S2 and
shown in Figure 9 and Figures S1–S6. In all cases, with the exception of Se25···Cl27 and
Se25···Cl26 contacts in 6, the low magnitude of the electron density (0.007–0.028 a.u.),
positive values of the Laplacian of electron density (0.020–0.066 a.u.), zero or very close to
zero energy density (0.000–0.002 a.u.) in these bond critical points (3, –1), and estimated
strength for appropriate short contacts (0.9–5.0 kcal/mol) are typical for weak hydro-
gen bonds [3,4,36] and non-covalent interactions involving halogen [8–12,32,37,38] and
chalcogen [22,23,39–42] atoms in similar chemical systems. The strongest non-covalent
interactions in the studied model supramolecular associates 3–10 were chalcogen bonds:
Se1···Cl24 in 3 (4.7 kcal/mol), Se1···Cl30 in 4 (4.4 kcal/mol), Se1···Cl38 in 5 (5.0 kcal/mol),
Se1···Cl24 in 6 (3.5 kcal/mol), Se29···Cl56 in 7 (5.0 kcal/mol), Se1···Br15 in 8 (3.5 kcal/mol),
Se2···C31 in 9 (1.3 kcal/mol), and Se1···F29 (4.7 kcal/mol) in 10. In cases of Se25···Cl27
and Se25···Cl26 contacts in 6, the significant magnitude of the electron density (0.064 and
0.069 a.u.), clear negative energy density (−0.015 and−0.018), and relatively high estimated
strength (14.7 and 16.6 kcal/mol) allow us to consider these closed-shell interactions more
like coordination bonds rather than non-covalent interactions [43,44]. Note that the energies
of non-covalent interactions can also be potentially estimated on the basis of the experi-
mental electron-density distribution functions [45,46]. The balance between the Lagrangian
kinetic energy G(r) and potential energy density V(r) at the bond critical points (3, −1)
reveals the nature of these interactions: if the ratio −G(r)/V(r) > 1 is satisfied, then the
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nature of appropriate interaction is purely non-covalent, whereas in the case of –G(r)/V(r)
< 1, some covalent component takes place [47]. On the basis of this criterion, one can state
that a covalent contribution in all interactions listed in Table S2, except Se25···Cl27 and
Se25···Cl26 contacts in 6, was absent, whereas Se25···Cl27 and Se25···Cl26 contacts in 6 had
significant degrees of covalency. The Laplacian of electron density is typically decomposed
into the sum of contributions along the three principal axes of maximal variation, giving the
three eigenvalues of the Hessian matrix (λ1, λ2 and λ3), and the sign of λ2 can be utilized to
distinguish bonding (attractive, λ2 < 0) weak interactions from nonbonding ones (repulsive,
λ2 > 0) [48,49]. Thus, all contacts listed in Table S2 are attractive.

3. Materials and Methods
3.1. General Remarks

All manipulations were carried out in air unless specified otherwise. All reagents
used in this study were obtained from commercial sources (Aldrich, TCI-Europe, Strem,
ABCR). Commercially available solvents were purified by conventional methods and
distilled immediately prior to use. NMR spectra were recorded on a Bruker Avance III
(Karlsruhe, Germany). Chemical shifts (δ) are given in ppm, coupling constants (J) are
given in Hz. C, H, S, and N elemental analyses were carried out on a Euro EA 3028HT
CHNS/O analyzer (Pavia, Italy). 2-Pyridylselenyl chloride, 2-pyridylselenyl bromide, and
di-(2-pyridyl)-diselenide were synthesized as reported earlier [50,51].

3.2. X-ray Crystal Structure Determination

The single-crystal X-ray diffraction data for 3–10 were collected on three-circle Bruker
D8 Venture or Bruker Smart Apex II diffractometers (Centre of Joint Equipment of Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences) using ϕ and
ω scan modes. The data were indexed and integrated using the SAINT program [52].
Absorption corrections based on measurements of equivalent reflections (SADABS) were
applied [53]. The structures were determined by direct methods and refined by a full-matrix
least squares technique on F2 with anisotropic displacement parameters for non-hydrogen
atoms. The hydrogen atoms in all compounds were placed in calculated positions and
refined within riding models with fixed isotropic displacement parameters (Uiso(H) =
1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups). All calculations were
carried out using the SHELXTL program [54] and OLEX2 program package [55]. For details,
see Table S1 (Supplementary Materials).

Crystallographic data for all investigated compounds have been deposited with
the Cambridge Crystallographic Data Center, CCDC 2129995-2130002. Copies of this
information may be obtained free of charge from the Director, CCDC, 12 Union Road,
Cambridge, CHB2 1EZ, UK (Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk; or
www.ccdc.cam.ac.uk).

3.3. Computational Details

The DFT calculations based on the experimental X-ray geometries of 3–10 were carried
out at theωB97X-D3/Sapporo-DZP-2012 level of theory [56–59] with the help of the ORCA
4.2.1 program package [60]. The RIJCOSX approximation [61] was utilized. The topological
analysis of the electron density distribution, with the help of the QTAIM approach [35],
was performed using the Multiwfn program (version 3.7) [62]. The Cartesian atomic
coordinates for model supramolecular associates are presented in the attached xyz-files in
the Supplementary Materials.

3.4. Synthesis of Compounds 3–5 and 7–10

3. 2-Pyridylselenyl chloride (182 µmol, 35 mg) and butyronitrile (690 µmol, 60 µL)
were stirred in Et2O (4 mL) at room temperature for 12 h. A colorless precipitate gradually
formed and was filtered, washed with Et2O (3 × 3 mL), and dried under vacuum. Yield:
37 mg (78%). Anal. Calcd. for C9H11ClN2Se: C, 41.32; H, 4.24; N, 10.71. Found: C, 41.41;

www.ccdc.cam.ac.uk
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H, 4.47; N, 10.64. 1H NMR (600 MHz, D2O) δ 9.37 (1H, dt, J = 6.9, 0.9 Hz, H5), 8.80 (1H,
dt, J = 8.7, 1.0 Hz, H8), 8.39 (1H, ddd, J = 8.5, 7.2, 1.1 Hz, H7), 8.01 (1H, td, J = 7.0, 1.2 Hz,
H6), 3.31 (2H, t, J = 7.4 Hz, CH2), 2.02 (2H, h, J = 7.4 Hz, CH2), 1.10 (3H, t, J = 7.4 Hz, CH3).
13C{1H} NMR δ 167.8 (C3), 159.1 (C9), 139.5 (C5), 136.0 (C8), 125.9 (C7), 123.0 (C6), 32.8
(CH2), 18.4 (CH2), 12.8 (CH3). Crystals suitable for X-ray analysis were obtained by the
slow evaporation of the saturated CH2Cl2 solution.

4. 2-Pyridylselenyl chloride (208 µmol, 40 mg) was stirred with hexanenitrile (100 µL)
in Et2O (mL) at room temperature for 12 h. A colorless precipitate gradually formed and
was filtered, washed with Et2O (3 × 3 mL), and dried under vacuum. Yield: 63 mg (94%).
Anal. Calcd. for C11H15ClN2Se: C, 45.61; H, 5.22; N, 9.67. Found: C, 45.58; H, 5.34; N, 9.64.
1H NMR (600 MHz, D2O) δ 9.35 (1H, d, J = 6.8 Hz, H5), 8.79 (1H, d, J = 8.7 Hz, H8), 8.38
(1H, t, J = 7.9 Hz, H7), 8.00 (1H, t, J = 7.0 Hz, H6), 3.32 (2H, t, J = 7.5 Hz, CH2), 1.98 (2H, p,
J = 7.5 Hz, CH2), 1.47 (2H, p, J = 7.4 Hz, CH2), 1.38 (2H, dq, J = 14.8, 7.4 Hz, CH2), 0.88 (3H,
t, J = 7.4 Hz, CH3). 13C{1H} NMR δ 167.7 (C3), 159.2 (C9), 139.4 (C5), 135.9 (C8), 125.8 (C7),
122.9 (C6), 30.8 (CH2), 30.3 (CH2), 24.3 (CH2), 21.6 (CH2), 13.1 (CH3). Crystals suitable for
X-ray analysis were obtained by the slow evaporation of the saturated MeOH solution.

5. 2-Pyridylselenyl chloride (130 µmol, 25 mg) was stirred with 2,2-diphenylacetonitrile
(264 µmol, 51 mg) in Et2O (5 mL) at room temperature for 3 h. A colorless precipitate
gradually formed and was filtered, washed with CH2Cl2 (3 mL), then Et2O (3×3 mL), and
dried under vacuum. Yield: 42 mg (84%). Anal. Calcd. for C19H15ClN2Se: C, 59.16; H, 3.92;
N, 7.26. Found: C, 59.38; H, 4.12; N, 7.21. 1H NMR (600 MHz, D2O) δ 9.17 (1H, d, J = 6.9 Hz,
H5), 8.83 (1H, d, J = 8.6 Hz, H8), 8.69 (5H, t, J = 6.4 Hz, 5H from Ph), 8.34 (1H, t, J = 7.9 Hz,
H7), 7.76–7.72 (1H, m, H6), 7.45–7.36 (5H, m, 5H from Ph), 6.40 (1H, s, CH). 13C{1H} δ 168.6
(C3), 158.6 (C9),140.8 (C11 and C11′), 139.7 (C5), 136.1 (C8), 129.0 (C13 and C15 and C13′

and C15′), 128.5 (C12 and C16 and C12′ and C16′), 127.8 (C14 and C14′), 126.2 (C7), 123.1
(C6), 52.9 (C10). Crystals suitable for X-ray analysis were obtained by the slow evaporation
of the saturated CH2Cl2 solution.

7. 2-Pyridylselenyl chloride (104 µmol, 20 mg), 4-cyano-N-methylpyridinium methane-
sulfonate (104 µmol, 22 mg), and Bu4NCl (360 µmol, 100 mg) were stirred in MeOH/CH2Cl2
(2 mL/2 mL) at room temperature for 12 h. A colorless precipitate gradually formed and
was filtered, washed with CH2Cl2 (3 × 3 mL), then Et2O (3 × 3 mL), and dried under
vacuum. Yield: 28 mg (86%). Anal. Calcd. for C12H11Cl2N3Se: C, 41.52; H, 3.19; N, 12.11.
Found: C, 41.74; H, 3.38; N, 12.09. 1H NMR (600 MHz, D2O) δ 9.30 (1H, d, J = 6.8 Hz, H5),
9.24 (2H, d, J = 6.5 Hz, H11 and H14), 8.98 (1H, d, J = 8.7 Hz, H8), 8.56 (2H, d, J = 6.2 Hz, H12
and H13), 8.51 (1H, t, J = 7.9 Hz, H7), 8.06 (1H, t, J = 7.0 Hz, H6), 4.59 (3H, s, CH3). 13C{1H}
δ 169.2 (C3), 150.9 (C9), 147.2 (C5), 143.1 (C10), 140.4 (C8), 136.3 (C11 and C14), 128.7 (C7),
126.5 (C12 and C13), 123.8 (C6), 38.4 (N–CH3). Crystals suitable for X-ray analysis were
obtained by the slow evaporation of the saturated MeOH solution.

8. 2-Pyridylselenyl bromide (245 µmol, 58 mg) was stirred with cyanogen bromide
(1.22 mmol, 45 mg) in Et2O (4 mL) at room temperature for 3 h. A light-yellow precipitate
gradually formed and was filtered, washed with Et2O (3 × 3 mL), then hexane (3 × 3 mL),
and dried under vacuum. Yield: 63 mg (75%). Anal. Calcd. For C6H4Br2N2Se: C, 21.02; H,
1.18; N, 8.17. Found: C, 21.15; N, 8.22. 1H NMR (600 MHz, D2O) δ 9.61 (1H, d, J = 6.9 Hz,
H5), 8.88 (1H, d, J = 8.7 Hz, H8), 8.51–8.44 (1H, m, H7), 8.11 (1H, td, J = 7.0, 1.0 Hz,
H6). 13C{1H} NMR δ 168.4 (C3), 146.4 (C9), 140.6 (C5), 137.7 (C8), 126.3 (C7), 123.7 (C6).
Crystals suitable for X-ray analysis were obtained by the slow evaporation of the saturated
CH2Cl2 solution.

9. NaBPh4 (58 µmol, 20 mg) in MeOH (1 mL) was added to the solution of 8 (58 µmol,
20 mg) in MeOH (2 mL), and the mixture was stirred at room temperature for 30 min.
Colorless precipitate gradually formed and was filtered, washed with Et2O (3 × 3 mL), and
dried under vacuum. Anal. Calcd. for C30H24BBrN2Se: C, 61.89; H, 4.16; N, 4.81. Found:
C, 62.05; H, 4.31; N, 4.73 1H and 13C NMR were not recorded due to the insolubility of 9
in D2O. Crystals suitable for X-ray analysis were obtained by the slow evaporation of the
saturated MeOH solution.
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10. 2-Pyridylselenyl chloride (208µmol, 40 mg) was stirred with 2-cyanobenzenediazonium
tetrafluoroborate (228 µmol, 50 mg) and KBF4 (397 µmol, 50 mg) in MeOH (4 mL) at room
temperature for 3 h. A pale-orange precipitate gradually formed and was filtered, washed
with Et2O (3 × 3 mL), and dried under vacuum. Yield: 50 mg (52%). Anal. Calcd. for
C12H8B2F8N4Se: C, 31.28; H, 1.75; N, 12.16. Found: C, 31.34; H, 2.16; N, 11.98 1H NMR
(600 MHz, DMSO-d6) δ 9.48 (1H, d, J = 6.8 Hz, H5), 9.11 (1H, d, J = 8.7 Hz, H14), 9.06 (1H,
dd, J = 8.4, 0.9 Hz, H11), 8.61 (1H, td, J = 7.8, 1.0 Hz, H12), 8.58–8.53 (1H, m, H13), 8.53–8.48
(1H, m, H8), 8.39–8.34 (1H, m, H7), 8.05 (1H, td, J = 7.0, 1.0 Hz, H6). 13C{1H} NMR δ 169.0
(C3), 148.2 (C9), 141.6 (C5), 140.4 (C8), 137.8 (C15), 136.7 (C11), 134.0 (C13), 132.7 (C12),
129.1 (C14), 126.6 (C7), 123.1 (C6), 116.3 (C10). Crystals suitable for X-ray analysis were
obtained by the slow evaporation of the saturated MeOH solution.

4. Conclusions

In summary, eight novel cationic 1,2,4-selenadiazoles were structurally characterized.
Solid state structures exhibited multiple ChB interactions, which were studied by DFT cal-
culations and topological analysis of the electron-density distribution within the framework
of Bader’s theory (QTAIM method). Formation of [Se–N]2 squares, which we observed
earlier, did not occur for selenadiazoles studied within this work. Although substituent-
dependent self-assembly in the solid state was observed, a priori prediction of the packing
preference is still challenging due to the presence of multiple competing weak interactions.
Overall, we demonstrated several new types of structural organization of novel cationic
1,2,4-selenadiazole building blocks in the solid state, which involved attractive ChB in-
teractions. Further studies into the chemistry of cationic 1,2,4-selenadiazoles and their
applications from our laboratory are underway, and will be reported in due course.

Supplementary Materials: The following supporting information can be downloaded: Table S1 with
crystal data and structure refinements for 3–10; Table S2 with details of QTAIM analysis [63,64];
Figures S1–S6 with contour line diagrams of the Laplacian of electron density distribution ∇2ρ(r),
bond paths, selected zero-flux surfaces, visualization of electron localization function (ELF), and
reduced density gradient (RDG) analyses for some of non-covalent interactions in 5, 6, 8, 9, and 10;
xyz-files with Cartesian atomic coordinates for model supramolecular associates.
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