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Abstract

Motivation: Advancements in cancer genetics have facilitated the development of therapies with

actionable mutations. Although mutated genes have been studied extensively, their chaotic behav-

ior has not been appreciated. Thus, in contrast to naı̈ve DNA, mutated DNA sequences can display

characteristics of unpredictability and sensitivity to the initial conditions that may be dictated by

the environment, expression patterns and presence of other genomic alterations. Employing a

DNA walk as a form of 2D analysis of the nucleotide sequence, we demonstrate that chaotic behav-

ior in the sequence of a mutated gene can be predicted.

Results: Using fractal analysis for these DNA walks, we have determined the complexity and nu-

cleotide variance of commonly observed mutated genes in non-small cell lung cancer, and their

wild-type counterparts. DNA walks for wild-type genes demonstrate varying levels of chaos, with

BRAF, NTRK1 and MET exhibiting greater levels of chaos than KRAS, paxillin and EGFR. Analyzing

changes in chaotic properties, such as changes in periodicity and linearity, reveal that while dele-

tion mutations indicate a notable disruption in fractal ‘self-similarity’, fusion mutations demon-

strate bifurcations between the two genes. Our results suggest that the fractals generated by DNA

walks can yield important insights into potential consequences of these mutated genes.

Availability and implementation: Introduction to Turtle graphics in Python is an open source article

on learning to develop a script for Turtle graphics in Python, freely available on the web at https://

docs.python.org/2/library/turtle.html. cDNA sequences were obtained through NCBI RefSeq data-

base, an open source database that contains information on a large array of genes, such as their

nucleotide and amino acid sequences, freely available at https://www.ncbi.nlm.nih.gov/refseq/.

FracLac plugin for Fractal analysis in ImageJ is an open source plugin for the ImageJ program to

perform fractal analysis, free to download at https://imagej.nih.gov/ij/plugins/fraclac/FLHelp/

Introduction.html.
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1 Introduction

Lung cancer is a devastating genetic disease that has become the

most commonly diagnosed form of cancer with over 1.6 million

cases each year and the leading cause of cancer deaths (Herbst et al.,

2018). Advancements in cancer genetics have identified numerous

mutations that can play important roles in disease pathogenesis.

Furthermore, they have also helped discover novel, ‘targeted’, treat-

ments for patients harboring these mutations in several types of can-

cer, especially non-small cell lung cancer (NSCLC) (Herbst et al.,

2018). However, while chaotic disruptions at a tissue organization

level have been well-studied in cancer progression, chaos demon-

strated within the sequences of the oncogenes that are causative,

remains underappreciated (Soto and Sonnenschein, 2011). As we ar-

rive at further precision medicine, understanding genetic function

(or dysfunction) will help guide us even more for better outcomes

for patients with lung cancer and other tumors.

Chaos refers to very high sensitivity to initial conditions, and

consequent unpredictability (Oestreicher, 2007). The manifestation

of chaos in genetic sequences can be studied via DNA walks—graph-

ical representations of the genomic sequence where the steps in the

‘walk’ are the nucleotides in the corresponding nucleic acid se-

quence. Using the concepts of fractals and its associated parame-

ters—fractal dimension (FD) and lacunarity—one can quantify the

extent of fractal behavior and chaos in a given system (Lennon

et al., 2015). Fractals are geometric objects that are self-similar (i.e.

any small part of the object is an exact replica of the same) and have

a non-integer FD that describes the intrinsic shape of the object

(Lennon et al., 2015). Lacunarity, or pattern variance, is another

metric, which describes the texture of the object at hand. The values

of FD and lacunarity may be determined with the box-counting

method, a method of analyzing complex shapes and patterns by ana-

lyzing the object or image in a defined grid (Lennon et al., 2015).

Binary box-counting determines the value of each box in the grid as

1 if a part of the image is contained within the box or 0 if the box is

empty and the FD is calculated by analyzing the boxes in the grid

that contain the image.

FD has been used to gain insights into diverse local and global

traits of many DNA sequences, as well as represent a subset of cha-

otic function. This analysis has its origins in DNA walks. In this

method described by Hamori and Ruskin (1983), the information

content of a nucleotide sequence is mapped into a 3D space function

called H curves. Each of the four nucleotides is represented by a vec-

tor in 3D space having a characteristic, but variable, orientation. As

an alternative to H curves, Gates proposed the 2D DNA sequence

representation, which projects C/G changes on x-axis and A/T

changes on y-axis. Thus, all genetic sequences can be represented

uniquely in 2D, and differences among them can be highlighted

(Gates, 1985). This study selects this 2D DNA Walk schema because

of its simplicity and efficiency. 2D DNA walk provides useful

insights into new global sequence patterns and homologies, repeated

structures, relative base abundances and probable evolutionary

paths (Buldyrev et al., 1993).

The general properties of nucleotide sequences can be examined

using FD. Peng et al. (1992a,b) defined the term ‘DNA Walk’ as a

1D random walk model, where the walk steps up if a pyrimidine

occurs at a position i along the DNA chain, whereas the walk steps

down if a purine occurs there. The authors showed a long-range

power law correlation in intron-containing genes and non-

transcribed regulatory DNA sequences (Peng et al., 1992a,b), ena-

bling quantitative measurement of correlations among nucleotides

over long distances along the DNA chain, for a given DNA/RNA

sequence. Further, this method was also used to analyze the fractal

landscape; for instance, fractal complexity was shown to increase

during the evolution of myosin heavy chain gene family (Buldyrev

et al., 1993). Because of the benefits of graphic representation of the

long genomic sequences, DNA walk has been wildly used in the

genome-wide periodicities and in identifying large-scale, local and

global properties identification (Buldyrev et al., 1993; Peng et al.,

1992a,b; Poptsova et al., 2009; Zielinski et al., 2008), in detecting

the origin of replication (Lobry, 1996), in comparing whole

genomes (Roten et al., 2002), and in uncovering the protein coding

regions (Gao et al., 2005).

Several recent studies have used DNA walks as the model for

cancer investigation (Lennon et al., 2015) and diagnostics (Namazi

and Kiminezhadmalaie, 2015; Namazi et al., 2015) and drug resist-

ance analysis (Saini and Dewan, 2016). A comparison of the FD

spectrum of DNA walks of the lung cancer patients’ DNA with

healthy individuals control group showed that the FD of cancer

patients’ DNA were significantly higher than that for healthy indi-

viduals (Namazi and Kiminezhadmalaie, 2015). A similar pattern

was found in skin cancer (Namazi et al., 2015), where the FD of

DNA Walk was proposed as a measurement to identify the diseased

associated mutations. These attempts largely focus on the macro

level changes of sequences between wild-type and cancer cells

(Namazi and Kiminezhadmalaie, 2015; Namazi et al., 2015). Our

study on the other hand, focuses on the impacts of the micro level

mutations on the FD and lacunarity of the walk. We have created

these walks for the coding regions of commonly affected genes in

NSCLC—anaplastic lymphoma kinase (ALK), BRAF, epidermal

growth factor receptor (EGFR), ERBB2, KRAS, MET, Neutrophic

receptor kinase 1 (NTRK1), PXN and ROS1—and performed frac-

tal analysis so that we may observe the different levels of chaos dem-

onstrated within the sequence of these genes in their wild-type forms

and how this demonstration of chaos may play a role in why these

mutations occur. We later generated the DNA walks for mutations

in the oncogenes EGFR, MET, ALK and KRAS that often occur in

NSCLC in order to analyze the changes in chaotic properties and de-

termine shared characteristics among the multiple mutation types

assessed, such as point mutations, deletions, insertions and fusions.

As such, we may find common trends in the fractal properties for

each mutation and become able to discern the presence of a particu-

lar mutation type when a change is observed in these fractal images.

2 Materials and methods

The DNA walk diagram is generated using a tool implemented in

python. It includes three modules. The data import module reads

the genomic sequence data in different formats (such as FASTA, and

NCBI GenBank flat file format). The graphic generation module

draws the DNA walk diagram using Python turtle library. The de-

fault 2D walk diagram encodes nucleotide as A (west), T (east), C

(south) and G(north). The last module is data export module, which

exports the diagram to scalable vector graphic format for down-

stream analysis. This tool can also highlight the different genomic

regions (such as exons, introns and mutations) using different colors.

For example, specific exons may be color coded to the user’s specifi-

cations to easily analyze the nucleotide sequence. This allows the

user to modify the DNA walk to their specification.

DNA walks for ALK, BRAF, EGFR, ERBB2, KRAS, MET,

NTRK1, PXN and ROS1 coding regions were all generated using a

tool implemented in Python. The cDNA sequence, based on the

mRNA sequence with the 50- and 30-untranslated region, was
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obtained from NCBI RefSeq database and used as the input for the

Python script. Table 1 lists the RefSeq ID of each gene we used in

this study. The DNA walk images were then analyzed through the

FracLac plugin for the application ImageJ. Using the binary box-

counting method, the FracLac plugin was then able to find the FD

and lacunarity of the image.

To observe certain principles of chaos within these systems, we

found the coding sequence for genes with different mutations. We

generated DNA walks and analyzed the FDs for EGFR L858R,

G719A, S768I and T790M point mutations, EGFR exon 19 dele-

tion, EGFR-RAD51 fusion, the EGFR exon 20 insertion variant

Val769_Asp770insMetAlaSerValAsp, artificial L858L synonymous

mutations and two EGFR point mutation variants of unknown clin-

ical significance (VUS) compared with the DNA walk for the wild-

type protein. The synonymous mutations and VUS mutations have

been performed to determine the impact mutations that are not ac-

tionable or proven to be cancer related have on the DNA walk. For

splice site mutations and translocations, we compared the walks and

dimensions of three MET exon 14 splice site variants, as well as the

KIF5B-MET fusion, to that of wild-type. To further analyze the

effects of translocations in these systems, we compared the walks

and dimensions of three echinoderm microtubule-associated pro-

tein-like 4 EML4-ALK fusions to those of wild-type ALK. Last, we

have generated and analyzed the walks for KRAS and three common

codon 12 mutations associated with NSCLC to understand the

effects mechanistic point mutations have on the walk of a gene that

exhibits intrinsic disorder. Additional figures for all the genes

described above and the Python script used to perform the DNA

walks are provided in the Supplementary Material.

3 Results

3.1 DNA walks and fractal patterns of wild-type proteins
We first observed the DNA walks of EGFR, ALK receptor tyrosine

kinase (ALK), MET proto-oncogene, receptor tyrosine kinase

(MET), B-RAF proto-oncogene, serine/threonine kinase (BRAF),

KRAS proto-oncogene GTPase (KRAS), Erb-B2 receptor tyrosine

kinase (ERBB2), NTRK1, ROS proto-oncogene receptor tyrosine

kinase 1 (ROS1) and paxillin (PXN) individually in their wild-type

forms, and measuring the respective FD and lacunarity (Table 2).

The data demonstrated below are obtained through fractal analysis

of the DNA walks as a mono-fractal profile; although, multi-fractal

analysis of the DNA walks may be performed through the FracLac

plugin providing multiple FD values for the DNA walk. Next, we

generated all of the wild-type walks together in one system (Fig. 1),

to compare the levels of chaos exhibited by each gene. The principles

most notably indicated by the integration of all the DNA walks in

one system are the periodic coupling, and a fractal profile. At the in-

dividual level, we are able to see some dense points of attraction in

the walks for the cDNA sequences of ERBB2, NTRK1 and MET in

particular. These points of attraction are demonstrated by frequent

overlapping in a particular orbit or point within the walk, causing

what appears to be large clusters. Because the walks along a genome

sequence typically represent how the frequency of each nucleotide in

a given nucleotide pair changes locally, the points of attraction in

these walks indicate variation in the nucleotide sequence rather than

repetitive sequences, as seen in EGFR, KRAS and PXN (Namazi and

Kiminezhadmalaie, 2015).

The fractal values for these genes indicate a relationship with

base pair variance in the cDNA sequences themselves (Fig. 2). The

FD describes the shape and complexity for each walk, allowing us to

compare the chaos exhibited by the nucleotide sequences of these

genes. In the case of a 2D system such as the DNA walk, FD’s value

will range between [1.0 and 2.0] for our data, where 1.0 implies the

fractal image to be a 1D system. Lacunarity, on the other hand, is a

quantitative value for the level of variance within the illustrated gen-

etic walk, where a higher lacunarity suggests larger gaps or free

space in the fractal pattern whereas a lower lacunarity translates to

lower variance within the ‘self-similar’ image. Lacunarity is, thus,

inversely related to the rate of alternating base pair patterns occur-

ring within the sequence (Lennon et al., 2015). Therefore, genes

with higher lacunarity and lower FD such as PXN and KRAS dem-

onstrate less base pair variance in their sequences than the genes

with lower lacunarity and higher FD, such as MET and NTRK1.

3.2 Walks and fractal patterns for mutated oncogenes
Next, we generated random walks for mutated EGFR, ALK and

MET and compared them to their wild-type counterparts. As shown

in Figure 3, walks for the c.2236_2250del exon 19 deletion,

Val769_Asp770insMetAlaSerValAsp exon 20 insertion, and EGFR-

RAD51 fusion are illustrated where the mutations are indicated in

red. The fusion with exons 4 through 10 of RAD51 occurs after

exon 24 of EGFR, replacing the linear EGFR exons with the period-

ically dense RAD51 exons (Konduri et al., 2016). Point mutations

for EGFR have also been performed, indicating little change in the

system due to the substitution of a single step (Table 3). The deletion

of exon 19 decreases the linearity of the system and decreases the

distance between two periodic points, resulting in a slightly higher

FD than that of the wild-type. Similar to that of the exon 19 dele-

tions EGFR’s exon 20 insertion decreases linearity by increasing the

variation of the walk’s path. EGFR’S exon 20 insertion increased

the periodicity in the fractal walk while also being exposed to more

holes in the fractal pattern, consequently increasing both FD and

Table 1. The chromosome location and RefSeq ID for ALK, BRAF,

EGFR, ERBB2, KRAS, MET, NTRK1, PXN and ROS1

Gene Chromosome location RefSeq ID

ALK 2p23.2-p23.1 NM_004304

BRAF 7q34 NM_004333

EGFR 7p11.2 NM_005228

ERBB2 17q12 NM_001005862

KRAS 12p12.1 NM_004985

MET 7q31.2 NM_000245

NTRK1 1q23.1 NM_001012331

PXN 12q24.23 NM_001243756

ROS1 6q22.1 NM_002944

Table 2. The fractal values of ALK, BRAF, EGFR, ERBB2, KRAS,

MET, NTRK1, PXN and ROS1 DNA walks obtained by using the

box-counting mono-fractal analysis in the ImageJ plugin FracLac

Gene Dimension Lacunarity

ALK 1.4116 0.7007

BRAF 1.504 0.6336

EGFR 1.3627 0.6239

ERBB2 1.5403 0.5683

KRAS 1.3244 0.5742

MET 1.5322 0.5978

NTRK1 1.5316 0.4732

PXN 1.2905 0.5613

ROS1 1.4181 0.8145
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lacunarity for this walk. Last, the fusion of EGFR and RAD51 elimi-

nated the exons that contain a linear base pair sequence, thus result-

ing in a decrease in the walk’s overall linearity and increasing the

base pair variance.

Using the data collected in Table 3, Figure 4 shown below is a

scatter diagram was created to easily observe the FD and lacunarity

for each variant of EGFR. Due to the involvement of a second gene

causing a significant change in EGFR’s original fractal profile, the

data for the fusion between EGFR and RAD51 has been omitted

from this figure in order to solely analyze the fractal profile of the

EGFR gene and its mutations. The P373L point mutation and two

of the L858L synonymous mutations appear as a distinct group in

the figure below that demonstrates a similar FD to that of the wild-

type walk, with an increased lacunarity. The miniscule change in FD

for these three mutations may suggest no biologically significant

changes to the protein. While the FD for abovementioned mutations

were expected to indicate little change, the two other synonymous

L858L variants and V441F mutation, however, demonstrate

increased FD and lacunarity, with the V441F mutation demonstrat-

ing the greatest fractal changes. The c.2574G>T and c.2574G>C

synonymous mutations appear as outliers since their FD does not

fall within the range the other synonymous variants and P373L mu-

tation have reported. Furthermore, we notice the EGFR L858R mu-

tation has significantly decreased in FD and increased in lacunarity,

suggesting that the sensitized point mutation reduces the gene’s frac-

tal profile. Meanwhile, we see that the S768I sensitizing mutation

demonstrating a more chaotic fractal profile with the increase in FD

while the lacunarity has decreased. With the limited data obtained

for the EGFR insertion and deletion mutations, these mutations con-

tribute to an increase in fractal ‘self-similarity’ by increasing the

periodicity.

Figure 5 illustrates a MET point mutation, splice site deletion

and exon 14 skipping mutation found in lung adenocarcinoma and

compares them to the walk for wild-type MET. All of the mutations

demonstrate changes in the walk at the Exon 14 of MET’s sequence,

affecting the enhanced zones illustrated in Figure 5. Unlike the point

mutations in the EGFR walk, distinct changes in the MET walk

occur due to its point mutation creating such a larger gap in the frac-

tal pattern and increasing the fractal self-similarity in the surround-

ing space, indicated by the FD and lacunarity in Table 4. The DNA

walks for both deletion mutations for MET show signs of reduced

nucleotide variance as these gaps within the fractal shapes increase

in size. However, the loss of MET’s 14th exon entirely reduces the

presence of ‘self-similarity’ in genetic walk, indicating the mutant

gene’s lack of nucleotide variance. This decreased self-similarity and

increased lacunarity is indicated by the reduction of the walk’s

shape, subsequently providing a greater impact these gaps in the

fractal pattern have on the walk’s shape. A KIF5B-MET fusion walk

Fig. 1. cDNA walks of the following genes in a single system: ALK (grey), KRAS (green), ROS1 (red), MET (yellow), NTRK1 (blue), ERBB2 (pink), EGFR (black),

BRAF (teal) and PXN (brown). The shape of the walk is determined through fractal analysis to determine the characteristics of chaos exhibited. Periodic points,

indicated by arrows above, contribute to the shape of these DNA walks. NTRK1, ERBB2 and MET demonstrate dense periodicity where the steps appear to

attracted to multiple foci. Meanwhile, EGFR, KRAS and PXN appear to be more linear with weaker and arbitrarily smaller periodic points throughout the walk

The DNA walk and its demonstration of deterministic chaos—relevance to genomic alterations in lung cancer 2741



was also generated, resulting in exon sequences from KIF5B favor-

ing guanine and adenine followed by exons 14–21 of MET and the

poly-A tail. This introduction of a linear segment in a DNA walk of

high complexity and base pair variation greatly increased the lacu-

narity while significantly reducing the FD.

We have also compared the data for wild-type MET and the mu-

tant counterparts that involve the gene’s 14th exon in a scatter dia-

gram (Fig. 6). Similar to EGFR, we had omitted our KIF5B-MET

fusion data from the scatter plot to focus solely on the MET gene.

We first notice that the exon 14 loss mutation indicated the greatest

Fig. 2. Scatter diagram comparing the FD and lacunarity of wild-type EGFR, ALK, MET, BRAF, KRAS, ERBB2, NTRK1, ROS1 and PXN based on their values in

Table 2

Fig. 3. Genetic walks for wild-type EGFR (A), EGFRc.2236_2250del exon 19 deletion (B), EGFR Val769_Asp770insMetAlaSerValAsp exon 20 insertion (C) and

RAD51-EGFR fusion mutation where codons 1–892 of EGFR are fused to codons 75–340 of RAD51 (D). The mutations for the exon 19 deletion and exon 20 inser-

tion are enhanced to visualize the changes of the walk. EGFR’s exon 19 deletion reduces the length of the walk’s path between two dense points on the north end

of the walk, as highlighted in Figure 2B, which reduces the fractal’s size and increases its pattern complexity. The exon 20 insertion increases the path variation in

the north periodic cluster, as highlighted in Figure 2C, increasing fractal’s dimension

2742 B.Hewelt et al.



increase in lacunarity, and that the absence of this exon caused

greater holes in the fractal pattern. It is also worth noting that due

to an increase in FD and decrease in lacunarity, the point mutation

at codon 3007 (T > A) suggests that MET’s mutated DNA has be-

come more fractal. Although both the splice site variant deletion

mutations demonstrate greater lacunarity as compared with that of

the wild-type gene, the FD of these two splice site variant deletions

indicates that two different groups in the gene’s 14th exon have

been targeted. The increase in FD in the c.2888-5_2944del variant

suggests that the codon range is a rather linear dataset. On the

contrary, the deletion of the codon range 3001–3021 caused the FD

to decrease, suggesting that this codon region is a periodic and frac-

tal in nature.

Figure 7 demonstrates the wild-type ALK gene along with three

common variants of the EML4–ALK fusion mutations in lung

adenocarcinoma. These three fusions discussed commonly connect

at the 20th exon of ALK’S genome sequence; however the coding se-

quence of the EML4 gene may stop at different exons of the N- ter-

minal half, where the quantitative characteristics of the gene, such

as size and fractal shape, will vary (Li et al., 2014). The three fusion

variants share the linear characteristics demonstrated by EML4’s se-

quence and the reduction of the periodicity initially seen near the be-

ginning of ALK’s sequence. On observation of DNA walks and

quantitative analysis of the gene’s ‘complexity’, the ALK’s fusions

appear as more linear systems that grossly favor the presence of ad-

enine, even more so than the DNA walk noted in the wild-type pro-

tein. The increased linearity of the mutated gene’s sequence results

in a decreased FD, as shown in Table 5. However, the lacunarity

changes indicate that the gaps within the fractal are fewer or

smaller, resulting in more consistent fractal patterns throughout the

walk. The EML4-ALK fusion Variant B demonstrates the lowest FD

and lacunarity among the four tested DNA walks for ALK, indicat-

ing that the walk for this variant exhibits the most linearity and the

least chaos of the four.

We have graphically demonstrated the differences in FD and

lacunarity between ALK and its translocation mutations in Figure 8

below. The three fusions demonstrate a common trend in increased

linearity, as both the FD and lacunarity have decreased significantly.

Notably, the EML4–ALK fusion variant B has the lowest FD and

Table 3. The fractal values for the mutated EGFR DNA walks in

comparison to their wild-type counterpart

Gene Mutation Dimension Lacunarity

EGFR Wild-type 1.3627 0.6239

EGFR Exon 19 deletion 1.3645 0.6318

EGFR T790M 1.3625 0.6307

EGFR L858R 1.3614 0.6281

EGFR G719A 1.3639 0.6266

EGFR S768I 1.3643 0.622

EGFR Exon 20 insertion 1.3638 0.6249

EGFR EGFR-RAD51 Fusion 1.465 0.5417

EGFR V441F (VUS) 1.3645 0.6271

EGFR P373L (VUS) 1.3625 0.629

EGFR L858L c.2572C>T 1.3629 0.627

EGFR L858L c.2574G>T 1.3643 0.6268

EGFR L858L c.2574G>A 1.3626 0.6277

EGFR L858L c.2574G>C 1.3639 0.6259

Fig. 4. Scatter diagram comparing both FD and lacunarity of wild-type EGFR with its Exon 19 deletion, T790M, L858R, Exon 20 insertion, G719A, S768I, L858L,

V441F and P373L mutations. Wild-type EGFR and its clinically significant mutations are indicated by a circle while variants of unknown clinical significance are

indicated by a triangle
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lacunarity due to the absence of the periodic point seen immediately

after ALK’s 20th exon.

KRAS gene is a possible predictive biomarker for drug sensitivity

for patients with NSCLC (Karachaliou et al. 2013). Its mutations

are most frequently seen in exons 2 and 3 (specifically codons 12, 13

for KRAS-mutant NSCLC (Karachaliou et al., 2013). Of the several

point mutations that affect codon 12 of the gene’s sequence, we

selected three point mutations with single base pair substitution in

order to determine how a single step change will affect the system at

greater depth, seen in Table 6. The changes within the FD for the

DNA walks of the KRAS gene indicate a minor shift toward self-

similarity. The decrease in lacunarity further demonstrates greater

complexity and fractal self-similarity to that of the wild-type gene.

However, the demonstration of chaos exhibited by these particular

point mutations may be difficult to assess with the DNA walk alone.

Therefore, the graphical representation of FD and lacunarity in the

form of a scatter diagram may be seen below in Figure 9, where the

mutant variants of KRAS demonstrate the common trend of reduced

lacunarity and increased FD.

4 Discussion

Performing a DNA walk on a particular wild-type gene provides

information regarding that particular gene’s linearity and fractal

self-similarity. A DNA walk on the gene’s mutated counterpart

implicated in cancer progression may demonstrate characteristic

changes in chaos that may be associated to changes in the protein’s

function. One may analyze the differences in the fractal walk be-

tween the mutant gene of interest and its wild-type counterpart, as

one observes the changes in the periodicity and the spaces between

the walk’s points of attraction, as well as the deviation from the

walk’s original path caused by the mutation. This form of analysis

can be easily done by comparing the DNA walks side-by-side or by

superimposition. Furthermore, FD and lacunarity are useful tools in

analyzing dimensionless systems such as the DNA walk. They allow

us to quantitatively compare DNA walks based on their measured

linearity, as well as the sequence patterns that exist within the walks.

The data presented here provides a framework to observe the

changes in the fractal patterns of the nucleotide sequences of a wild-

type and corresponding mutated gene(s), and qualitatively assess

what these fractal changes mean functionally.

Although our dataset is limited to few common lung adenocar-

cinoma mutations, we can see the trends present in DNA walks with

Fig. 5. Comparison of the genetic walks for MET wild-type (A), MET c.3007 T > A point mutation (B), MET c.3001_3021del splice site variant mutation (C) and MET

exon 14 loss mutation (D). The effects of the point mutation and deletion on the genetic walk are enhanced to visualize how the chaos driven within these systems

has been changed

Table 4. The fractal values for the mutated MET DNA walks in com-

parison to their wild-type counterpart

Gene Mutation Dimension Lacunarity

MET Wild-type 1.5322 0.5978

MET c.2888-5_2944del62 1.5342 0.5998

MET c.3001_3021del 1.5303 0.6014

MET c.3007 T>A 1.5326 0.5964

MET Exon 14 loss 1.5316 0.6127

MET KIF5B-MET fusion 1.2493 1.0061
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deletion and insertion mutations and gene fusions. Deletion muta-

tions appear to disrupt the fractal patterns by removing a consistent

pattern within the sequence or a string of nucleotides to create a

more complex system. Therefore, this disruption of the fractal

images causes an alteration in nucleotide variance and an increase in

lacunarity. Periodicity is described to be less dense, the system’s

complexity becomes altered, and the sequence becomes less organ-

ized. Although we do not have sufficient data for insertion

Fig. 6. Scatter diagram comparing both FD and lacunarity of wild-type MET with its mutant counterparts

Fig. 7. Genetic walks for wild-type ALK (A), EML4-ALK fusion variant A where the fusion mutation takes place at exon 13 of EML4 and exon 20 of ALK (B), variant

B of EML4-ALK fusion where the exon 20 of EML4 is fused with exon 20 of ALK (C) and Variant C of the fusion where codon 569 of EML4 is connected to codon

1078 of ALK (D). ALK is illustrated in red while EML4 is illustrated in black for the mutant walks. The introduction of EML4’s nucleotide sequence causes an in-

crease in overall linearity

Table 5. The fractal values for the DNA walks for three EML4-ALK

fusion variants in comparison to wild-type ALK

Gene Mutation Dimension Lacunarity

ALK Wild-type 1.4116 0.7007

ALK EML4-ALK fusion A 1.3776 0.6474

ALK EML4-ALK fusion B 1.339 0.6287

ALK EML4-ALK fusion C 1.3817 0.6395
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mutations, EGFR’s exon 20 insertion increases periodicity in the

walk. This increased periodicity indicates greater nucleotide vari-

ance within the mutated gene. Fusions, however, appear to make

one of the two wild-type systems involved less complex as it com-

bines one gene with less nucleotide variance (e.g. EML4 and KIF5B)

with another that appears to have a relatively higher nucleotide vari-

ance (e.g. MET and ALK). This change is indicated by a bifurcation

in the DNA walk of the mutated gene where, in one regime, it is

characterized by relatively high complexity and periodicity, while

the other demonstrates relatively high linearity and thus low com-

plexity. This visual cue in the DNA walks for proteins with fusion

mutations may indicate the existence of a change that is common

for such mutations.

EGFR mutations are indicated in approximately 20% of lung

adenocarcinoma cases (Dogan et al., 2012), with activating muta-

tions sensitive to TKI’s such as gefitinib and erlotinib comprising of

over 90% of these cases (Lynch et al., 2004). The most prevalent of

these TKI-sensitive mutations are the deletion mutations in exon 19

and the point mutation L858R in exon 21, with in-frame insertion

mutations in exon 20 also being noted (Dogan et al., 2012). EGFR

mutant lung cancers begin to develop resistance to first generation

TKI’s such as erlotinib through the acquired T790M point mutation

(Yu et al., 2014). With advancements in targeted medicine, the third

generation EGFR TKI osimertinib is introduced, indicating response

for cases with the T790M resistance mutation (Cross et al., 2014).

The variety of actionable mutations in EGFR is useful in analyzing

the chaotic behavior that exists in this gene. With further research in

such genes that exhibit a wide variety of sensitizing mutations in

cancers—from point mutations to deletions or insertion—such as

EGFR, we can determine how particular mutations affect the DNA

walks of these genes and possibly understand the set of mechanistic

changes that these mutations may have in common.

Dysregulation of MET through amplifications, overexpression

and somatic alterations have been indicated in NSCLC (Sattler and

Salgia, 2016), with a variety of somatic alterations in MET’s exon

14 being indicated as a therapeutic target (Frampton et al., 2015).

The exon 14 splice site alterations in MET, including point muta-

tions, deletions and insertion–deletion (indel) mutations, affect the

juxtamembrane domain and potentially lead to exon 14 skipping

(Cortot et al., 2017). MET’s diverse exon 14 splice site alterations

are useful in determining what the alterations with shared mechanis-

tic transformations may have in common in terms of chaos, as well

as potentially predicting whether an unknown somatic alteration in

MET’s 14th exon is capable of indicating exon 14 skipping.

ALK is notable for its translocation mutations in lung adenocar-

cinoma that can be targeted with therapy such as crizotinib and alec-

tinib (Costa et al., 2018). In particular, an inversion in the 2p

chromosome develops a fusion between the EML4 gene and ALK

genes (Li et al., 2014). Multiple variants of the EML4–ALK fusions

have been noted in primary lung cancers based on the EML4 exons

involved in the N-terminal half (Li et al., 2014). Analyzing EML4-

ALK fusion mutations through DNA walks allows us to determine

the shifts in its chaotic properties in order to predict mechanistic

changes shared among other fusion mutations—such as ROS1, BET

and ERG—that occur in cancer. Furthermore, analyzing the vari-

ance in the fusion locations may also provide insight on the biologic-

al nuances that exist with each mutation.

Limitations in the above mentioned quantitative analysis occur

for DNA walks for oncogenes with substitution mutations. The

changes these mutations have on the DNA walk’s fractal properties

cannot be fully appreciated through visual observation alone.

Although the paths of the EGFR DNA walks do not appear to vary

significantly, the changes in FD and lacunarity indicate that the de-

gree in which these point mutations change the fractal profile is

similar to that of deletion and insertion mutations. We may also see

a common shift in the fractal properties for the mutated KRAS

sequences; however, these quantitative shifts may not translate to a

noticeable change in the DNA walk visually. It is likely that action-

able point mutations in KRAS may develop changes in the system

Fig. 8. Scatter diagram comparing the FD and lacunarity of ALK with the three EML4-ALK fusion variants described in Figure 7

Table 6. The fractal values for the DNA walks of KRAS with muta-

tions in the 12th codon in comparison to wild-type KRAS

Gene Mutation Dimension Lacunarity

KRAS Wild-type 1.3244 0.5742

KRAS G12C 1.3278 0.5669

KRAS G12D 1.327 0.5692

KRAS G12V 1.3286 0.5668
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beyond the scope of this 2D analysis of DNA walks; therefore,

observing protein structure to determine changes in folding or bind-

ing site may be a more viable option to analyze a point mutation’s

demonstration of chaos. Interestingly, a biophysical study that inves-

tigated the effect of point mutations on the structure of KRAS

employing UV photodisassociation mass spectrometry (Cammarata

et al., 2016) revealed that different downstream effects occur due to

differences in the long-range conformational or dynamic effects spe-

cific to each point mutation. Similar conclusions were also found in

molecular dynamics simulations (Vatansever et al., 2016). Finally, it

may be worth pointing out that the short region of the C-terminal

region of KRAS (Residues 167–188/189, also called the hypervari-

able region) is intrinsically disordered in nature (Nussinov et al.,

2017), i.e. it lacks a rigid 3D structure and can exist as conform-

ational ensemble; hence, affording high flexibility. Thus, despite

lack of structure, intrinsic disorder in KRAS allows intramolecular

interactions spanning long distances, supports hinge motions, pro-

motes anchoring in membranes, permits segments to fulfill multiple

roles, and is crucial for activation mechanisms and intensified onco-

genic signaling (Nussinov et al., 2017). Such dynamic conformation-

al fluctuations may not be efficiently captured in random walks.

Furthermore, some proteins, though highly ordered, appear to reside

at the brink of thermodynamic stability; even subtle changes can tip

them to switch from one stable fold to another and there by acquire

new functional capabilities (Bryan and Orban, 2010; He et al.,

2012; Kulkarni et al., 2018). DNA walks may not be well suited to

capture these propensities either. Thus, integrating the aspects of

chaos from a change in nucleotide sequence with the disorder

observed in protein conformations can help outline various aspects

of noise in biological regulation.

Regardless of whether a mutated genetic walk favors order or

disorder, even a wild-type case is quite likely to exhibit sensitive de-

pendence to initial conditions. Multiple isoforms of a given gene

exist to regulate cellular function, sometimes even in a diametrically

opposite way (Preca et al., 2015). Thus, owing to inherent cellular

stochasticity, every cell is likely to have different levels of isoforms

of a given gene. Similarly, post-translational modifications may alter

the dynamics of a regulatory biochemical network. Hence, even a

wild-type gene cannot be expected to be converted into the same

DNA walk for every cell, just as a mutant gene with multiple iso-

forms like EGFR exon 20 insertions or EML4-ALK fusions should

not be considered equal. A single nucleotide change in the sequence

may potentially result in an arbitrarily different result based on its

fractal properties. An intron-containing DNA sequence has been

described to have a long-range dependence where the rate of decay

for the correlation of a dataset can indicated by the self-similarity

presented in the form of a DNA walk; however, this is not apparent

when observing the fractal walks of complementary DNA sequences

of a given gene (Peng et al., 1992a,b). This is especially true for sys-

tems that demonstrate low self-similarity and FD (He, 2018).

Understanding the differences in the fractal images generated by

walks along nucleotide sequences of wild-type genes will be useful

for cancer genomics. We are able to quickly determine the level of

base pair variation by analyzing the walk’s shape and lacunarity.

This information may lead to a deeper understanding of intrinsically

disordered proteins as well as switch fold proteins, as we use ma-

chine learning to recognize particular patterns in DNA walks that

may be associated with intrinsic disorder. Indeed, with �50% of the

human proteome estimated to encode IDP’s, and up to 4% of the

human proteome encode proteins that switch folds (Cammarata

et al., 2016; Nussinov et al., 2017; Porter and Looger (2018)

Vatansever et al., 2016), a more rigorous analysis of these sequences

using DNA walks may prove a worthwhile endeavor. With further

research on the clinical significance of the coding regions for each

gene, we may be able to determine how specific mutations affect

pathways controlled by these genes. Ultimately, this approach is

likely to provide the ability to generate a DNA walk of an oncogene

with an unknown mutation and accurately predict the impact on its

associated pathway, based on fractal analysis and observation of the

chaos in the walk. This predictive ability could potentially be used

to characterize drug responsiveness as well as potential mechanisms

of resistance.

Fig. 9. Scatter diagram comparing the FD and lacunarity of wild-type KRAS with G12C, G12D and G12V codon 12 mutations
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