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Abstract

Human noroviruses (HuNoVs) are increasingly becoming the main cause of transmissible gastroenteritis worldwide, with hun-
dreds of thousands of deaths recorded annually. Yet, decades after their discovery, there is still no effective treatment or 
vaccine. Efforts aimed at developing vaccines or treatment will benefit from a greater understanding of norovirus- host interac-
tions, including the host response to infection. In this review, we provide a concise overview of the evidence establishing the 
significance of type I and type III interferon (IFN) responses in the restriction of noroviruses. We also critically examine our 
current understanding of the molecular mechanisms of IFN induction in norovirus- infected cells, and outline the diverse strate-
gies deployed by noroviruses to supress and/or avoid host IFN responses. It is our hope that this review will facilitate further 
discussion and increase interest in this area.

INTRODUCTION
HuNoV is a highly prevalent pathogen, implicated in ~20 % 
of all cases of diarrhoea, causing about 677 million illnesses 
every year [1–3]. It spreads primarily via the faeco- oral route 
and infects people of all ages, although the incidence is higher 
in children [3, 4]. Worldwide, up to 200 000 deaths per year 
have been reported, with severity of symptoms increasing 
significantly in young children, the elderly, organ transplant 
recipients, and people that are immunocompromised [1, 3, 4]. 
An infectious dose as low as 18 virus particles is able to cause 
infection, and infected individuals frequently present with 
diarrhoea, vomiting, abdominal cramps, and occasionally 
fever [3–5]. There is currently no effective treatment or 
licensed vaccine against noroviruses, a situation not helped 
by our limited understanding of the biology of the virus.

As a result of the development of a number of culture systems 
for HuNoV and the identification of the murine norovirus 
model, significant progress has been made in describing the 
interactions between noroviruses and the host cell. Numerous 

cellular factors and pathways have been identified as playing 
critical roles in the intracellular life of noroviruses. In addi-
tion, the key role of the innate immune response in controlling 
norovirus infection has been uncovered. However, important 
questions are still being explored, including the nature of 
the IFN response elicited by HuNoV and to what degree 
components of the pathway control norovirus infections. 
In this review, we summarise our current understanding of 
the host IFN response against noroviruses, and the various 
described or proposed mechanisms utilised by HuNoV to 
evade or control the host innate response. We do not however 
discuss the interplay between the host interferon response 
and microbiota in regulating norovirus infections, as this 
has been recently comprehensively reviewed by Walker and 
Baldridge [6] and by Alwin and Karst [7].

Biology of noroviruses
Noroviruses are positive- sense single- stranded non- 
enveloped RNA viruses with poly- adenylated RNA genomes 
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ranging between 7.4–7.7 kb, encoding 3–4 open reading 
frames (ORFs) [5, 8, 9]. The norovirus genome contains a long 
5′ ORF that encodes a polyprotein that is processed into 6–7 
non- structural (NS) proteins by the viral protease, and host 
cell caspases in the case of MNV. A second ORF that encodes 
the major capsid protein VP1, and a short 3′ ORF that encodes 
the minor capsid protein VP2 are encoded by the 3′ half of the 
viral genome and are produced from a viral subgenomic RNA 
during viral infection [5, 10]. Murine norovirus (MNV) has a 
fourth ORF that overlaps the VP1 sequence and encodes an 
accessory protein called virulence factor 1 (VF1) [11]. Like 
those of picornaviruses, the genomes of noroviruses are cova-
lently linked to a small protein called viral protein genome- 
linked (VPg, NS5) at the 5′ end, involved in virus replication 
and unlike its picornavirus counterpart, is essential for viral 
translation [5, 8]. The NS1/2, NS3 (viral NTPase), and NS4 
proteins are thought to play central roles in the formation of 
viral replication complexes, the NS5 protein (VPg) mediates 
translation of viral proteins, and the NS6 and NS7 proteins 
are the viral protease and RNA- dependent RNA polymerase 
(RdRp), respectively [9, 12]. The VP1 protein forms the bulk 
of the icosahedral viral capsid, being arranged in 90 dimers. In 
addition to representing a minor component of the capsid [5] 
that, based on work with the closely related feline calicivirus, 
may form a pore for viral genome entry [13], the VP2 protein 
has also been implicated in the regulation of host adaptive 
immune responses by manipulating the surface expression of 
proteins required for antigen presentation in a strain- specific 
manner [14, 15].

Due to the absence of a robust cell culture system to grow 
HuNoV in the past, much of what is known about norovirus 
replication came from studies on closely related viruses 
including MNV [9, 16]. Cell entry during an infection 
with noroviruses is thought to occur by receptor- mediated 
dynamin II- and cholesterol- dependent endocytosis, followed 
by uncoating to release the VPg- linked viral genome into 
the cytosol [5, 17]. Translation of the viral genome occurs 
in a VPg- dependent manner, and the viral polyprotein is 
then cleaved into mature non- structural proteins [16]. The 
non- structural proteins recruit host membranes to form 
peri- nuclear replication complexes, and the viral RdRp uses 
VPg as a protein primer for genome replication, although 
some RNA synthesis can also occur de novo [16]. The current 
model for viral replication suggests that de novo transcrip-
tion by the RdRp produces a negative- strand RNA that serves 
as a template for both the genomic RNA and a VPg- linked 
subgenomic RNA that encodes the VP1 and VP2 proteins 
(and VF1 in MNV). Infected cells subsequently undergo 
apoptosis to release mature virions although recent evidence 
would also implicate other non- lytic processes in the release 
of noroviruses [18].

Both acute and persistent strains of MNV were shown to 
be able to infect macrophages and dendritic cells in vitro 
early on after their discovery, although their in vivo tropism 
was not known at the time [9, 19]. The recent description 
of the proteinaceous receptor for MNV [20, 21], coupled 
with advances in in situ hybridisation assays allowed for 

the subsequent discovery of the in vivo tropism of MNV to 
myeloid cells, lymphocytes and tuft cells [22–24]. HuNoV 
was recently shown to infect a B- cell cell line (BJABs) and 
the enterocyte component of the human intestinal enteroids 
in vitro [25–27]. HuNoV in vivo tropism is however not clear, 
although viral antigens have been detected in the intestinal 
epithelial cells (IECs) of infected gnotobiotic pigs, lamina 
propria of a biopsy sample from an infected person, and 
dendritic cells of an infected chimpanzee (reviewed by Karst 
et al. [9]).

Innate immune recognition of noroviruses in 
infected hosts
Innate immunity encompasses an elaborate system of physical 
and chemical barriers, secreted and membrane proteins, as 
well as a myriad of effector cells that provide rapid non- 
specific protection from an invading pathogen. The IFN 
response pathway is a central component of this system, 
and begins with detection of pathogen- associated molecular 
patterns (PAMPs) by a diverse network of host receptors, 
leading to production of IFNs and generation of an antiviral 
state in affected cells (reviewed by Ingle et al. [28], Ivashkiv 
and Donlin [29], Lazear et al. [30], and Hoffmann et al. [31]). 
IFNs induce expression of IFN- stimulated genes (ISGs) 
that facilitate the resistance of host cells to viruses, activate 
immune cells recruited to the sites of infection and upregulate 
factors required for activation of adaptive immunity, all of 
which makes them critical in the control of viral infections 
(reviewed by Schneider et al. [32], and Schoggins [33]). For 
this reason, and on account of the co- evolution of hosts and 
pathogens, any virus that is able to infect a host is also likely 
to have evolved mechanisms of counteracting IFN responses 
[31, 34].

The retinoic acid- inducible gene 1 (RIG- I)- like receptors, 
RIG- I and myeloma differentiation- associated protein 5 
(MDA5), are implicated in the detection of the presence of 
most RNA viruses in an infected host cell (recently reviewed 
by Rehwinkel and Gack [35] and by Carty et al. [36]). These 
pattern recognition receptors (PRRs) typically sense viral 
replication intermediates in the cytoplasm. RIG- I is thought to 
sense uncapped 5′-tri- and di- phosphorylated single- stranded 
or short double- stranded RNA, while MDA5 detects longer 
double- stranded RNA, all typically seen in viral genomes 
or present as viral replication intermediates [35–39]. Other 
PRRs that can detect RNA viruses include toll- like receptors 
(TLRs) such as TLR2 (detects viral capsids at cell surfaces 
[36, 40]), TLR3 (detects dsRNA [36, 41]), and TLR7/8 (detect 
ssRNA in endosomes [36, 41]), as well as nucleotide- binding 
oligomerisation domain (NOD)- like receptors such as NLRP6 
(detects cytosolic dsRNA [42]). Recently, the DNA receptor 
cyclic GMP- AMP synthase (cGAS) was shown to detect 
leaked mitochondrial DNA potentially resulting from either 
mitochondrial damage from membrane recruitment [43, 44] 
or mitochondrial leakage downstream of IL- 1β signalling [45] 
in RNA virus- infected cells. Activation of these PRRs leads 
to recruitment of adapter proteins, activation of downstream 
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kinases and transcription factors, and eventually expression 
of IFNs.

MDA5 was shown to play a central role in the innate immune 
response to both acute and persistent strains of MNV (Fig. 1) 
[46, 47]. Near- baseline levels of IFN-α were seen in bone 
marrow- derived dendritic cells (BMDCs) from MDA5- 
deficient (Ifih1-/-) mice following infection with an acute strain 
of MNV (CW3) compared to the wild- type, with a significant 
increase in viral titres seen in the spleen, mesenteric lymph 
nodes (MLN) and proximal intestines. The role of MDA5 
in restricting MNV replication was shown to be limited to 

the IFN response pathway, as similar levels of viral inhibi-
tion were obtained from wild- type and Ifih1-/- cells following 
pre- treatment with IFN-α. Surprisingly, while higher viral 
titres were seen in Ifih1-/- mice infected with a persistent strain 
of MNV (CR6) compared to wild- type mice, there was no 
difference in wild- type and Ifih1-/- BMDCs [47]. The authors 
speculate that the inability of BMDCs to sense type III IFNs 
could account for this disparity. Given that the evidence for 
the inability of mouse BMDCs to respond to type III IFNs is 
conflicting [48–50], it could also indicate a strain- specific role 
for other PRRs. Indeed, the increase in viral titres observed 

Fig. 1. Mechanism of IFN induction in norovirus- infected cells. Pathogen- associated molecular patterns (PAMPs), generated from virus 
replication, are thought to be detected by MDA5 and NLRP6, leading to activation of MAVS at mitochondria and peroxisomes. Activated 
MAVS in turn activates downstream kinases, TBK1 and IKKε, which recruit and phosphorylate IRF3 and IRF7. This results in their 
dimerization and translocation into the nucleus, where they induce expression of type I and type III interferons. The interferons produced 
are then released to act on cells in an autocrine and paracrine manner. Although clear experimental evidence is lacking, it is likely that 
additional pattern recognition receptors, such as RIG- I, cGAS and/or others, contribute to the sensing of norovirus PAMPs. For example, 
RIG- I is able to detect transcripts generated by the norovirus polymerase when over- expressed in cells, and cGAS can sense leaked 
mitochondrial DNA that results from IL- 1β signalling.
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in MDA5 knockout mice and BMDCs infected with acute 
strains of MNV are only moderate compared to those seen 
in Stat1 knockout mice and cells, respectively. Additionally, 
infection in MDA5 knockout mice is not lethal, in contrast to 
that in Stat1 knockout mice [46, 51], further suggesting the 
presence of other receptors that contribute to the restriction 
of viral replication (reviewed by Karst [52]).

NLRP6 was also shown to contribute to cytosolic detection 
of MNV, likely in a manner dependent on the RNA helicase 
DHX15 [42]. Increased – though modest – viral titres were 
obtained in intestinal epithelial cells, spleen and faeces from 
Nlrp6-/- mice compared to wild- type mice, with faecal shed-
ding persisting beyond 8 days post- infection. In this context, 
NLRP6 acts like a typical RIG- I- like receptor, interacting with 
MAVS, and using DHX15 as a co- receptor [53]. The authors 
demonstrated an inverse relationship in the expression of 
MDA5 and NLRP6 in intestinal epithelial cells and myeloid 
cells in the gut, with higher levels of MDA5 in myeloid cells 
and NLRP6 in intestinal epithelial cells, and posit that NLRP6 
likely complements MDA5 detection of viruses in epithelial 
cells.

TLR3, TLR7, and presumably TLR8 (via Myd88) do not 
appear to play any role in IFN responses to noroviruses in 
vitro, although a marginal increase in viral titres was observed 
in the MLNs of Tlr3-/- mice [46, 47]. Interestingly, no study 
published to date has examined MNV infection in RIG- I- 
deficient (Ddx58-/-) cells. It was previously shown that RIG- I, 
like MDA5, can detect RNA transcripts made by the MNV 
polymerase when over- expressed in HEK293T and Huh- 7 
cells [54]. However, in a recent study looking at RIG- I inhibi-
tion by a bacterial quorum- sensing molecule, it was shown 
that while treating cells with the molecule led to a moderate 
increase in SeV titres in HEK293T cells, it did not appear 
to affect MNV titres in RAW264.7 cells [55]. It is not clear 
whether there was any effect on IFN induction by the MNV 
infection or if the dose of the inhibitor used was sufficient 
in these experiments. Also, no statistically significant differ-
ence was observed in viral replication following transfection 
of HuNoV RNA in Huh- 7 and the RIG- I- deficient Huh- 7.5 
cells, although norovirus replication in these cell lines did 
not induce an IFN response [56, 57]. In contrast, HuNoV 
replication in human gastric tumour cells does result in IFN 
activation and long- term maintenance of a HuNoV replicon 
requires the suppression of type III interferon responses [58]. 
Whether RIG- I contributes to restriction of noroviruses is 
therefore still unclear.

The phenotypic differences between MNV- infected MDA5 
and STAT1 knockout cells are unlikely to be explained 
solely by the contribution of NLRP6 in norovirus detec-
tion, indicating a potential role for other receptors. While 
the presence of VPg was always thought to protect the viral 
genome from RIG- I sensing [46, 59], there is currently 
insufficient experimental evidence to rule it out as a sensor 
of noroviruses. Moreover, recent studies on picornaviruses 
and on the Tulane virus show that RIG- I can still detect 
viruses that have VPg- linked RNA genomes [60–63]. Other 

PRRs can also potentially participate in the recognition of 
noroviruses, including the DNA sensor cGAS for example, 
which was recently shown to indirectly recognise infection 
with dengue viruses by sensing leaked mitochondrial DNA 
[43, 45]. The release of mitochondrial DNA into the cytosol 
was shown to occur downstream of IL- 1β [45], a proin-
flammatory cytokine abundantly secreted by MNV- infected 
cells [64]. While this pathway may not be activated in cells 
infected with many other RNA viruses [65], whether it is 
activated in norovirus- infected cells remains to be explored. 
A recent study also suggested that TLR2, a capsid- sensing 
PRR [40] expressed on cell surfaces, can bind HuNoV 
virus- like particles [66], although it is not clear if this 
interaction leads to an IFN response. These examples and 
others highlight the need for more work in this area.

Downstream of the PRRs, MAVS, IRF3 and IRF7 have 
all been shown to play important roles in induction of 
IFN following infection with MNV [47, 67, 68]. HOIL1 
(Heme- oxidized IRP2 ubiquitin ligase 1), a component of 
the linear ubiquitin assembly complex (LUBAC), was also 
recently shown to contribute to IFN induction in MNV- 
infected mice, and the authors speculated that it likely acts 
downstream of MDA5 [47]. Like in MDA5- deficient mice, 
HOIL1- deficient (Rbck1-/-) mice infected with a persistent 
strain of MNV (CR6) had higher viral titres in the stool, 
colon, ileum and MLN, and no difference in viral titres 
in BMDMs despite a significant reduction in IFN induc-
tion. However, direct mechanistic evidence connecting 
MDA5 and HOIL1 remains to be uncovered, and the 
levels of SHARPIN (SHANK- associated RH31 domain- 
interacting protein) were also consistently reduced in the 
cells used indicating possible alternative explanations for 
the phenotypes observed. Moreover, the LUBAC complex 
has previously been shown to inhibit RLR signalling, while 
also activating NEMO and promoting IRF3- dependent 
apoptosis [69–71]. Nevertheless, these studies indicate a 
complex role for linear ubiquitination in controlling infec-
tions with RNA viruses and more work is thus required to 
understand it.

Potential ligands detected in norovirus-infected 
cells
Work on optimising vaccine strategies targeting norovi-
ruses may benefit from knowledge of specific PAMPs that 
can be included as adjuvants. However, there is currently 
a lack of data regarding the precise PAMPs detected in 
norovirus- infected cells. The MNV genome is released 
into the cytosol less than an hour post- infection [5] and 
IFN transcripts are upregulated as early as 4 hours after 
infection [72]. While it is possible that the genomes from 
incoming viruses are detected by sensors such as MDA5 
in the cytosol, this is unlikely as proteinase K treatment 
prior to transfection of viral RNA or gamma irradiation 
pre- infection abrogates IFN induction [46], suggesting 
that viral replication is required for the generation of the 
norovirus PAMPs detected by the PRRs (Fig. 2). This is also 
true for HuNoV [73] and is similar to other RNA viruses 
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such as influenza A virus, vesicular stomatitis virus, and 
Semliki Forest virus [74–76].

The most likely candidate MDA5 ligand includes the 
double- stranded RNA intermediate composed of the VPg- 
linked positive- strand RNA and the de novo- synthesized 
negative- strand RNA [16]. Additionally, it has been shown 
that the MNV polymerase can transcribe RNA species 
that are detected by both MDA5 and RIG- I, but not TLR3 
[54, 77], thus single- stranded negative sense RNA inter-
mediates produced during replication and which likely 
lack VPg linkage, could therefore be potential ligands for 
RIG- I. MDA5, and perhaps RIG- I, may also recognise RNA 
species transcribed by the viral polymerase from host RNA 
templates as demonstrated in Semliki Forest Virus- infected 
cells – an Alphavirus that has a positive- sense single- 
stranded RNA viral genome akin to noroviruses [78]. And 

lastly, it is possible that MDA5 or RIG- I can detect RNA 
fragments produced by RNAse L digestion of host and viral 
RNA in norovirus- infected cells, as was shown for other 
RNA viruses [79–82], especially in light of previous work 
that indicated a potential role for RNAse L in restricting 
MNV replication in an IFN-γ-dependent manner [83].

IFN induction and release during norovirus 
infections
Consistent induction of type I and type III IFNs is seen 
following infection with MNV both in vivo and in vitro 
(Table 1) [46, 47, 72, 84–86]. In mice, IFN-β is detected in 
intestinal homogenates as early as 12 h following per- oral 
inoculation, and in the serum within 24 h of infection [86]. 
In vitro, while an increase in transcripts is seen early during 
infection, IFN release appears to be temporally different in 

Fig. 2. Possible PAMPs detected in norovirus- infected cells. Replication of noroviruses in the host cell likely generates PAMPs detected 
by intracellular PRRs. Although the identities of these PAMPs are yet to be determined, it is possible they include the double- stranded 
RNA intermediate composed of the VPg- linked positive- strand RNA and the de novo- synthesized negative- strand RNA, which may be 
detected by MDA5 (1). Single- stranded negative sense RNA intermediates that are likely not VPg- linked, produced during replication, 
could also be potential ligands for other host PRRs such as RIG- I (2). Additionally, MDA5, and perhaps RIG- I, may recognise RNA species 
transcribed by the viral polymerase from host RNA templates (3). And lastly, it is possible that MDA5 or RIG- I can detect RNA fragments 
produced by RNAse L digestion of host and viral RNA in norovirus- infected cells (4).
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cell lines compared to primary cells, with IFN-β secretion 
seen within 4 h of infection in BMDMs, and 20 h in the 
RAW264.7 macrophage cell line [72]. This unexplained delay 
in IFN release is potentially responsible for the higher viral 
titres seen in macrophage cell lines compared to primary 
macrophages and dendritic cells [72].

There also appears to be a strain- specific difference in IFN-β 
induction following MNV infection in vitro, even in the 
absence of differences in growth kinetics. The persistent S99 
strain, for example, elicits a significantly attenuated induction 
compared to the acute MNV1.CW3 virus [87], and the persis-
tent MNV3 induces considerably higher levels compared to 
the acute MNV1.CW1 [88]. A variant of MNV3 that does 
not persist also showed higher IFN-β secretion compared 
to MNV1.CW3 [14]. Interestingly, while both the persistent 
CR6 and the acute CW3 MNV strains induce type I IFNs in 
primary cells [46, 47], CR6 does not induce type I or type 
III IFNs in infected mice [89]. Taken together, these studies 
suggest that infection with MNV perhaps triggers a differ-
ential strain- specific, and possibly cell type- specific, IFN 
response.

In contrast to MNV, the nature of the IFN response in HuNoV- 
infected host cells has been an open question for decades 
(Table 1). In early experiments, cell culture supernatant from 
poly (I:C)- transfected cells was able to inhibit replication of 
HuNoV in Huh- 7 cells, but not that from norovirus RNA- 
transfected cells [57], suggesting that transfection of HuNoV 
RNA into cells does not induce IFNs. Similar results were 
obtained in 293FT cells, where there was no IFN induction 
following transfection of HuNoV RNA compared to control 
RNA [90]. Infection with Sendai virus (SeV) or secondary 
transfection of poly (I:C) in these norovirus RNA- transfected 

293FT cells led to a robust induction of IFN-β, indicating that 
replication of HuNoV did not interfere with the IFN response 
pathway itself. Additionally, siRNA depletion of MAVS and 
IRF3, proteins mediating central roles in the IFN induction 
pathway, did not affect viral replication, further suggesting 
lack of innate immune detection of human noroviral presence 
in these cells. This contrasts with data from human studies 
where serum levels of IFN-α2, IFN-γ and other cytokines 
were increased following infection with HuNoV [91, 92]. It 
also contrasts with work in gnotobiotic pigs, where an increase 
in IFN-α and IFN-γ were seen as early as 24–48 h after infec-
tion, with a second peak for IFN-α seen after 10 days in the 
serum and gut of infected animals [93]. Moreover, more 
recent studies by our group and others suggest a considerable 
role for endogenous IFNs in controlling replication in human 
intestinal organoids and in a HuNoV replicon- containing cell 
line [58, 73, 94]. One caveat with the earlier in vitro experi-
ments is that in both the Huh- 7 and 293FT studies, purified 
RNA was used from stools of norovirus- infected humans 
which may contain other contaminating RNA. Also, levels 
of viral replication seen in this system is very low, with less 
than 0.1 % of cells in a transfected culture showing evidence 
of replication. Nevertheless, these preliminary studies hith-
erto offered the only available accounts of IFN responses to 
HuNoV in cell lines, or their lack thereof, in the absence of a 
robust culture system, and highlight the need for more work 
in this area.

Emerging evidence from in vitro studies performed in 
human intestinal organoids suggest that HuNoV infection 
induces abundant expression of type III IFNs, but almost 
no type I [73, 95]. Given that human challenge studies have 
shown expression of type I IFNs during infection [91], this 

Table 1. Do noroviruses induce interferons?

s/n Virus Model system IFN induction IFN subtype References

1. MNV Mice Yes IFN-β, IFN-ʎ [47, 86, 89, 97]

BMDMs Yes IFN-β [72]

BMDCs Yes IFN-α, IFN-β, IFN-ʎ [46, 47, 89]

ER- HoxB8 DCs Yes IFN-β, IFN-ʎ [47]

RAW264.7 Yes IFN-β [11, 72]

M2C- CD300lf Yes IFN-α, IFN-β, IFN-ʎ [23]

2. HuNoV Human volunteers Yes IFN-α, IFN-γ [91]

Gnotobiotic pigs Yes IFN-α, IFN-γ [93]

Gnotobiotic calves Yes IFN-γ [131]

Zebra fish Yes Not specified [132]

Organoids Yes IFN-ʎ [73, 94, 95]

Huh7 Unlikely Not specified [57]

HEK293FT No Not specified [90]

HGT- NV Likely Not specified [58]
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preferential induction of type III IFNs is possibly an artefact 
of the organoid model, for a number of reasons. First, all the 
recent data showing preferential expression of type III IFNs 
following HuNoV infection came from three organoid lines 
only [73, 95], and although unlikely, whatever phenotype is 
demonstrated could be an idiosyncrasy of these particular 
lines. Secondly, intestinal epithelial cells, the primary targets 
of HuNoV in organoids, do preferentially express type III 
IFNs on account of their abundance of peroxisomes [96], and 
indeed organoids infected with HuNoV produced type I IFNs 
at fairly similar levels as those treated with poly (I:C) [73]. 
Thirdly, intestinal organoids used for infection with HuNoV 
are typically differentiated into monolayers of cells that are a 
heterogenous population [27, 73] of which the enterocytes 
are the primary cell type in the culture that are susceptible to 
infection [27]. It is thus possible that a marginal, but poten-
tially potent, type I IFN expression in infected cells is masked 
by its lack thereof in the non- susceptible population of cells in 
the culture. This hypothesis is in keeping with the consider-
able increase in viral titres seen in type I IFN receptor- deleted 
organoid lines compared to wild- type lines [73]. Therefore, 
while these early data from organoids are illuminating, the 
picture is still far from complete.

Restriction of norovirus replication by IFNs
Data from both in vivo and in vitro studies have established 
the capacity of IFNs to restrict replication of MNV. First, 
MNV infection in wild- type mice is largely asymptomatic, 
in contrast to Stat1-/- or types I and II IFN receptors- deficient 
(IFNαβγR-/-) mice, in which infection is accompanied by 
a considerable increase in viral RNA and causes severe 
symptoms, significant multi- organ pathology, and death in 
all infected mice within 2 weeks of infection [51, 86]. This 
increased susceptibility in IFNαβγR-/- mice can be reversed by 
introduction of an IFN-λ-expressing plasmid [97]. Selective 
knockout of Ifnar1 in dendritic cells also allows an otherwise 
acute strain of MNV (CW3) to persist, despite the presence 
of a functional adaptive immune system [98]. Secondly, 
treatment of MNV- infected cells with recombinant IFN-β or 
IFN-λ inhibits viral replication [23, 83, 99]. Similarly, TLR7 
agonists and interferogenic plant extracts (Schizonepeta 
tenuifolia Briquet) significantly inhibit MNV replication by 
promoting IFN induction [100, 101]. In vivo experiments in 
mice showed a context- dependent differential requirement of 
IFN subtypes in which type I IFNs protect against systemic 
spread via immune cells while type III IFNs restrict enteric 
persistence [89].

While there are no data on the restriction of HuNoV repli-
cation by IFNs in human subjects, infected gnotobiotic pigs 
showed decreased faecal shedding following treatment with 
IFN-α [102]. We have also observed that long- term repli-
cation of a HuNoV replicon in intestinal epithelial cells is 
accompanied by the epigenetic suppression of the IFN- 
lambda receptor expression [58]. We hypothesise that this 
is not an active process induced by HuNoV replication, but 
rather occurred spontaneously in culture, and is more likely 
a reflection of a selective advantage that cells with reduced 

IFN receptor expression have. In such an example, cells with 
the reduced type III IFN receptor would respond less well to 
type III IFN induced in the culture, allowing higher levels 
of replicon to accumulate, resulting in greater resistance 
to the antibiotic used to select for the maintenance of the 
replicon in the cells. Additionally, our group and others have 
demonstrated that treatment of HuNoV replicon- harbouring 
HG23 cells or human intestinal organoids with different IFN 
sub- types also results in a reduction in viral genomes in a 
dose dependent- manner [73, 94, 103–105], and treatment of 
Huh- 7 cells with cell culture supernatant from poly (I:C)- 
transfected cells inhibited replication of HuNoV RNA [57]. 
Overall, these studies show the capacity of IFNs to inhibit 
replication of HuNoV, as it does MNV.

The specific ISGs responsible for inhibiting norovirus replica-
tion are not all known. Pre- treatment of cells with recom-
binant IFN-β or IFN-γ was shown to inhibit translation of 
MNV proteins without affecting viral genome integrity [83]. 
This inhibition was shown to be independent of PKR and 
RNAse L for the IFN-β-pre- treated cells, but not in IFN-γ-
pre- treated cells, indicating the presence of another ISG(s) 
that inhibits viral translation. Several ISGs have since been 
shown to generally inhibit translation of viral proteins via 
disparate mechanisms (reviewed by Li et al. [106]), but their 
functions have not been looked at in the context of a norovirus 
infection. ISG15 is among the few ISGs clearly implicated 
in restricting norovirus replication. Higher viral titres were 
obtained from IFN-α-treated IS15- deficient bone marrow- 
derived macrophages (BMDMs) compared to wild- type cells, 
indicating a role for ISG15 in IFN- dependent control of MNV 
replication [99]. This function was shown to be at the level of 
viral entry or uncoating, as replication in MEFs transfected 
with the MNV RNA was not affected by the absence of ISG15. 
A recent study, using a CRISPR activation screen in a human 
cell line to look for host restriction factors of MNV, demon-
strated antiviral activities of a number of ISGs on MNV 
infection, including MX1 and TRIM7, although using cell 
survival as the primary readout in the study likely precluded 
the numerous ISGs that themselves mediate cell death [107]. 
Other ISGs shown to counteract norovirus replication are 
mostly involved in the IFN response and antigen presentation 
pathways, and include NLRP6, IRF1, IRF7, IFN-λs, STAT1, 
IFIT1, MHCII, and β2M [68, 108]. It should be noted that 
MNV has been shown to inhibit ISG translation through 
different independent mechanisms [84], leading to very low 
ISG levels in infected cells [84, 99].

Counteraction of IFN responses by noroviruses
As our understanding of innate sensing and restriction of 
norovirus infections has grown, so too has our knowledge 
of the wide range of strategies the viruses use to evade 
immune responses (Fig. 3, Table 2). The VF1 protein is the 
first norovirus protein shown to antagonize the IFN response 
[11, 14, 88]. It is a small 213- amino acid protein encoded by an 
alternate open reading frame overlapping the VP1 sequence. 
It is a mitochondrial protein, present only in MNV, and is 
not encoded by HuNoV [11, 88]. When RAW264.7 cells are 
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infected with MNV1 M1, a VF1- deleted mutant, they show 
an increased induction of IFN-β and an impaired ability to 
activate apoptotic pathways compared to those infected with 
the wild- type virus [11]. Deletion of VF1 exacts a fitness cost 
on the virus in RAW264.7 cells and the M1 mutant reverted 
to wild- type virus after three passages. Although the mecha-
nism is not clear, VF1 inhibited IFN induction after over- 
expression of RIG- I, MDA5, MAVS, and TBK1, indicating 
that it likely acts downstream of TBK1 activation [11, 14]. 
Mice infected with MNV1 M1 show decreased viral titres on 
days 3 and 5 in all tissues tested, including MLNs, spleen, liver, 
kidney, intestine, heart, lung and faeces, compared to those 
infected with the wild- type virus [11]. Taken together, these 

findings demonstrate a clear strategy by MNV to counteract 
IFN responses through expression of an accessory protein, 
although the exact mechanism and target of this action have 
not been determined.

Although the mechanism still remains to be fully elucidated, 
the MNV NS1 protein mediates persistence of the CR6 strain 
of MNV in Tuft cells, a subset of mouse IECs [23, 24, 109–111], 
and may therefore also contribute to the avoidance or control 
of the innate immune response. Replacing the CR6 NS1 with 
that of CW3, the acute strain, led to clearance of the persistent 
virus, while replacing the CW3 NS1 with that of CR6 led to 
persistence of the acute strain in IECs [23]. Furthermore, 

Fig. 3. Evasion of IFN responses by noroviruses. Several strategies have been demonstrated or proposed through which noroviruses 
counteract the different stages of the host IFN response. (1) Avoidance of detection: certain strains of mouse and human noroviruses 
appear to induce very low levels of IFNs in infected cells, possibly by avoiding detection of viral ligands by host receptors, through yet 
unknown mechanisms. (2) Impairment of PRR functions: the NS3 protein may inhibit IFN induction by redistributing host GEF- H1, thus 
perhaps impeding the functions of host receptors of viral ligands. (3) Inhibition of the signalling cascade: the VF1 accessory protein inhibits 
IFN induction downstream of TBK1, through a yet unknown mechanism. (4) Obstruction of IFN release: the NS1/2 and NS4 proteins 
promote Golgi disassembly and disruption of ER- Golgi trafficking, thereby potentially impairing cellular secretory pathways utilized 
for release of IFNs. Other unknown factors in some strains of norovirus may also impair IFN release. (5) Disruption of IFN signalling 
and the antiviral state: the NS1 protein mediates persistence in type I IFN- resistant IECs and neutralises type III IFN signalling. The NS6 
protein cleaves PABP and the VPg and/or NS3 proteins sequester G3BP1 in replication complexes, thereby potentially contributing to 
the impairment of translation of ISGs.
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the CR6 virus expressing CW3 NS1 was shown to persist in 
the absence of the IFNLRα [22]. While the IECs express the 
IFNLRα and respond readily to type III IFNs, they show a 
minimal response to type I IFNs [112], and persistence in 
them therefore allows for escape from type I IFN responses. 
Additionally, infection with the CR6 strain impairs expression 
of type III IFN- dependent genes in a manner dependent on 
NS1 [113], indicating potential neutralisation of type III IFN 
responses by the CR6 NS1.

Very low levels of ISG proteins are seen in MNV- infected cells 
[84, 99], as the virus inhibits ISG translation via disparate 
mechanisms. First, the viral protease was shown to cause 
cleavage of poly A- binding protein PABP, required for cap- 
dependent, but not VPg- dependent, translation [84, 114]. 
Cleavage occurs at position Q440 of PABP and allows for 
a disruption of host translation while translation of viral 
proteins occurs unimpeded. Secondly, MNV infection trig-
gers apoptosis and caspase- dependent cleavage of eIF4E and 
other translation initiation factors [84]. While the specific role 
of eIF4E in the replication of MNV is not clear, its depletion 
affects cap- dependent translation of host proteins, but does 
not seem to affect translation of viral proteins [115, 116]. In 
addition, our group and others recently showed that Ras- 
GTPase activating SH3 domain binding protein 1 (G3BP1), 
a stress granule assembly factor, is sequestered within viral 
replication complexes in MNV- infected cells [117–119], likely 
via an interaction with the viral NS3 [119] or VPg [118]. 
G3BP1 is important for translation of ISGs in virus- infected 

cells [120–122], and its depletion from the cytosol potentially 
further impairs the ability of the cells to establish the antiviral 
state.

Other strategies deployed by noroviruses to evade IFN 
responses have been proposed. First, the HuNoV non- 
structural proteins NS1/2 (p48) and NS4 (p22) were implicated 
in Golgi disassembly and disruption of ER- Golgi trafficking 
of cellular proteins and thereby potentially impairing cellular 
secretory pathways utilized for release of IFNs [123–127] 
(reviewed by Roth and Karst [128]). The mechanism for this 
activity is still under investigation, and its direct effect on 
IFN responses in the context of a viral infection remains to 
be tested [128]. Secondly, considering that no evidence of IFN 
induction was observed in Huh- 7 and 293FT cells harbouring 
HuNoV RNA, it has been suggested that the viral genomes 
could be sequestered within replication complexes and away 
from the RLRs [57, 90]. This is however becoming increas-
ingly uncertain since this observation was made in culture 
systems where replication occurs in only a tiny fraction of 
cells in the culture, and contrasts with data from other models 
of norovirus infection. Thirdly, guanine nucleotide exchange 
factor- H1 (GEF- H1) was recently shown to promote IFN 
induction downstream of RIG- I and MDA- 5 [129]. Although 
depletion of GEF- H1 using siRNA did not affect IFN levels or 
viral titres following MNV infection, its intracellular distribu-
tion was changed in cells expressing MNV NS3 and it was 
found to localise to the viral replication complex in infected 
cells, suggesting that the NS3 protein could be interfering with 

Table 2. Antagonism of host IFN responses by noroviruses

s/n Protein Virus Mechanism Outcome References

1. NS1 MNV.CR6 Unknown Mediates persistence in type I 
IFN- resistant IECs

[23, 113, 133]

2. NS1 MNV.CR6 Unknown Neutralises type III IFN 
signalling in IECs

[23, 113]

3. NS1/2 and NS4 HuNoV GI.1, HuNoV GII.3, 
HuNoV GII.4, HuNoV GII.6, 

MNV1.CW3, MNV.CR6

Golgi disassembly and 
disruption of ER- Golgi 

trafficking

May impair cellular secretory 
pathways utilized for release 

of IFNs

[123–127]

4. NS3 MNV1.CW1 Intracellular redistribution of 
GEF- H1

May prevent potential 
detection of viral PAMPs by 

GEF- H1

[130]

5. NS3 or VPg MNV1.CW1 Sequestration of G3BP1 and 
G3BP2 inside replication 

complexes

May further impair translation 
of ISGs

[117–119]

6. NS6 MNV1.CW1 PABP cleavage Inhibits translation of ISGs [84]

7. NS7 MNV1.CW1 GBP2 binding Inhibits type II IFN- dependent 
antiviral responses

[134]

8. VF1 MNV1.CW1, MNV3 Unknown Inhibits type I IFN induction [11, 14, 88]

9. Activated caspases MNV1.CW1 eIF4E cleavage Inhibits translation of ISGs [84]

10. Unknown HuNoV GI.1 Possible sequestration of viral 
genomes within replication 

complexes

Likely prevents detection of 
viral PAMPs

[90]

11. Unknown MNV.S99 Unknown Attenuated type I IFN release [87]
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IFN induction by targeting the protein [130]. And lastly, the 
persistent S99 strain of MNV displayed a significantly attenu-
ated IFN response in a mouse macrophage cell line compared 
to the CW3 strain, despite sharing similar growth kinetics, 
suggesting the presence of a yet unknown strain- specific IFN 
response evasion mechanism [87]. Further work is warranted 
to confirm these, and other potential strategies employed by 
noroviruses to evade IFN responses.

Concluding remarks and future perspectives
The IFN response is the first line of defence against viruses, 
including noroviruses, and is a major determinant of infec-
tion. Despite significant progress in the past towards under-
standing this host response to noroviruses, many questions 
still remain. For instance, while MDA5 has been established 
as a bona fide PRR in MNV- infected cells, the contribution 
of other PRR is expected but yet undefined, considering that 
the increase in viral titres seen after STAT1 depletion are 
considerably higher than that seen after MDA5 depletion. 
Current available data provide support for other receptors 
such as RIG- I, and warrant future examination of their roles 
in norovirus restriction and of the cognate PAMPs recognised 
during infection with noroviruses. Additionally, although 
regulation of IFN responses by the NS1 and VF1 proteins, 
among others, have been demonstrated, the mechanisms 
by which they effect this are still unclear. Future studies are 
needed to further understand the function of these viral 
proteins in subverting IFN signalling, as well as other poten-
tial strategies deployed by noroviruses to evade host innate 
immune responses.

IFN responses constitute a key component of the antiviral 
arsenal of an infected host. A significant limitation in studying 
host responses against HuNoV has been the lack of a robust 
cell culture system. It is expected that recent advances in in 
vitro culture of HuNoV will allow us to answer the questions 
raised here and many others regarding the biology and patho-
genesis of norovirus infections in humans. Future research 
focussing on understanding the molecular mechanism and 
regulation of IFN responses to HuNoV will in turn also likely 
facilitate further improvements on the current available 
culture systems for the virus.
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