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ABSTRACT

The 2015 Dietary Guidelines for Americans recommend limiting the intake of saturated fatty acids (SFAs) to <10% of energy/d and replacing
dietary SFAs with unsaturated fatty acids. A Presidential Advisory from the American Heart Association recently released its evaluation of the
relation between dietary fats and cardiovascular disease (CVD), and also recommended a shift from SFAs to unsaturated fatty acids, especially
polyunsaturated fatty acids (PUFAs), in conjunction with a healthy dietary pattern. However, the suggestion to increase the intake of PUFAs in
general, and omega-6 (n–6) PUFAs in particular, continues to be controversial. This review was undertaken to provide an overview of the evidence
and controversies regarding the effects of ω-6 PUFAs on cardiometabolic health, with emphasis on risks and risk factors for CVD (coronary heart
disease and stroke) and type 2 diabetes mellitus (T2D). Results from observational studies show that higher intake of ω-6 PUFAs, when compared
with SFAs or carbohydrate, is associated with lower risks for CVD events (10–30%), CVD and total mortality (10–40%), and T2D (20–50%). Findings
from intervention studies on cardiometabolic risk factors suggest thatω-6 PUFAs reduce concentrations of LDL cholesterol and non-HDL cholesterol
in a dose-dependent manner compared with dietary carbohydrate, and have a neutral effect on blood pressure. Despite the concern that ω-6 fatty
acids increase inflammation, current evidence from studies in humans does not support this view. In conclusion, these findings support current
recommendations to emphasize consumption ofω-6 PUFAs as a replacement of SFAs; additional randomized controlled trials with cardiometabolic
disease outcomes will help to more clearly define the benefits and risks of this policy. Adv Nutr 2018;9:688–700.
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Introduction
According to the AHA’s 2018 Heart Disease and Stroke
Statistics Update, cardiovascular disease [CVD; including
coronary artery disease (CAD), hypertension, and stroke] is
the number 1 cause of death in the United States, accounting
for ∼1 of every 3 deaths (1). The 2015 Dietary Guidelines
Advisory Committee reported that CVD was estimated to
affect ∼35% of the US population in 2010, and 50% of
normal weight and 75%of overweight/obeseAmericanswere
said to have at least 1 risk factor placing them at higher
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cardiometabolic risk, such as high blood pressure, smoking,
or dyslipidemia (2). Furthermore, it is estimated that 9.1%
of American adults have been diagnosed with diabetes,
3.1% have undiagnosed diabetes, and 33.9% have prediabetes
(1). Thus, cardiometabolic diseases [particularly CVD and
type 2 diabetes (T2D)] are leading causes of morbidity and
mortality in the United States and worldwide. There is strong
evidence that risks of these conditions are affected by lifestyle
factors such as unhealthy eating patterns, inadequate physical
activity, and cigarette smoking (3–9).

The Dietary Guidelines for Americans (DGA) 2015–2020
report states that the average American diet contains higher
than optimal intakes of SFAs, added sugars, and refined
starches (2). Nutrients that could be consumed as partial
replacements for SFAs and refined carbohydrates (added
sugars and refined starches) include protein, unsaturated
fatty acids (UFAs), carbohydrates from unrefined sources,
such as whole grains and legumes, and alcohol (consumed
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in moderation). The 2015 DGA recommend limiting the
intake of SFAs to <10% of energy/d by replacing them
with UFAs, while maintaining a total dietary fat intake of
20–35% (for men and women ≥19 y of age) (2, 10). This
recommendation was based on what has been described
as a strong and consistent body of evidence showing
that replacement of SFAs with UFAs, especially PUFAs, is
associated with decreased circulating concentrations of total
cholesterol (TC) and LDL cholesterol, and with reduced risk
of CVD events and CVD-related deaths in observational
studies (2).

The strongest evidence for assessing the effects of a dietary
exposure or modification and disease risk is the randomized
controlled trial (RCT). Unfortunately, few RCTs have been
completed to evaluate the effects of increasing intakes
of UFAs as a replacement for other dietary components
such as SFAs or refined carbohydrates on cardiometabolic
disease outcomes. Of the RCTs that are available, most were
completed in the 1960s and 1970s, were relatively small,
and had a number of other limitations such as high rates of
attrition.

There is observational evidence reporting a positive
association between SFA intake and atherosclerosis dating
back to as early as the mid-1950s when Ancel Keys and
colleagues first reported the results from their examination
of diet and health in 7 countries that showed a positive
correlation between high SFA intake and CAD, as well as a
relation between blood cholesterol concentrations and the
types of fatty acids ingested (11, 12). A Presidential Advisory
from the AHA recently released its evaluation of the relation
between dietary fats and CVD (13). They concluded that
prospective observational studies have consistently found a
lower risk of CAD, as well as CVD and all-cause mortality,
with lower SFA consumption and higher intakes of PUFAs or
MUFAs.

PUFAs include mainly omega-3 and omega-6 fatty acids.
ω-3 PUFAs, particularly the marine-based fatty acids of EPA
(20:5ω-3 fatty acid) andDHA (22:6ω-3 fatty acid), have been
shown to possess a variety of potentially cardioprotective
effects, including effects on blood lipids, hemodynamics,
platelets, and fibrinolysis, and markers of inflammation
and oxidative stress (14–18). This makes the increased
consumption of ω-3 fatty acids as a replacement of SFAs
an attractive approach, particularly because the average
American diet has less than the recommended intake of 8
oz seafood/wk. However, ω-3 fatty acids are a quantitatively
small portion of the diet, and it would be difficult to increase
their consumption to the level necessary to substantially
replace calories from other nutrients, particularly SFAs,
but also refined starches and added sugars. ω-3 Fatty acid
supplements are available and prescription ω-3 fatty acid
products are approved by the FDA for the management of
hypertriglyceridemia (14–17).

In contrast to ω-3 fatty acids, ω-6 fatty acids are a large
component of the commonly used oils in the American
diet, and represent a more feasible replacement for SFAs.

The predominant ω-6 fatty acid is the essential fatty
acid linoleic acid (LA; 18:2 ω-6 fatty acid); α-linolenic
acid (ALA; 18:3 ω-3 fatty acid) is the other essential
fatty acid. LA accounts for 80–90% of total dietary PUFAs
(19). Typical dietary intakes of LA in the United States are
∼6% of energy (20). Soybean oil (usually labeled as vegetable
oil), sunflower oil, and corn oil are all high in ω-6 PUFAs
(Table 1) (13). Qualified health claims exist for soybean,
canola, corn, and olive oils for their potential abilities to
reduce the risk of heart disease (21–24).

Despite the fact that most dietary recommendations agree
that SFAs should be at least partially replaced by UFAs, in
particular vegetable PUFAs, the suggestion to increase the
intake of PUFAs in general, and ω-6 PUFAs in particular,
continues to be controversial (2, 13, 25).

Methods
This editorial review was undertaken to present a balanced
overview of the controversies and evidence regarding the
potential benefits and risks of consumption of ω-6 PUFAs
on cardiometabolic health, with a focus on incident CVD
and T2D, as well as biomarkers of cardiometabolic disease
risk, including lipoprotein lipids, blood pressure, insulin
sensitivity, and inflammation. The review focused on the
evidence considered by the DGA 2015 (2) and the 2017 AHA
Presidential Advisory on Dietary Fats and Cardiovascular
Disease (13), new results published since that time, and
an appraisal of dissenting viewpoints expressed by experts
in the field of diet and cardiometabolic health. Instances
throughout the paper when specifically ω-3 or ω-6 PUFAs
are being described are labeled as such. Statements that refer
generally to PUFAs or UFAs do not specifically call out ω-3
or ω-6 fatty acids.

RCT evidence for ω-6 PUFAs and risks for
incident CVD, CAD, and CVDmortality
Data from RCTs are considered by many to represent
the highest-quality evidence for use in developing dietary
recommendations (25, 26). However, RCTs examining the
effects of dietary fatty acids on disease are often difficult
to perform and interpret because of the relatively crude
methods used to assess background diet, difficulties with
long-term adherence necessary to test dietary interventions,
and variations among subjects with regard to disease severity
and the presence of phenotypic and genotypic variants that
can affect the metabolism of fatty acids (27).

Unfortunately, most of the RCT data available from direct
examination of interventions intended to alter dietary fatty
acid intakes to evaluate their effects on cardiometabolic
disease are quite old. The AHA Presidential Advisory
recently reported its meta-analysis findings that showed a
29% reduction in CAD events from replacing SFAs with
PUFAs (RR: 0.71; 95% CI: 0.62, 0.81) (Figure 1) (13).
That analysis emphasized results from 4 core RCTs, all
completed decades ago, that met their criteria of at least 2 y
duration and good adherence as indicated by blood or tissue
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TABLE 1 Estimated fatty acid content of commonly consumed cooking oils or solid fats1

SFAs, g/100 g MUFAs, g/100 g PUFAs, g/100 g

Fats/oils Total 12:0 14:0 16:0 18:0 Total 18:1 Total 18:2n–6 18:3n–3

Dairy fat (butter) 63 39 12 26 21 4 3 0
Tallow (beef ) 50 30 19 42 36 4 3 1
Lard (pork) 39 25 14 45 41 11 10 1
Coconut oil 82 67 3 6 6 2 2 0
Palm kernel oil 82 72 3 11 11 2 2 0
Palm oil 49 45 4 37 37 9 9 0
Peanut oil 17 10 2 46 45 32 32 0
Olive oil2 14 11 2 73 71 10 10 1
Canola oil2 7 4 2 63 62 28 19 9
Soybean oil2 16 10 4 23 23 58 50 7
Corn oil2 13 11 2 28 27 55 53 1
Sunflower oil (high linoleic) 10 6 4 20 20 66 66 0
Sunflower oil (high oleic) 10 5 4 84 83 4 4 0
Safflower oil (high linoleic) 6 4 2 14 14 75 75 0
Safflower oil (high oleic) 8 5 2 75 75 13 13 1

1 A 0 value equals <0.5 g/100 g. Adapted from Sacks et al. (13) with permission; data from USDA food composition tables.
2 Qualified health claims (21–24).

concentrations of cholesterol and/or PUFAs (13, 28–33).
The AHA Advisory statement has been criticized by some
because of its limitation to 4 RCTs. A comprehensive meta-
analysis of 15 RCTs performed by Mozaffarian et al. (34)
also reported a significant reduction in total CAD risk with
replacement of 5% of SFAs by PUFAs, but the magnitude of
the reported effect was much smaller (RR: 0.90; 95%CI: 0.83,
0.97) than that reported by theAHAPresidential Advisory. In
contrast, a meta-analysis of observational studies and RCTs
by Chowdhury et al. (35) reported that in 8 RCTs ω-6 PUFA
intake produced a larger reduction in coronary risk than
that seen with ALA or ω-3 PUFA supplementation, but the
decrease did not reach statistical significance (RR: 0.89; 95%
CI: 0.71, 1.12).

FIGURE 1 Meta-analysis of core clinical trials replacing SFAs with
PUFAs assessed for the Presidential Advisory from the AHA
statement on dietary fats and cardiovascular disease. RR values and
95% CIs are for the primary coronary heart disease outcome for
each trial. MRC, Medical Research Council. Reproduced from Sacks
et al. (13) with permission.

ACochranemeta-analysis by Hooper et al. (36) examined
the effect of reducing SFA intake by replacing it with carbohy-
drate, PUFA, orMUFAand/or protein and reported that such
replacements reduced the risk of cardiovascular events by
17% (95% CI: 0.72, 0.96). Subgroup analyses suggested that
the reductionwas due to those studies that primarily replaced
SFAs with PUFAs. They reported that “replacing some
saturated fat with PUFA”, predominantly of plant origin, had
the following effects: all-cause mortality (7 studies; RR: 0.96;
95% CI: 0.82, 1.13), cardiovascular mortality (7 studies; RR:
0.95; 95% CI: 0.73, 1.25), cardiovascular events (7 studies;
RR: 0.73; 95% CI: 0.58, 0.92), fatal and nonfatal myocardial
infarction (7 studies; RR: 0.83; 95% CI: 0.67, 1.02), nonfatal
myocardial infarction (5 studies; RR: 0.80; 95% CI: 0.63,
1.03), stroke (4 studies; RR: 0.68; 95% CI: 0.37, 1.27), CAD
mortality (7 studies; RR: 0.98; 95% CI: 0.74, 1.28), and
CAD events (7 studies; RR: 0.76; 95% CI: 0.57, 1.00). Thus,
although all of the subgroup analyses showed pooled RR
estimates below 1.0 (i.e., lower risk in PUFA compared with
SFA groups), only 1 of 8 had a 95% CI with an upper limit
below 1.0, indicating statistical significance at the traditional
level of 0.05.

Because few RCTs have been published that tested the
cause-effect relation between reducing SFAs and effects on
heart disease, Ramsden et al. recently investigated previ-
ously unpublished data from the Sydney Diet Heart Study
(1966–1973) (37) and the Minnesota Coronary Survey
(1968–1973) (38) that both replaced SFAs with vegetable oil
rich in LA. Results from a meta-analysis that included data
recovered from these trials, as well as 3 additional RCTs,
indicated that there was no evidence of benefit on CAD
mortality (HR: 1.13; 95%CI: 0.83, 1.54) or all-causemortality
(HR: 1.07; 95% CI: 0.90, 1.27) (Figure 2) (38). However,
inclusion of results from the Minnesota Coronary Survey
of patients hospitalized for mental illness is controversial
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FIGURE 2 Meta-analysis for mortality from coronary heart disease from trials replacing SFA with vegetable oils rich in linoleic acid. ALA,
alpha-linolenic acid; DART, Diet and Re-infarction Trial; LA, linoleic acid; LA Vet, Los Angeles Veterans Trial; MCE, Minnesota Coronary
Experiment; MRC-Soy, Medical Research Council Soy Oil Trial; ODHS, Oslo Diet Heart Study; RCOT, Rose Corn Oil Trial; SDHS, Sydney Diet
Heart Study; STARS, St. Thomas Atherosclerosis Regression Study. Reproduced from Ramsden et al. (38) with permission.

for several reasons related to its study design, including
relatively short duration of subject enrollment, high rate
of withdrawals, and intermittent treatment administration
(13). Results from the Sydney Diet Heart Study are also
controversial because subjects assigned to the high-PUFA
diet received a margarine that was high in transUFAs, which
has since been acknowledged to be harmful and is being
removed from the food supply (13).

A recent meta-analysis by Hamley (39) that examined
the effect of replacing SFAs with PUFAs on CAD risk
pointed to the importance of considering whether the trials
included in a meta-analysis have been adequately controlled.
Clinical trials that the authors categorized as adequately
controlled were those that most accurately tested the effect
of replacing SFAs with mostly ω-6 PUFAs, whereas clinical
trials categorized as inadequately controlled had additional
dietary and/or nondietary differences between groups that
did not allow direct comparison or clearly unconfounded
comparison of SFAs with ω-6 PUFAs. Examples of these
differences include inclusion or noninclusion of trans fatty
acids, multifactorial dietary interventions, varying vitamin
E intakes, and use of cardiotoxic medications. Among the
5 trials classified as adequately controlled, there was no
effect of mostly ω-6 PUFAs on major CAD events, total
CAD events, CADmortality, and total mortality (RRs range:
1.02–1.13). However, when the pooled results from all trials,
including the 6 trials classified as inadequately controlled,
were examined, there was a suggestion that replacing SFAs

with mostlyω-6 PUFAs significantly reduced the risk of total
CAD events (RR: 0.80; 95% CI: 0.65, 0.98; P = 0.03), but
not major CAD events (RR: 0.87; 95% CI: 0.70, 1.07), CAD
mortality (RR: 0.90; 95% CI: 0.70, 1.17), or total mortality
(RR: 1.00; 95% CI: 0.90, 1.10).

Thus, in our view, the data from RCTs regarding the
replacement of SFAs with ω-6 PUFAs on CVD outcomes
suggest potential benefits, but are far from conclusive. It is
especially difficult to interpret the findings since the trials
were generally completed many years ago when the age-
adjusted risks of CVD events in the populations in the
United States and Europe were higher than they are today,
background diets were quite different from current diets
(higher in SFA intake, lower in refined sugars, refined grains,
and refined vegetable oils), the prevalence of obesity was
considerably lower, that of cigarette smoking was higher,
and there was less routine use of preventive therapies such
as blood pressure- and cholesterol-lowering drug therapies.
Well-designed and properly controlled RCTs are needed
to more clearly elucidate the potential cardiometabolic
benefits and possible risks of replacing SFAs (and refined
carbohydrates) with ω-6 PUFAs.

Epidemiologic evidence for effects of higher ω-6
PUFA intake on cardiometabolic health
As mentioned previously, compared with RCTs, there is a
large body of data from prospective observational studies
investigating the associations between dietary fatty acids and
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cardiometabolic disease incidence. These have an important
place in examining diet and disease relations, but there are
limitations of this approach when it comes to informing
decisions regarding dietary recommendations (25, 26). In-
terpretation of the results from prospective observational
studies is difficult for a variety of reasons. Dietary assessment
methods are subject to a variety of random and nonrandom
sources of error. In addition, intakes of nutrients or dietary
components are often highly correlated with other dietary
components, as well as a variety of other characteristics that
have the potential to produce interactions and/or residual
confounding, even with extensive multivariate adjustment.
Also, foods high in energy from a macronutrient such as
ω-6 PUFAswill, by definition, displace other foods in the diet
with a different nutritional profile. Thus, the apparent effects
of a dietary exposure may, at times, reflect the influence of
reducing the dietary components replaced (26).

Another consideration is that it is particularly difficult to
separate the effects or associations with LA (ω-6 fatty acid)
from thosewithALA (ω-3 fatty acid), because they are largely
consumed in the same plant oils and foods (collinearity),
albeit LA is usually in higher amounts. Observational studies
do not provide definitive evidence of a cause and effect
relation between dietary intake and disease because of
the potential for confounding and bias (26, 40). However,
observational data are critically important because they
examine people inmore natural circumstances as opposed to
the closely controlled environment of RCTs and contribute
importantly to the body of evidence assessing the effects of
dietary exposures on disease risk.

In a meta-analysis of 28 prospective cohort studies, Skeaff
and Miller (41) reported that a higher compared with lower
PUFA intake was not significantly associated with CAD
events (RR: 0.97; 95%CI: 0.74, 1.27; P= 0.825), and similarly
higher LA intake was not significantly associated with CAD
events (RR: 1.05; 95% CI: 0.92, 1.20; P = 0.474). However,
higher compared with lower PUFA intake was significantly
associated with CAD mortality (RR: 1.25; 95% CI: 1.06,
1.47; P = 0.009). In their meta-analysis of 32 observational
studies, Chowdhury et al. (35) also reported that there was no
significant relationwhen comparing risk for coronary disease
between the top and bottom tertiles of baseline ω-6 PUFA
intake (RR: 0.98; 95% CI: 0.90, 1.06).

In contrast, meta-analyses that have specified the replace-
ment nutrient in theirmodeling have indicated a significantly
lower CAD risk when PUFAs partially replaced calories
from SFAs, but not when the replacement nutrient was
carbohydrate (i.e., low-fat diets) (42, 43). In a meta-analysis
of data from 11 American and European cohort studies,
Jakobsen et al. (42) reported a 13% reduction in risk of
coronary events and a 26% reduction in risk of coronary
death (HR: 0.74; 95% CI: 0.61, 0.89) when PUFAs replaced
5% of energy intake from SFAs (HR: 0.87; 95% CI: 0.77,
0.97). A meta-analysis by Farvid et al. (43) of 13 published
and unpublished cohort studies found that a 5% energy
increment in LA intake, to replace energy from SFAs, was
associated with a 9% lower risk of CAD events (RR: 0.91; 95%

CI: 0.87, 0.96) and a 13% lower risk of CAD deaths (RR: 0.87;
95% CI: 0.82, 0.94).

Results from recently published prospective cohort stud-
ies are generally supportive of the results from the published
meta-analyses. An examination of participants in the Nurses’
Health Study (female nurses) and the Health Professionals
Follow-up Study (male health professionals) showed, based
on modeling, that replacing 5% of SFAs with equivalent
energy intake from PUFAs was associated with a 25% lower
risk of CAD (HR: 0.75; 95% CI: 0.67, 0.84; P < 0.0001) (44).
Wang et al. (45) reported in this same cohort a 27% reduction
in total mortality (HR: 0.73; 95% CI: 0.70, 0.77) when 5% of
energy from SFAs was replaced with equivalent energy from
PUFAs and a 13% reduction in total mortality (HR: 0.87;
95% CI: 0.82, 0.93) when SFAs were replaced withMUFAs. A
positive association with cardiovascular mortality was found
when 5% of carbohydrate was replaced with SFAs (HR: 1.08;
95%CI: 1.04, 1.11; P< 0.001), and inverse associations when
5% of carbohydrate was replaced with PUFAs (HR: 0.72; 95%
CI: 0.65, 0.80; P < 0.001) or with MUFAs (HR: 0.96; 95% CI:
0.84, 1.09;P< 0.001) (44). Another recent prospective cohort
investigation by Guasch-Ferré et al. (46) among participants
in the Prevención con Dieta Mediterránea (PREDIMED)
study found that modeling the replacement of 5% of energy
from SFAs with PUFAs was associated with a 33% lower
risk of incident CVD (HR: 0.67; 95% CI: 0.45, 0.98) and
a 39% lower risk of all-cause death (HR: 0.61; 95% CI:
0.39, 0.97).

Most recently, a risk assessment model that included
NHANES data from 1999–2002 and 2009–2012 was used to
examine associations of consumption of 10 foods/nutrients,
including PUFAs, with cardiometabolic mortality in 2012
(47). Optimal consumption, defined as the observed level at
which the lowest risk occurred, of PUFAs as a percentage
of energy replacing carbohydrates or SFAs was reported to
be 11% for CAD risk reduction. Per 5% of PUFA energy/d
replacing carbohydrates or SFAs, the RR (95% CI) for CAD
among adults (≥25 y of age) was 0.88 (0.75, 0.94) for those
50 y of age and 0.92 (0.88, 0.96) for those 70 y of age. It
was also estimated that 2.3% of the total US cardiometabolic
deaths and 4.3% of the US CAD deaths in 2012 were
associated with suboptimal consumption of PUFAs (<11%
of PUFA energy/d replacing carbohydrates or SFAs).

We also conducted an investigation of the predicted effects
on mortality of 1 tablespoon of liquid oils or butter replacing
carbohydrate with the use of modeling equations based on
the HRs reported by Wang et al. (45). The predicted effects
of 1 tablespoon (13.5 g) cooking oils/d in a 2000 kcal/d diet,
compared with carbohydrates, on mortality risk were: corn
oil (−20.7%), canola oil (−16.2%), soybean (or vegetable)
oil (−16.9%), and olive oil (−11.4%). The predicted effect
of butter was to raise mortality risk by 2.4%. These effects
are quantitatively rather large, and a portion of the effect
could very well be due to confounding. Nevertheless, they
are suggestive that additional research into the effects on
mortality of replacing carbohydrates with PUFAs in the diet
is warranted.
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TheProspectiveUrbanRural Epidemiology (PURE) study
is the largest observational study conducted to date that
assessed the link between nutrient intakes, food group
intakes, CVD events (including death), and overall mor-
tality (48). It included data from >135,000 participants in
18 low-, middle-, and high-income countries across 5
continents. During the median follow-up of 7.4 y there were
5796 deaths and 4784 major CVD events. Results indicated
that total fat, as well as SFA, MUFA, and PUFA intakes
were significantly associated with lower risk for mortality.
The HR for the highest compared with the lowest quintile
of intake was 0.77 (95% CI: 0.67, 0.87) for total fat, 0.86
(95% CI: 0.76, 0.99) for SFAs, 0.81 (95% CI: 0.71, 0.92)
for MUFAs, and 0.80 (95% CI: 0.71, 0.89) for PUFAs. For
major CVD, the highest compared with the lowest quintile
of SFA intake was associated with a significantly lower risk
of stroke (HR: 0.79; 95% CI: 0.64, 0.98). Neither total fat
nor any of the individual fats was associated with myocardial
infarction risk or CVD mortality. These results challenge
the current dietary recommendations’ emphasis on reducing
SFA intake. However, SFA intake was generally low, with
mean values ranging from 5.7% in China to 10.9% in Europe
and North America. Across countries, total and SFA intakes
are positively associated with socioeconomic status. Thus, in
countries with higher intakes of total fat and SFAs, and thus
lower carbohydrate intake, the higher socioeconomic status
was likely associated with improved access to higher-quality
health care, potentially confounding these results.

Because of the difficulties in determining dietary intakes
of specific fatty acids, some investigations have utilized
biomarkers of fatty acid concentrations such as in adipose
tissue, plasma, plasma phospholipids, cholesterol esters, and
erythrocyte membranes. These biomarkers are influenced
by both dietary intake and endogenous metabolism of fatty
acids (49). In the study by Chowdhury et al. (35) mentioned
previously, there was no significant association detected
between CAD and blood concentrations of ω-6 PUFAs (RR:
0.94; 95% CI: 0.84, 1.06 for the top compared with bottom
tertiles), whichwas similar to the findings fromdietary intake
analyses. An evaluation of circulating ω-6 PUFAs in the
Multi-Ethnic Study of Atherosclerosis (MESA) also failed to
detect a significant association with CVD forω-6 PUFAs [LA
and arachidonic acid (AA)] (50).However, an examination of
plasma phospholipid ω-6 PUFAs in older adults free of CVD
in the Cardiovascular Health Study reported that higher LA
was associated with a 13% lower risk of total mortality in the
top compared with the bottom quintile (HR: 0.87; 95% CI:
0.74, 1.02; P-trend = 0.005), and that lower mortality was
largely attributable to less mortality from CVD causes (51).

Epidemiologic evidence for PUFAs (ω-6 fatty
acids) and risk for T2D
Results from prospective cohort studies indicate a possible
inverse relation between total ω-6 PUFA intake and risk of
T2D status, but the magnitude and direction of the relation
appear to vary among individual ω-6 fatty acids (52–56).
A recent large pooled analysis of data from 20 prospective

FIGURE 3 Pooled RRs of type 2 diabetes per quintile of linoleic
acid and arachidonic acid biomarker from a meta-analysis of
association between linoleic acid and type 2 diabetes assessed in
multivariable models for each cohort. Q, quintile; ref, referent.
Reproduced from Wu et al. (56) with permission.

cohort studies with 39,740 adults from 10 countries (Iceland,
Netherlands, theUnited States, Taiwan, theUnited Kingdom,
Germany, Finland, Australia, Sweden, and France) examined
the RR of T2D according to concentrations of LA and
AA biomarkers (56). The investigators reported that in
multivariate-adjusted, pooled analyses a higher proportion
of LA biomarkers as percentage of total fatty acids was
associated with lower risk of T2D overall (RR: 0.65; 95%
CI: 0.60, 0.72, P < 0.0001) (Figure 3). This association was
generally similar in phospholipid, plasma, cholesterol ester,
and adipose tissue compartments. There was no significant
association between AA biomarkers and T2D risk (RR: 0.96;
95% CI: 0.88, 1.05, P = 0.38). Furthermore, these relations
were not significantlymodified by age, BMI, sex, race, aspirin
use, ω-3 PUFA concentrations, or variants of the FADS gene.
These results confirmed those from another large prospective
study on blood PUFAs and T2D risk in a pooled analysis of
data from 8 European countries, the European Prospective
Investigation into Cancer and Nutrition (EPIC)-InterAct
Study (54). The investigators of EPIC-InterAct reported a
strong inverse association between LA and risk of T2D (per
1 SD; HR: 0.80; 95% CI: 0.77, 0.83) and no relation with AA,
but positive relations, withHRs ranging from 1.13 to 1.46 per
1 SD, between T2D risk and 4 otherω-6 fatty acids, including
18:3, 20:3, 22:4, and 22:5 (54).

The prospective Kuopio Ischaemic Heart Disease Risk
Factor Study reported reduced T2D risk with higher con-
centrations of total serum ω-6 PUFAs (HR: 0.54; 95%
CI: 0.41, 0.73; P-trend <0.001), LA (HR: 0.52; 95% CI:
0.39, 0.70; P-trend <0.001), and AA (HR: 0.62; 95% CI:
0.46, 0.85; P-trend = 0.007), but increased T2D risk with
higher concentrations of gamma-linolenic acid (HR: 1.28;
95% CI: 0.98, 1.68, P-trend = 0.021) and dihomo-gamma-
linolenic acid (HR: 1.38; 95% CI: 1.04, 1.84; P-trend= 0.005)
(55). However, another recent prospective examination from
the Finnish Diabetes Prevention Study failed to find a
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TABLE 2 Estimated mean changes and 95% CIs in lipoprotein lipids for each 1% of dietary energy as SFAs isocalorically replaced with CHO,
MUFAs, or PUFAs from an analysis of 74 trials1

Change (mmol/L) per 1% energy replaced2

Lipoprotein lipid SFAs → CHO SFAs→MUFAs SFAs→ PUFAs

Total-C −0.041 (−0.047, −0.035) −0.046 (−0.051, −0.040) −0.064 (−0.070, −0.058)
LDL cholesterol −0.033 (−0.039, −0.027) −0.042 (−0.047, −0.037) −0.055 (−0.061, −0.050)
HDL cholesterol −0.010 (−0.012, −0.008) −0.002 (−0.004, 0.000) −0.005 (−0.006, −0.003)
Total-C/HDL cholesterol 0.001 (−0.006, 0.007) −0.027 (−0.033, −0.022) −0.034 (−0.040, −0.028)
TGs 0.011 (0.007, 0.014) −0.004 (−0.007, −0.001) −0.010 (−0.014, −0.007)

1 Data are from a 2016 WHO systematic review and regression analysis report by Mensink (63). CHO, carbohydrate; Total-C, total cholesterol.
2 All mean changes were statistically significant (P < 0.05) with the exception of the change in TG from replacement of SFA with CHO. To convert cholesterol from mmol/L to
mg/dL multiply by 38.7; to convert TG from mmol/L to mg/dL multiply by 88.6.

consistent association between LA and T2D risk among
overweight patients with impaired glucose tolerance (57).
RCTs examining the effects of ω-6 PUFAs on T2D risk, per
se, are needed, although there have been several RCTs of
ω-6 PUFA effects on biomarkers of T2D, such as insulin
sensitivity and glycated hemoglobin (HbA1c), as described
later in this paper.

Effects of ω-6 PUFAs on biomarkers of
cardiometabolic disease risk
Lipoprotein lipids
Although there is a paucity of recent RCT data examining
the effects of dietary fats on the risk for cardiometabolic
disease outcomes, there is a large body of RCT data
examining the effects of dietary fats on biomarkers of
heart disease and diabetes. An elevated concentration of
atherogenic cholesterol, i.e., the cholesterol carried in LDL
and other apolipoprotein B–containing particles (non-HDL),
is a major cause of atherosclerosis (58). Guidelines and
recommendations universally include lowering an elevated
concentration of LDL cholesterol as a target for CAD/CVD
prevention, and some also include non-HDL cholesterol as
a treatment target (58, 59). Many studies have investigated
the effects on the blood lipoprotein profile of the main
fatty acid classes of SFAs, MUFAs, and PUFAs (34, 60–66).
Replacement of SFAs with PUFAs has been shown to lower
LDL cholesterol and the TC:HDL cholesterol ratio (Table 2)
(63).

LA and ALA are present together in many of the same
vegetable oils and foods, but the proportion of LA is generally
much higher than ALA (62, 63). LA and ALA, on a per-gram
basis, appear to have similar effects on the lipoprotein lipid
profile (67, 68). There are few studies of the effects of ω-6
fatty acids alone on blood lipids. A Cochrane review by Al-
Khudairy et al. (69) compared the effects on blood lipids of
increased ω-6 PUFAs with control in 3 trials (70–72). They
reported no significant effects on TC (mean difference 0.02;
95% CI: −0.13 to 0.18), LDL cholesterol (mean difference
−0.01, 95% CI: −0.14 to 0.12), HDL cholesterol (mean
difference 0.01, 95% CI: −0.04 to 0.06), or TG (mean
difference 0.03, 95% CI: −0.07 to 0.12). However, the results
were dominated by 1 trial (72).

Soybean oil (vegetable oil), sunflower oil, and corn oil
are all high in ω-6 PUFAs (Table 1). In clinical trials,
consumption of corn oil, which contains∼50–55% fatty acids
as ω-6 PUFAs, has been shown to reduce LDL cholesterol
concentrations (65, 67, 73). In a controlled study, Maki
et al. (65) compared the effects of PUFA-rich corn oil with
those of extra-virgin olive oil (higher in oleic acid) on plasma
lipids and lipoproteins inmen andwomenwith elevated LDL
cholesterol [≥130 mg/dL (3.4 mmol/L) and <200 mg/dL
(5.2 mmol/L)]. After 21 d of consuming 4 tablespoons/d of
foods made with either corn oil or olive oil, LDL cholesterol
was decreased by 10.9% in the corn oil condition compared
with 3.5% in the olive oil condition. A systematic review of
31 RCTs concluded that canola oil reduced LDL cholesterol,
but had no effect onHDL cholesterol (74). RCTs of sunflower
oil, rich in both MUFAs and ω-6 PUFAs and low in SFAs,
have demonstrated that it also lowers LDL cholesterol, but the
effect on HDL cholesterol is unclear (75). The FDA decisions
to grant qualified health claims for soybean, canola, corn, and
olive oils took into consideration the abilities of these oils to
lower circulating concentrations of atherogenic cholesterol
(21–24).

We investigated the predicted effects of the fatty acid
differences of commonly consumed fats and oils on LDL
cholesterol concentrations using the Yu and Kris-Etherton
equation (76). TheUSDAFoodCompositionDatabases were
the primary source for fatty acid contents (77). The predicted
effects of 2 tablespoons (27 g) cooking oils/d in a 2000 kcal/d
diet, compared with carbohydrates, on LDL cholesterol
were: corn oil [−8.9 mg/dL (−0.23 mmol/L)], canola oil
[−8.3 mg/dL (−0.21 mmol/L)], soybean (or vegetable) oil
[−6.5 mg/dL (−0.17 mmol/L)], and olive oil [−5.7 mg/dL
(−0.15 mmol/L)]. The predicted effect of butter was to raise
LDL cholesterol by 7.9 mg/dL (0.20 mmol/L).

This 6–9 mg/dL (0.16–0.23 mmol/L) reduction in LDL
cholesterol with liquid oils replacing carbohydrate would be
predicted to lower CVD risk by 3.9–5.6% over approximately
5 y, according to the relation between LDL cholesterol
lowering and CVD risk from a meta-analysis of statin
trials by the Cholesterol Treatment Trialists’ Collaboration
(78), whereas butter replacing carbohydrate (0.2 mmol/L
LDL cholesterol elevation) would be expected to increase
risk by 5.1%. Thus, replacing 27 g/d of butter with liquid
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oil would be expected to lower CVD risk by ∼10% over
5 y. The effect could be larger, perhaps by a factor of ≥2,
if the effects are estimated over a longer timeframe, as
seen in studies of genetic variants, where the impact of
a given difference in LDL cholesterol is roughly 2.0–2.5
times what has been observed in RCTs of drug therapies
[e.g., statins, ezetimibe, anacetrapib, proprotein convertase
subtilisin kexin type 9 (PCSK9) inhibitors] over ∼5 y
(79). It is also important to note that lifestyle counseling,
including nutrition recommendations, is a key element of
CVD prevention for patients at all CVD risk levels and
represents a lower risk and lower-cost option compared with
drug therapies (7).

Blood pressure
A cross-sectional analysis of elderly adults found that a 2-
SD increase in dietary LA was associated with a modest
1.4-mm Hg decrease in systolic blood pressure and a
0.9-mm Hg decrease in diastolic blood pressure (80).
However, 2 subsequent observational studies in middle-aged
and olderwomen or adolescents did not confirm those earlier
results (81, 82).

RCTs that examined the effects on blood pressure of
replacing calories from one fatty acid class with another fatty
acid class, or with carbohydrates, have generally shown no
effect or only small effects on blood pressure (83–85). In the
OmniHeart controlled feeding trial, a diet low in SFAs with
higher intake of UFAs (mainly MUFAs) decreased blood
pressure by∼1–3mmHg, comparedwith a diet similarly low
in SFAs with 10% less energy fromUFAs and 10%more from
carbohydrates, in subjects with hypertension (86). Maki et al.
(65) reported that diastolic blood pressure during controlled
feeding was reduced by a mean of 1.5 mm Hg from baseline
with consumption of foods that incorporated 54 g extra-
virgin olive oil/d (high in MUFAs), but was unchanged from
baseline when subjects consumed the same quantity of foods
made with corn oil (high in PUFAs). The Cochrane review
by Al-Khudairy et al. (69) reported no significant effects
on systolic blood pressure (mean difference −0.79; 95%
CI: −3.0, 1.41) or diastolic blood pressure (mean
difference −0.02; 95% CI: −1.35, 1.32) in a pooled analysis
of 2 clinical trials that increased ω-6 fatty acid intake. The
Dietary Intervention and Vascular Function study that
examined the replacement of SFAs with either MUFAs or
ω-6 PUFAs in men and women with moderate CVD risk
also failed to detect effects on flow-mediated dilation and
most blood pressure variables, but MUFAs did attenuate
the increase in night systolic blood pressure (−4.9 mm Hg,
P = 0.019) (87). The overall conclusion from these studies
is that there might be a small blood pressure–lowering effect
of replacing carbohydrates with MUFAs, but there is likely a
neutral effect of ω-6 PUFAs on blood pressure.

Insulin sensitivity
Several clinical trials have reported that exchanging the
major classes of dietary fatty acids, i.e., replacing SFAs with
PUFAs or MUFAs, favorably affects glucose and insulin

metabolism and reduces the risk of T2D (64, 88–90). A
systematic review and meta-analysis of 102 controlled trials
was recently conducted by Imamura et al. (90) to examine
the effects of dietary fatty acids on glucose and insulin
metabolism. They reported that substituting 5% of energy
from SFAs with PUFAs decreased fasting glucose by a mean
of 0.04 mmol/L (95% CI:−0.07,−0.01 mmol/L; P< 0.05; 99
trials), lowered HbA1c by 0.15% (95% CI: −0.23%, −0.06%;
P < 0.001; 23 trials), and lowered the HOMA-IR by 4.1%
(95% CI: −6.4%, −1.6%; P < 0.05; 30 trials). Based on
an HbA1c improvement of ∼0.1% for each 5% increase in
energy from PUFAs, the authors predicted that this would
translate into a 22% reduction in T2D risk (91).

Experimental evidence supports the biological plausibility
of beneficial effects of PUFAs, particularly PUFAs that are
predominantly ω-6 LA, on several mechanisms associated
with insulin sensitivity and the development of T2D, in-
cluding, but not limited to, suppressing hepatic lipogenesis,
steatosis, and pancreatic lipotoxicity, as well as dampening
the toxicity of tissue FFAs, increasing membrane fluidity,
positively affecting markers of mitochondrial content and
function, and others (90, 92–100). More studies are needed
to evaluate the effects of individual fatty acids on insulin
sensitivity, which is a major determinant of T2D risk.

Inflammation
Practically all chronic diseases, including CVD, diabetes, and
obesity, are known tomanifest some aspects of inflammation;
there are also many diseases where chronic inflammation
is identified as the central issue, such as asthma, arthritis,
and inflammatory bowel disease (101). Recently, the results
of the Canakinumab Anti-inflammatory Thrombosis Out-
comes Study (CANTOS) provided proof of the inflammatory
hypothesis of atherothrombosis, i.e., proof of the concept that
reducing inflammation lowers CVD risk (102). CANTOS
demonstrated that administration of canakinumab, a mono-
clonal antibody targeting IL-1β , significantly lowered the rate
of recurrent cardiovascular events, compared with placebo,
in 10,061 patients with previous myocardial infarction and
a high-sensitivity C-reactive protein (hs-CRP) concentration
≥2 mg/L, independent of lipid lowering.

In nearly every discussion about the recommendation
to increase dietary PUFA as a replacement of SFA, there
is concern expressed about the potential risk of dietary
ω-6 PUFAs increasing inflammation (103). ω-6 And ω-
3 fatty acids act as competing substrates for some of the
same metabolizing enzymes, and a generalization is usually
made that anti-inflammatory compounds are produced by
ω-3 fatty acids and proinflammatory compounds are pro-
duced byω-6 fatty acids (104–106). The putative risk fromω-
6 fatty acids relates primarily to the conversion of LA toAA, a
precursor to inflammatory eicosanoids such as prostaglandin
E3 and leukotriene B5 (27, 103, 107). However, the lipoxins,
specialized proresolving mediators derived from ω-6 fatty
acids, act in reducing/resolving inflammatory responses
(108). The effects of downstream ω-3 and ω-6 fatty acid
products are incompletely understood, and research suggests
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it is likely that there is more interplay between the pro- and
anti-inflammatory processes of these fatty acid subclasses
than previously appreciated (109). It has also been suggested
that rather than a direct relation between the amount of
dietary LA and increased inflammation, the riskmay actually
be related to an elevated dietary ω-6 fatty acid to ω-3 fatty
acid ratio, which in most modernWestern diets exceeds 10:1
(27, 110–112).

Despite theoretical and experimental evidence suggesting
that increasing ω-6 fatty acid intake increases inflammation,
observational studies and RCTs in humans do not support
this relation (109). In their examination of data from the
Nurses’ Health Study and the Health Professionals Follow-
up Study, Pischon et al. (113) reported that the lowest
amounts of inflammation were observed in the subjects
with the highest intakes of both ω-3 and ω-6 fatty acids.
A cross-sectional analysis of Italian adults showed that
plasma total ω-6 fatty acid concentrations were inversely
associated with several markers of inflammation, including
serum CRP, IL-6, IL-6 receptor, IL-1 receptor agonist, and
TNF-α (114). A recent cross-sectional substudy from the
BALANCE Program Trial of 364 patients with established
CVD also demonstrated that PUFAs were inversely asso-
ciated with CRP concentrations and IL-1β . Increasing 1
g/1000 kcal in PUFAs, ω-3 PUFAs, and ω-6 PUFAs was
shown to be associated with reduced mean concentrations
of IL-1β of 6%, 48%, and 8%, respectively (115). More
recently, a cross-sectional analysis of 1287 healthy men aged
42–60 y from the Kuopio Ischaemic Heart Disease Risk
Factor Study, 1984–1989 demonstrated that both serum total
ω-6 PUFA and LA concentrations were associated with lower
hs-CRP concentrations in multivariable-adjusted analyses
(116). Across increasing tertiles of serum LA, mean hs-
CRP concentrations were 1.86, 1.51, 1.53, and 1.37 mg/L
(P-trend = 0.001), and the OR (95% CI) for elevated hs-
CRP in the highest compared with the lowest LA quartile was
0.47 (0.25, 0.87, P-trend = 0.01). AA, gamma-linolenic acid,
and dihomo-gamma-linolenic acid were not associated with
higher hs-CRP concentrations.

A systematic review by Johnson and Fritsche (109)
of 15 RCTs that assessed the effects of dietary LA on
several biological markers of chronic inflammation (C-
reactive protein, fibrinogen, plasminogen activator inhibitor-
1, cytokines, soluble vascular adhesion molecules, or TNF-
α) reported only 2 studies with significant findings: greater
excretion of prostaglandin E2 and lower excretion of 2,3-
dinor-thromboxane B2 in 1 study, and higher excretion
of tetranorprostandedioic acid in another study. Therefore,
Johnson and Fritsche (109) concluded that there were virtu-
ally no data from RCTs to support the claim that increased
consumption of ω-6 fatty acids promotes inflammation
in healthy adult humans. Additional long-term RCTs are
needed to further evaluate the relation between increased
dietary ω-6 fatty acid intake and inflammation. However,
the evidence to date does not support an adverse effect on
markers of inflammation. Effects of dietary fatty acids on
body fat and composition is another related topic of interest,

but beyond the scope of this review. The interested reader
can learn more about this topic in recently published reviews
(117–119).

Conclusions
To summarize, the data from RCTs regarding the replace-
ment of SFAs withω-6 PUFAs onCVDoutcomes suggest po-
tential benefits, but are, in our view, inconclusive at present.
Well-designed and properly controlled RCTs are needed
to more clearly elucidate the potential cardiometabolic
benefits and possible risks of replacing SFAs (and refined
carbohydrates) withω-6 PUFAs. The epidemiologic evidence
base supporting an inverse relation between ω-6 fatty acid
intake and CVD, CAD, diabetes, and CVDmortality is larger
and generally supports reduced cardiometabolic disease risk
with higher intakes of ω-6 PUFAs.

Clinical trial evidence of cardiometabolic markers of risk
of CVD and T2D also indicates favorable effects of ω-6
PUFAs on blood lipids and insulin sensitivity, and a neutral
effect on blood pressure. Although potential for increased
inflammation with increasedω-6 PUFA intake is often raised
as a concern regarding dietary recommendations to increase
PUFA consumption, observational studies and limited data
in humans from RCTs of markers of inflammation do not
support an association between inflammation andω-6 PUFA
intake. In conclusion, the results summarized in this review
generally support the DGA 2015 recommendation to limit
the intake of SFAs to <10% of energy/d by replacing with
UFAs (2), and the AHA Presidential Advisory recommen-
dation to shift from SFAs to UFAs, especially PUFAs, in
conjunction with an overall healthy dietary pattern (13).
However, additional RCTs are needed to more fully evaluate
the effects of using ω-6 PUFAs as a replacement for other
dietary components such as SFAs, refined starches, and added
sugars with evaluation of incident cardiometabolic disease
events.
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