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Abstract

Motivation: Polygenic scores (PGS) aim to genetically predict complex traits at an individual level. PGS are typically
trained on genome-wide association summary statistics and require an independent test dataset to tune parameters.
More recent methods allow parameters to be tuned on the training data, removing the need for independent test
data, but approaches are computationally intensive. Based on fine-mapping principles, we present RápidoPGS, a
flexible and fast method to compute PGS requiring summary-level Genome-wide association studies (GWAS) data-
sets only, with little computational requirements and no test data required for parameter tuning.

Results: We show that RápidoPGS performs slightly less well than two out of three other widely used PGS methods
(LDpred2, PRScs and SBayesR) for case–control datasets, with median r2 difference: -0.0092, -0.0042 and 0.0064, re-
spectively, but up to 17 000-fold faster with reduced computational requirements. RápidoPGS is implemented in R
and can work with user-supplied summary statistics or download them from the GWAS catalog.

Availability and implementation: Our method is available with a GPL license as an R package from CRAN and GitHub.

Contact: cew54@cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have been widely successful at
identifying a large number of genetic variants (usually single nucleotide
polymorphisms, or SNPs) associated with a wide range of diseases and
complex traits (Buniello et al., 2019). Most genetic variants have a small
individual effect on the tested traits and thus have low predictive power
(Dudbridge, 2013; International Schizophrenia Consortium et al., 2009;
Yang et al., 2010). However, simultaneously evaluating the effects of all
common SNPs has the potential to explain much of the heritability for
complex diseases and phenotypes (Bulik-Sullivan et al., 2015; Yang et al.,
2010).

Polygenic scores (PGS) estimate individual propensity to a phenotype
(e.g. disease) by summing an individual’s genotypes (coded 0, 1, 2),
weighted by their effect sizes, estimated from GWAS data

X
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where bi is the estimated effect for variant i, and Gi the genotype.
Challenges relate to the nature of GWAS data to determine the set

of SNPs S to use. If ignored, linkage disequilibrium (LD) between
variants would mean double-counting the effects of causal variants
in high LD with multiple other variants. In addition, error in the
estimated effect sizes is most pronounced for small effects, for which
true association may not be distinguishable from noise about a null
value. Different approaches have been developed to deal with these.
Initial approaches selected the most strongly associated variant in
each genome wide-significant peak. However, it was soon realized
that predictive accuracy could be improved by reducing the signifi-
cance threshold, to capture more truly associated variants even at
the cost of including some false associations (which should add
noise, but not bias, to any prediction), especially for highly polygen-
ic diseases (Chatterjee et al., 2016; Dudbridge, 2013). Methods
were developed to use an external test set to tune the significance
threshold parameter, as well as to use automated LD-pruning algo-
rithms to select independent variants rather than selecting one vari-
ant per peak (Euesden et al., 2015; Privé et al., 2019).

More statistically sophisticated approaches have since been
developed to average over multiple variants in LD without double
counting (which is more accurate than selecting just one), shrinking
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effect estimates by a continuous weight, wi (Ge et al., 2019; Privé
et al., 2020; Vilhjálmsson et al., 2015)X

i2S
wibiGi

As with the ‘prune and threshold’ approach, such methods ini-
tially required external independent test datasets to tune their
parameters, which can present a barrier to practical use. Recently,
automated methods have been developed that remove the need for
an external test dataset via hierarchical Bayesian models (Ge et al.,
2019; Privé et al., 2020), and perform nearly as well as their exter-
nally tuned counterparts. However, they require storage and inver-
sion of large LD matrices, which is computationally intensive, and
tuning, internally or externally, adds a further layer of iterative com-
putation. Some approaches mitigate this by adding a thinning step,
discarding a subset of SNPs to reduce the burden (e.g. LDpred2 rec-
ommends restricting SNPs to those in the HapMap3 panel, Privé
et al., 2020), but constructing PGS still takes a long time.

Our framework is based on considering PGS construction as a
fine-mapping problem. If we knew exactly the causal variants for a
trait, an optimal PGS would comprise the estimated effects of just
those variants. Fine-mapping methods estimate probabilities that a
variant is causal given observed data. So, in the absence of knowing
the exact set of true causal variants, a natural PGS might be con-
structed as above, with wi set to the probability variant i is causal—
i.e. by replacing the estimated effect size of each SNP by the poster-
ior expectation of its causal effect. Whilst modern PGS methods
focus on the accurate estimation of SNP effects in a joint model, the
optimal solution to the joint model is also that which puts non-zero
effects only on the true causal variants. We note that many of these
approaches involve estimating the probability that a specific SNP
has a non-zero effect—the estimand itself in fine-mapping—but the
overarching goal remains the estimation of SNP effects. Our inten-
tion in focusing directly on the probabilities of causality is to allow
us to explore whether established fine-mapping tools can be adapted
to the PGS question, benefiting from their speed relative to existing
PGS methods.

We present two approaches that can accommodate different
assumptions on the number of causal variants in each LD-defined re-
gion. The basic fine-mapping approach is very fast because it makes
a simplifying assumption that only a single causal variant may exist
in any LD-defined region, based on the principles developed by
Maller et al. (2012). While unrealistic, it has been shown to perform
well for fine-mapping and, of relevance to PGS, allows the definition
of posterior probabilities of causality using predefined LD regions
and without the burden of processing large LD matrices (Maller
et al., 2012). Distinguishing noise around null associations from
true associations is dealt with by two parameters: a prior probability
that a random SNP is causal and the variance of the prior distribu-
tion of effect sizes at true causal variants. While in a PGS these
would be open to tuning, in fine-mapping sensible default values can
be chosen that reflect existing knowledge from the breadth of
GWAS studies already conducted (Wallace, 2020).

It is possible to relax the single causal variant assumption if add-
itional information on LD is available. We propose using an alterna-
tive fine-mapping method based on the ‘sum of single effects’ model
(SuSiE, Wang et al., 2020). SuSiE is a computationally efficient ap-
proach to variable selection in linear regression, which uses a mul-
tiple causal variant model to compute the posterior inclusion
probability for each variant in an LD-defined region, which we can
use as wi.

We present RápidoPGS, a lightweight and fast (rápido, in
Spanish) method to compute PGS based on fine-mapping
approaches that only requires a summary statistics dataset, with no
need for an independent test dataset to adjust parameters, and that
can generate weights for millions of SNPs in only a few seconds or
minutes. RápidoPGS works fully in R, requiring few dependencies.
A PGS can be quickly constructed from any GWAS summary statis-
tic dataset, or any GWAS PubMed ID if harmonized datasets are
available at GWAS catalog.

We created PGS models for eight case–control and two quantita-
tive traits using RápidoPGS and three widely used PGS methods for
comparison: LDpred2 (Privé et al., 2020), PRScs (Ge et al., 2019)
and SBayesR (Lloyd-Jones et al., 2019).

We then used UK Biobank data as a validation dataset to evalu-
ate the predictive performance of all models and benchmarked their
run times.

2 Materials and methods

2.1 Overview of our approach
We compute posterior probabilities of causality at each variant

within LD-blocks defined by ldetect (Berisa and Pickrell, 2016)
(publicly available at https://bitbucket.org/nygcresearch/ldetect-
data/src).

Under a single causal variant assumption, given summary statis-
tics at each SNP i, bi, Vi (respectively, the estimated effect size and
its variance), we can define an approximate Bayes factor summariz-
ing the evidence for its association (Wakefield, 2009) as

BFi ¼
lðbijbi � Nð0;W þ ViÞÞ

lðbijbi � Nð0;ViÞÞ

where l is the likelihood of seeing the observed value of bi condition-
al on it following a normal distribution with specified variance, N is
a normal distribution, and W is the variance of the prior on the true
effect size. We assume that the true causal effect size at any SNP is
sampled from an N(0, W) distribution.

Under the at most one causal variant assumption (often called a
single causal variant assumption, but it includes the possibility of no
causal variant), the posterior probability that SNP i is causal in a re-
gion of n SNPs, is

PPi ¼
piBFi

p0 þ
Pn

j¼1 pjBFj

where pi is the prior SNP i is causal (typically set to the same value
for all SNPs) and p0 ¼ 1� npi is the prior probability there is no
causal variant in the region (Maller et al., 2012). Note therefore
0 � PPi < 1 and

P
i PPi � 1, so that PPi can serve to shrink SNP

effect estimates more or less according to the posterior belief that an
SNP is causal for a trait.

We set default parameter values for RápidoPGS according to
currently widely adopted values: pi ¼ 10�4, W ¼ 0:22 for case–con-
trol traits (Wallace, 2020). There is less consensus on appropriate
values of W for quantitative traits, and we propose to estimate W
given the estimated heritability of the trait under study or a similar
trait, which is often available (e.g. at LDhub, http://ldsc.broadinsti
tute.org/ldhub/, Zheng et al., 2017):

W ’ h2= �
Xp

i¼1

1

Nir2
i

 !

where h2 is the estimated trait heritability, � is the prior that a given
variant is causal (we set �¼ 10�4), p is the number of variants, Ni is
the number of individuals used in the inference for variant i and r2

i

is the variance of the estimated effect bi associated with variant i in
the GWAS summary statistics for the trait of choice. See
Supplementary Note for the full derivation of the equation.

Alternatively, we can relax the single causal variant assumption.
SuSiE (Wang et al., 2020) is an approach for variable selection in re-
gression, based on previous models for Bayesian variable selection in
regression (BVSR), but with a different structure that allows for a
faster and simpler model fitting procedure based on fitting multiple
‘single-effect regression’ models (multiple-regression models with
exactly one variable with non-zero regression coefficient), and then
constructing the overall effect vector as the sum of the single-effects
vectors (hence, sum of single effects model). SuSiE requires the same
parameters (pi and W) as the single causal variant approach, al-
though W may be internally estimated. We call the two approaches
to estimating W ‘informed’ or ‘auto’.
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Finally, we considered pruning input SNPs according to their P-
values using 2 parameters in order to increase speed: (i) ablock, the
minimum P-value at least one variant in an LD block must have for
the block to be considered for subsequent analyses (i.e. if no SNPs in
a block have P-values below ablock, the entire block is skipped), and
(ii) aSNP, the minimum P-value a variant within a selected block
must have to be considered.

2.2 GWAS datasets and SNP QC
We downloaded ten publicly available GWAS summary statistics
datasets on the following traits: eight case–control datasets: asthma
(Demenais et al., 2018), rheumatoid arthritis [RA] (Okada et al.,
2014), type 1 diabetes [T1D] (Cooper et al., 2017), type 2 diabetes
[T2D] (Scott et al., 2017), breast cancer [BRCA] (Michailidou et al.,
2017), prostate cancer [PRCA] (Schumacher et al., 2018), coronary
artery disease [CAD] (Nikpay et al., 2015) and major depression dis-
order [MDD] (Wray et al., 2018). We also added two quantitative
traits: body mass index [BMI] (Locke et al., 2015) and height
(Wood et al., 2014). All datasets considered are meta-analyses of
GWAS performed on European populations, with the exception of
RA, which is a trans-ethnic meta-analysis including European and
Asian ancestries.

We applied common quality control to all datasets prior to PGS
generation by removing unneeded rows with missing data at
required columns [genomic coordinates, alleles, allele frequencies,
log(OR), standard error], and from case/control sample size column,
if provided. Following LDpred2 quality control guidance for sum-
mary statistic datasets, we computed the effective sample size [Neff

¼ 4/(1/N controls þ 1/N cases)], the summary statistic standard de-
viation (SDss), defined as 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

NeffSE2
p , where SE is the standard error of

the effect for each SNP, and the validation standard deviation
(SDval), which here we computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ð1� f Þ

p
, where f is the allele

frequency for the effect allele. When this frequency was not avail-
able in the dataset, we computed it using the CEU population in
1000 Genomes Phase III panel. Note that in the LDpred2 paper,
SDval is computed using the test dataset, but since our aim is not to
use any external dataset for QC or parameter tuning, we computed
it as above. We then excluded SNPs for which SDss < 0.5 � SDval or
SDss > SDval þ 0.1 or SDss < 0.1 or SDval < 0.05, following
LDpred2 guidelines (Privé et al., 2020). We plotted SDss versus
SDval and visually inspected the relationship to spot possible devia-
tions (Supplementary Figs S1–S10).

We further filtered SNPs to the subset overlapping the HapMap3
variants, as recommended by LDpred2, PRScs and SBayesR, the
three methods we compared RápidoPGS to. To explore how
RápidoPGS prediction ability changes depending on the selection of
SNPs, we created another set of post-QC datasets, filtered by 1000
Genomes Phase III variants instead.

2.3 PGS generation using RápidoPGS
RápidoPGS comes in two flavours: RápidoPGS-single, and
RápidoPGS-multi. As explained in Section 2.1, they correspond to
two different approaches, which differ in their assumption of how
many causal variants per LD block are considered in their respective
models—hence ‘single’ and ‘multi’. RápidoPGS-single requires speci-
fying W, which for case–control traits we set as W¼0.22. For quan-
titative traits, we estimated the informed W using estimates of
heritability from LDhub: ‘BMI’ h2 ¼ 0.246, and ‘Standing Height’
h2 ¼ 0.462 which led to estimates of W of (0.127)2 for BMI, and
(0.141)2 for height. RápidoPGS-multi allows for W to be automatic-
ally estimated, and it is our recommended choice.

All methods included in this study (with the exception of
RápidoPGS-single) require LD matrices. LD matrices inform the
method about the correlations between SNPs in a reference popula-
tion, which is ideally close to the population we create the PGS for.
LDpred2, SBayesR and PRScs offer European HapMap3-filtered LD
matrices, which are supplied with each method. RápidoPGS-multi
can either use a reference panel to compute LD matrices or input
pre-computed LD matrices supplied by the user. In this study, we
employed UKBB-based LD matrices provided by LDpred2 authors,

publicly avaliable at https://figshare.com/articles/dataset/European_
LD_reference/13034123.

To improve speed and reduce computational cost for
RápidoPGS-multi, we thinned the input SNPs using aSNP ¼ 0.1, or
aSNP ¼ 0.01. As only 10% of truly null SNPs achieve P values < 0.1
and only 1% < 0.01, this should remove 90% or 99% of null SNPs
respectively. Assuming most blocks have 1000 SNPs or more, nearly
all blocks containing only null SNPs should achieve a minimum P-
value of 10�3, and only 10% a minimum P-value of 10�4, so we
chose block-thinning parameters of ablock ¼ 10�3 or ablock ¼ 10�4.
Of note, although we used 15 CPUs and 8 h as a standard across all
methods, RápidoPGS-single and RápidoPGS-multi (using pre-
computed LD matrices) do not require using multiple CPUs, and our
tests showed that one CPU is sufficient to run the method, without
speed lost compared with using multiple CPUs. This makes
RápidoPGS especially suitable for computational environments with
limited resources.

2.4 PGS generation using LDpred2-auto
For PGS model generation using LDpred2-auto (Privé et al., 2020)
we followed the LDpred2 instructions and adapted the code pro-
vided in the tutorials and the accompanying code (https://github.
com/privefl/paper-ldpred2 and https://privefl.github.io/bigsnpr/
articles/LDpred2.html). However, we omitted the prediction steps,
as our approach does not consider a test dataset for PGS model gen-
eration (see companion code to this paper for implementation
details).

We ran LDpred2-auto on a per-chromosome basis for all 22
autosomes.

LDpred2 uses two essential hyperparameters to compute the
adjusted effect sizes: p (the proportion of causal variants), and h2

(the heritability of the trait). LDpred2-auto can estimate both hyper-
parameters from the training data, thus not requiring a test dataset
to tune them. For p, it can take multiple a number of initial values,
from which Gibbs sampling chains run for a fixed number of itera-
tions to find the optimal effect sizes for each SNP. After 4000a num-
ber of iterations (3000 after 1000 burn-in), we averaged betas across
all chains. As recommended by LDpred2 authors in the LDpred2 tu-
torial (https://privefl.github.io/bigsnpr/articles/LDpred2.html), we
used 15 initial values for p, ranging from 10�4 to 0.9. We computed
initial h2 from the data using the snp_ldsc function. To ensure con-
vergence, we used 4000 iterations (3000 iterations þ 1000 burn-in).
We skipped computation for chromosomes for which estimated h2

was below 10-4, as was done in the LDpred2 paper (Privé et al.,
2020). Note that LDpred2 authors recommend running LDpred2
genome-wide rather than per-chromosome, due to better perform-
ance in their tests. However, LDpred2-auto genome-wide approach
did not finish on time for all but one trait (T1D), using 32 hours and
15 CPUs on our HPC. The two approaches for that trait gave very
similar results (difference in r2 ¼ 0.0031). Our LDpred2 per-
chromosome are also very similar to the reported genome-wide
results in LDpred2 paper (Privé et al., 2020). Therefore, we report
results for the per-chromosome approach.

2.5 PGS generation using PRScs-auto
We ran PRScs (Ge et al., 2019) using pre-computed LD matrices
from European 1000 Genomes Project phase 3 samples, as provided
by the authors. We formatted the input summary statistic datasets
following documentation and ran PRScs-auto using default parame-
ters. PRScs requires GWAS sample size (N), so we used case þ con-
trol numbers for case–control datasets. MDD dataset had per-SNP
N, so we used the sum of median cases and median controls (which
were also max values). For BMI and height datasets, which also had
per-column N, we used the median value of each dataset as its N
(233 691 and 252 021 respectively). We ran PRScs for all chromo-
somes, and concatenated individual files together. Although it was
unclear if PRScs would benefit from parallel computation, we ran it
with 15 CPUs and 8 hours for consistency.
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2.6 PGS generation using SBayesR
SBayesR is part of the GCTB suite (Lloyd-Jones et al., 2019).
SBayesR requires LD matrices from a reference panel too, so we
downloaded shrunk sparse LD matrices described in Lloyd-Jones

et al. (2019), computed based on a random sample of 50K individu-
als of European ancestry in UK Biobank data and a genetic map in

the public domain, following the algorithm in (Wen and Stephens,
2010) . These matrices comprise the HapMap3 variants, like our fil-
tered datasets. SBayesR requires effect allele frequency, and we pre-

computed them using the CEU population in a 1000 Genomes Phase
III panel. We used the same strategy for supplying sample size as we

did for PRScs. We experienced some issues related to poor conver-
gence, so following SBayesR documentation advice, we dropped
SNPs in the lower 10% N quantile for the three datasets with per-

SNP N. We also used the –imputeN flag to allow GCTB estimate
per-SNP sample size based on the beta values, SE and allele frequen-

cies and exclude SNPs that have the imputed sample sizes 3 standard
deviations apart from the median value. In addition, we used add-
itional –P-value 0.5 –rsq 0.99 flags to remove SNPs with P-values

above 0.5 and with r2 larger than 0.99, so mitigating the effect of
SNPs in high LD with opposite effects. We ran SBayesR with default
values, 15 CPUs and 8 hours. We ran SBayesR for all chromosomes

in one go, using –mldm tag and a list of matrices for each chromo-
some. All datasets ran successfully except for T1D, which despite

the measures mentioned above continued to experience convergence
issues and failed to provide an output.

2.7 Model evaluation using UK Biobank individual data

as a validation dataset
We evaluated the predictive performance of our PGS models gener-
ated with the four methods using individual genotypes from the UK

Biobank cohort. For all traits, we excluded SNPs with low imput-
ation quality (info score <0.3) or multi-allelic SNPs. Moreover, we
removed related individuals and restricted the analysis to individuals

of European ancestry (UKBB field 22006, genetic ethnic group). The
binary traits selected (Supplementary Table S1) were the same used

in the evaluation of LDpred2 (Privé et al., 2020) and we applied the
same selection criteria for cases and controls as previously described
(Privé et al., 2019) following the code for each of the traits as in

https://github.com/privefl/simus-PRS/tree/master/paper3-SCT/code_
real. For all disease traits, we included as cases those individuals

who self-reported the condition or were diagnosed by a medical doc-
tor or the condition was included in their death record. For breast
and prostate cancer we excluded individuals with other cancer diag-

nosis. Moreover, for breast cancer, we restricted the analysis to
females, for prostate cancer to males. For rheumatoid arthritis, we

excluded individuals with any other musculoskeletal system and
connective tissue condition. For type 1 diabetes we excluded individ-
uals with type 2 diabetes and vice versa. For coronary artery disease,

we excluded individuals with other heart conditions. For asthma,
we excluded individuals with additional respiratory conditions. For
MDD we excluded individuals with additional mental and behavior-

al disorders as well as individuals which were included in the GWAS
used to construct the score. The MDD GWAS we used to generate

the score contained �30 000 individuals from UKBB which corre-
sponded to the initial release and were genotyped with the BiLEVE
array. We identified those individuals using code ‘22000’ and

excluded those genotyped with the BiLEVE array (batches coded -1
to -11). For BMI and height, we used the UK Biobank codes ‘21001’

and ‘50’, respectively.
After computing the scores, for case–control phenotypes we esti-

mated the area under the curve (AUC) adjusting for the first 40 gen-
etic principal components (PCs, codes ‘22009-0.1-40’), age (code
‘21003-0.0’) and sex (code ‘22001-0.0’)—the latter for all traits ex-

cept breast and prostate cancer—using the R package ‘ROCnReg’.
We then obtained r2on the liability scale using the estimated AUC

(Lee et al., 2012) as:

r2
AUC ¼

2Q2

ðm2 �mÞ2 þQ2mðm� tÞ þm2ðm2 � tÞ

with:

Q ¼ U�1ðAUCÞ

where m is the mean of liability for cases, K is the population preva-
lence and t is the threshold on the normal distribution which trun-
cates the proportion of disease prevalence.

m2 ¼ �mK=ð1�KÞ

We estimated K as the proportion of cases from the UKBB
dataset.

For continuous traits, we assessed the squared correlation be-
tween the PGS and the measured trait (r2) adjusting or the first 40
genetic PCs (codes ‘22009-0.1-40’), age (code ‘21003-0.0’) and sex
(code ‘22001-0.0’). Briefly, we regressed each trait against the cova-
riates (PCs, age and sex) and then correlated the residuals with the
predictive score for the relevant trait. We constructed 95% confi-
dence intervals for our estimates by bootstrapping 1000 times.

2.8 Runtimes
We timed all methods and approaches for all datasets in independ-
ent runs, using the same HPC parameters (i.e. 15 CPUs, 8 hours).
We used system.time() function in R for timing RápidoPGS,
LDpred2 and SBayesR wall clock runtime. For PRScs, we used the
unix ‘time’ programme, as using system.time() was unfeasible.

Times for RápidoPGS includes full PGS generation procedure:
check dataset integrity (for both single and multi), handling of pre-
computed LD matrix or LD matrix computing from panel and a fil-
tering (RápidoPGS-multi only), algorithm running and final weight
computation. SBayesR and PRScs require transforming the input
data into a specific format, a step we did not include in the timing.

3 Results

We computed PGS for 10 different traits (Table 1, Supplementary
Table S1). We first assessed the relative performance of each
RápidoPGS approach. For RápidoPGS-multi, we considered two
pairs of a parameters for all traits. The milder thinning (aSNP¼ 0.1,
ablock¼ 10�3), which discards fewer SNPs, showed slightly better
performance than aSNP¼ 0.01, ablock¼ 10�4 setting. RápidoPGS-
multi, which allows for multiple causal variants, achieved better per-
formance than RápidoPGS-single, which is simpler and faster, but
has the limitation of assuming a single causal variant per block,
which is unrealistic in most scenarios. However, for certain traits
(e.g. RA and T1D), differences in AUC and r2 for both approaches
are small(Fig. 1). Although W (prior variance on the true effect of a
variant) can be provided by the user for RápidoPGS-multi, we found
that letting RápidoPGS-multi compute W automatically provides
better performance, at the expense of increased running time
(Supplementary Tables S2 and S3).

We compared the speed of RápidoPGS-single and -multi apply-
ing different thresholds, which control the number of input LD
blocks and SNPs to construct the PGS (see Section 2). Selecting
ablock¼10�4 and aSNP¼0.01 thresholds which reduces the number of
LD blocks and SNPs relative to ablock¼10�3 and aSNP¼0.1, lowered
the run time from �36% (height) to �64% (asthma) (Fig. 2).

We next compared RápidoPGS performance with those of
LDpred2, PRScs and SBayesR.

RápidoPGS achieved reasonably good prediction performance
for most case–control traits, being superior to SBayesR in most
instances and reaching prediction values close to PRScs although
lower than LDpred2, which showed the best performance for most
traits (Fig. 3, Supplementary Table S2). SBayesR experienced con-
vergence issues for T1D that we could not fix. RápidoPGS showed
poor performance for MDD and both quantitative traits (BMI and
Height).
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RápidoPGS-multi (aSNP ¼ 0.1, ablock ¼ 10�3) is the best-
performing RápidoPGS method, which shows the smallest median
r2 difference and median r2 ratio to LDpred2 (-0.0092 median dif-
ference for case–control, and -0.0429 for quantitative traits, and
0.8011 and 0.6585 median ratio, respectively) and PRScs (mean r2

difference ¼ -0.0042, and -0.0538, median r2 ratio ¼ 0.9249 and
0.5863), and outperforms SBayesR for case–control traits (mean r2

difference ¼ 0.0064 and -0.0436, median r2 ratio ¼ 1.1787 and
0.6199) (Supplementary Tables S4 and S5).

With regards to runtimes, RápidoPGS-single is the fastest
method, being �8000 to 27 000 times faster than the slowest
method for each trait (Fig. 4). RápidoPGS-multi approach involves
multiple steps, including SNP filtering, LD matrix computation
from panel (if not pre-computed), W automatic estimation, and
SuSiE algorithm running. All these steps make it inevitably slower
than simpler RápidoPGS-single. Nonetheless, RápidoPGS-multi is
generally much faster than any of the other methods (1.12–22.17
times faster). We only observed one instance that RápidoPGS-multi
took unusually long to finish (Height in Figs 2 and 4), due to the

SuSiE internal algorithm needing to run many iterations to converge
in some LD blocks.

4 Discussion

The main downside of most sophisticated PGS methods is their com-
putational cost and running time, taking many hours to finish even
when using multiple cores in a high performance computing
context.

Having PGS scores computed easily and quickly can be advanta-
geous in a context in which there is a need for rapid assessment of
many traits. For example, PGS can be used to estimate ‘genetic nur-
ture’ effects on trait values (Balbona et al., 2021) and a search for
traits affected by genetic nurture might be more efficient using a
two-stage approach: rapid assessment using a RápidoPGS approach,

Table 1. Training datasets used for PGS computation using four different methods in this study

Trait First author Year PMID/doi Controls Cases Total Controls Cases Total

Training set Training set Training

sample

Validation set Validation set Validation

sample

BRCA Michailidou 2017 29059683 119 078 137 045 256 123 158 385 11 578 169 963

PRCA Schoemacher 2018 29892016 61 106 79 148 140 254 141 551 6382 147 933

Asthma Demenais 2018 29273806 107 715 19 954 127 669 261 974 43 785 305 759

RA Okada 2014 2439034 61 565 19 234 80 799 226 320 5614 231 934

T1D Cooper 2017 doi :

10.1101/

120022

8828 5913 14 741 314 535 771 315 306

T2D Scott 2017 28566273 132 532 26 676 159 208 314 535 14 175 328 710

CAD Nikpay 2015 26343387 123 504 60 801 184 305 225 917 12 263 225 917

MDD Wray 2018 29700475 113 154 59 851 173 005 255 306 22 287 277 593

BMI Locke 2015 25673413 – – 339 224 – – 334 527

Height Wood 2014 25282103 – – 253 288 – – 334 891

Note: Validation set refers to the UK Biobank individual data used for PGS evaluation.

Fig. 1. RápidoPGS-multi shows better performance than RápidoPGS-single, with

best results when discarding fewer SNPs (aSNP ¼ 0.1, ablock ¼ 10�3), although differ-

ences across a parameters are small. (A) AUC for case–control traits. (B) r2 for all

traits. In (A) and (B) the error bars correspond to the 95% confidence interval

Fig. 2. Wallclock times for RápidoPGS approaches (using pre-computed UK

Biobank LD matrices and HapMap3 variants), in minutes. Time for runs that took

<1000 s is displayed on the right of the bar, in seconds
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followed by a more accurate estimate of that genetic nurture for
selected traits using a more accurate PGS, such as LDpred2.
Alternatively, in simulation studies to explore the utility of PGS for
novel applications, a fast but less accurate method may be preferred
for practical reasons.

We have thus developed a method to fill this gap, which com-
prises two flavours, based on fine-mapping strategies with different
assumptions. On the basis of the traits considered here, we recom-
mend using RápidoPGS-multi, as it performs generally better than
RápidoPGS-single. For RápidoPGS-multi, we recommend allowing
internal estimation of W, as it showed to outperform user-supplied
W in most cases (Supplementary Table S1). However, we recom-
mend that when suitable LD information is not available, which is a
particular concern in broad-ancestry studies or meta analyses, or
when speed is particularly important, that RápidoPGS-single is
chosen. Our method for improving the speed of the SuSiE, by filter-
ing SNPs according to P value, is approximate and was not recom-
mended by the method authors. We use it to allow this fine-mapping

approach to run in a reasonable time for our purposes, and it
appears to perform well in this situation, but it is unlikely to be opti-
mal. It is possible a more accurate PGS could be constructed if all
SNPs were supplied, but this would be at the cost of more than an
order of magnitude slower speed.

Like all methods used here for comparison, RápidoPGS-multi
requires LD matrices, constructed on the same or similar population
to the dataset on which the PGS is trained. However, since individual
data is often not available due to privacy concerns, this can be done
using a publicly available reference panel. Despite its relatively small
size (2504 individuals of worldwide origin), 1000 Genomes Project
Phase III is publicly available, and as we have shown, can be used for
LD matrix computation and obtain good results. We provide a func-
tion to download and pre-process a 1000 Genomes-based reference
panel from scratch, although users are free to use their own panel.

We are not the first to suggest that fine-mapping approaches can
be helpful for PGS construction, Newcombe et al. (2019) used revers-
ible jump MCMC to fit a fine-mapping model to GWAS summary
statistics, parallelizing across LD blocks as we do here. However, ra-
ther than estimating posterior inclusion probabilities and using these
to shrink frequentist effect estimates, they averaged samples from the
posterior distribution of causal effect estimates in their fine-mapping
model, thus mirroring the PGS approach of focusing on the true effect
estimates. Our work offers an alternative method to generate the
weights wi. Other advances in fine-mapping methods may be transfer-
able to the PGS setting. For example, PGS are known to have less pre-
dictive power in populations other than that used for training (Martin
et al., 2019). This is a particular issue given the eurocentric focus of
GWAS to date. Restricting PGS to SNPs with known functional anno-
tations has been shown to increase the portability of scores between
ancestries (Amariuta et al., 2020), but relevant functional annotations
can be incomplete. Fine-mapping offers a natural means to incorpor-
ate levels of annotation data through variable per-SNP priors, and
methods have been developed to learn appropriate priors through
hierarchical Bayesian approaches (Pickrell, 2014). Alternatively,
established trans-ancestry fine-mapping approaches may be useful
(Morris, 2011). Thus, while our work presents a method designed for
fast and easy generation of PGS, it also highlights that the current
challenges for PGS may be potentially addressed through adaptation
of fine-mapping approaches which addressed similar challenges in
that field.
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Web resources

R—https://cran.r-project.org/

RápidoPGS—https://github.com/GRealesM/RapidoPGS

LDpred2—https://privefl.github.io/bigsnpr/articles/LDpred2.html

PRScs—https://github.com/getian107/PRScs

SBayesR—https://cnsgenomics.com/software/gctb/

LDetect datasets—https://bitbucket.org/nygcresearch/ldetect-data/src

Fig. 4. Wallclock times for all methods applied in this study, in minutes. As in

Figure 3, RápidoPGS-multi run is represented by ablock ¼ 10�3, aSNP ¼ 0.1 and

automatic SD prior parameters. For better visualization, running times for runs that

took <1000 s are displayed on the right of the corresponding bar, in seconds

Fig. 3. Comparison of RápidoPGS to other methods. (A) AUC for case–control traits

using LDpred2-auto (per chromosome), PRScs-auto, SBayesR-auto and RápidoPGS

(single and multi with ablock ¼ 10�3, aSNP ¼ 0.1 and automatic SD prior parame-

ters). (B) r2 results for all methods and traits BMI and height. SBayesR failed to run

for T1D and hence we show an empty column. In (A) and (B) the error bars corres-

pond to the 95% confidence interval.
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GWAS catalog—https://www.ebi.ac.uk/gwas/

1000 Genomes Project—https://www.internationalgenome.org/

LDHub—http://ldsc.broadinstitute.org/ldhub/

Data availability

Summary statistics datasets used are publicly available in their respective pub-

lications (see Supplementary Table S1). Code used in the analyses is available

at GitHub (https://github.com/GRealesM/RapidoPGS_paper) and code used

for model evaluation is available at GitLab (https://gitlab.com/evigorito/

applyrapidopgs).

We have extensively used tools in the bigsnpr (Privé et al., 2018) and data.t-

able packages for large dataset handling and analysis.
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Vilhjálmsson,B.J. et al.; Schizophrenia Working Group of the Psychiatric

Genomics Consortium, Discovery, Biology, and Risk of Inherited Variants in

Breast Cancer (DRIVE) Study. (2015) Modeling linkage disequilibrium increases

accuracy of polygenic risk scores. Am. J. Hum. Genet., 97, 576–592.

Wakefield,J. (2009) Bayes factors for genome-wide association studies: com-

parison with P-values. Genet. Epidemiol., 33, 79–86.

Wallace,C. (2020) Eliciting priors and relaxing the single causal variant as-

sumption in colocalisation analyses. PLoS Genet., 16, e1008720.

Wang,G. et al.. (2020) A simple new approach to variable selection in regres-

sion, with application to genetic fine mapping. J. R. Stat. Soc. Series B. Stat.

Methodol., 82, 1273–1300.

Wen,X., and Stephens,M. (2010) Using linear predictors to impute allele fre-

quencies from summary or pooled genotype data. Ann. Appl. Stat., 4,

1158–1182.

Wood,A.R., LifeLines Cohort Study. et al. (2014) Defining the role of common

variation in the genomic and biological architecture of adult human height.

Nat. Genet., 46, 1173–1186.

Wray,N.R. et al.; Major Depressive Disorder Working Group of the

Psychiatric Genomics Consortium. (2018) Genome-wide association analy-

ses identify 44 risk variants and refine the genetic architecture of major de-

pression. Nat. Genet., 50, 668–681.

Yang,J. et al. (2010) Common SNPs explain a large proportion of the herit-

ability for human height. Nat. Genet., 42, 565–569.

Zheng,J. et al.; Early Genetics and Lifecourse Epidemiology (EAGLE) Eczema

Consortium. (2017) LD Hub: a centralized database and web interface to

perform LD score regression that maximizes the potential of summary level

GWAS data for SNP heritability and genetic correlation analysis.

Bioinformatics, 33, 272–279.

4450 G.Reales et al.

https://www.ebi.ac.uk/gwas/
https://www.internationalgenome.org/
http://ldsc.broadinstitute.org/ldhub/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab456#supplementary-data
https://github.com/GRealesM/RapidoPGS_paper
https://gitlab.com/evigorito/applyrapidopgs
https://gitlab.com/evigorito/applyrapidopgs

	tblfn1

