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Abstract: Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease.
It presents with progressive memory loss, worsens cognitive functions to the point of disability,
and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The
underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive gen-
eration of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function,
and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore
urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging
to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic
target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in
neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been
conducted up to now. In this article, we discuss current experimental evidence to demonstrate
the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD.
Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful
conditions through counteracting oxidative stress, and may also adjust the autophagy process, these
two effects together conferring neuronal resistance in cases of AD.

Keywords: Alzheimer’s disease; autophagy; mTOR; oxidative stress; sestrin2

1. Introduction

Patients with age-related neurodegenerative diseases usually present with a relent-
lessly deteriorating clinical course. Worst of all, the lack of effective treatment results in
heavy socioeconomic burdens to patients, family, and the whole of society [1–3]. Alzheimer’s
disease (AD), a type of dementia with progressive memory loss and declined cognitive
functions, is the most common neurodegenerative disease in the elderly. Based on the
information from the World Health Organization (WHO), approximately 50 million people
suffer from dementia worldwide, and nearly 10 million new cases are added every year,
making the disease one of the main causes of disability and dependence. AD may account
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for 60–70% of all dementia cases (https://www.who.int/news-room/fact-sheets/detail/
dementia, accessed on 21 September 2020). According to “2021 Alzheimer’s disease facts
and figures”, in the USA [4], approximately 6.2 million senior Americans over 65 years
old have AD. By 2060, with a steep projected increase, the number of AD patients may
rise to 13.8 million. Data revealed that, from 2000 to 2019, deaths resulting from human
immunodeficiency virus (HIV), heart disease, and stroke declined, while deaths from AD
increased more than 145% [4]. The total healthcare costs in 2020 are approximated at
$305 billion and are expected to increase to more than $1 trillion as the population ages [5].
It is crucial to delay, reduce, or prevent the occurrence of disability from AD and lessen the
heavy burden it places on society.

The major pathological hallmarks of AD brains are gross atrophy of the brain, as well
microscopically observable senile plaques and neurofibrillary tangles (NFTs) [6–8]. Senile
plaques are extracellular structures mainly composed of insoluble deposits of amyloid-beta
peptide (Aβ), a peptide fragment of 39–43 amino acids derived from sequential cleavage of
the transmembrane protein amyloid precursor protein (APP) by β- and γ-secretase [9–12].
Newly synthesized full-length APP is transported from the endoplasmic reticulum (ER) to
the Golgi apparatus (GA)/trans-Golgi network (TGN) for further protein processing and
maturation. The acidic environment (pH = 6.0–6.5) in the TGN or the late GA is optimal for
the activity of many processing enzymes, including BACE1. The full-length APP delivered
to the plasma membrane may be subjected to non-amyloidogenic cleavage by α- and
then γ-secretase to release the soluble APP-alpha (sAPPα), the p3 fragment, and the APP
intracellular domain (AICD). Alternatively, a portion of the full-length APP may also be
endocytosed into early endosomes and possibly rerouted to the acidic recycling endosomes
(REs), where BACE1 resides, to produce Aβ [13]. In addition, extracellular Aβ can also
be taken up through receptor binding and subsequently internalized, thereby leading
to its accumulation within various intracellular compartments, including endosomes,
multivesicular bodies (MVBs), lysosomes, mitochondria, the ER, the TGN, and cytosol [14].

Aβ can induce neurotoxicity through various mechanisms, such as excitotoxicity [15],
excessive generation of reactive oxygen species (ROS) [16], aberrant cell cycle reentry [17,18],
impaired mitochondrial function [19], and DNA damage [20], all of these mechanisms
together contributing to neuronal damage or even death. Moreover, Aβ can also alter gene
transcription [19], and thereby affect protein expression, which may influence the survival
or death of neuronal cells in AD-related pathophysiology.

Maintenance of neuronal functions depends on axonal transport of proteins, or-
ganelles, and vesicles from the soma to the nerve terminals [21]. Going the other way,
neurotrophic factors, including the members of the neurotrophin family, secreted from post-
synaptic targets must be transmitted retrogradely from nerve terminals via axonal transport
back to the soma [22]. Thus, failure of axonal transport may contribute to neuronal death.
As a microtubule-binding protein important for microtubule assembly and stabilization,
hyperphosphorylation of tau compromises its biological functions and destabilizes the
structures of microtubules, and is accompanied by disturbance to axonal transport [23].
Furthermore, increasing evidence suggests that Aβ may also disrupt axonal transport and
contribute to AD pathophysiology [21].

It was proposed two decades ago that fibrils may not be the only toxic form of Aβ;
small oligomers of Aβ, or Aβ-derived diffusible ligand (ADDL), and Aβ protofibrils may
also have potent neurotoxicity [24]. Like Aβ oligomers, tau oligomers formed during
the early stages of aggregation are also pathologically relevant to the loss of neurons and
behavioral impairments in several neurodegenerative disorders called tauopathies, the
most common of which is AD [25]. In addition to the aggregation of extracellular amyloid
plaques, emerging evidence has revealed the crucial role of intraneuronal amyloid species
(iAβs) which can appear in the membrane or the lumen of late endosomes and precede fur-
ther aggregation, eventually accumulating inside the endosome or endolysosome [26,27].
It was also noted that, besides the extracellular aggregation of homologous Aβ species,
cross-seeding of different amyloid proteins, or even between different misfolded proteins,
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such as Aβs and tau, may be biologically significant, and even critical in the progression of
AD [28]. Apart from cross-seeding, crosstalk between Aβ and tau may also play a vital role
contributing to AD pathogenesis. For example, Aβ has been shown to trigger alternative
splicing of tau isoforms via glycogen synthase kinase-3beta (GSK-3β), making tau more
susceptible to hyperphosphorylation [29,30]. Overall, these effects could further aggravate
aberrant cellular signaling, induce excessive tau phosphorylation, worsen toxic tau accu-
mulation, and lead to synapto/neurotoxic effects [26]. A simplified cartoon summarizing
the pathogenic mechanisms of AD is shown in Figure 1, below.
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Figure 1. The cartoon diagram demonstrates the pathogenic processes of amyloid-beta peptide (Aβ)
and tau protein. Through the amyloidogenic pathway, the full-length amyloid precursor protein
(APP) is sequentially cleaved by β-secretase (encoded by beta-site amyloid precursor protein cleaving
enzyme-1 or BACE1) and γ-secretase to generate Aβ. Newly synthesized APP is transported from the
endoplasmic reticulum (ER) to the Golgi apparatus (GA) for protein maturation. The acidic pH in the
trans-Golgi network (TGN) or the late GA is optimal for BACE1 activity, with production of secreted
Aβ; the sequential amyloidogenic cleavages of full-length APP by β- and γ-secretase also generate
soluble APP-beta (sAPPβ) and the APP intracellular domain (AICD), though these are not depicted
in the diagram. A portion of the full-length APP reaching the plasma membrane may be subjected to
the non-amyloidogenic cleavage by α- and then γ-secretase to release the soluble APP-alpha (sAPPα),
the p3 fragment, and the AICD. Another portion of the full-length APP may also be endocytosed
into early endosomes and possibly be rerouted to the acidic recycling endosomes (REs; not depicted),
where BACE1 resides, for intracellular production of Aβ. Furthermore, extracellular Aβ can also
be taken up through receptor binding and subsequent internalization, resulting in its accumulation
within various intracellular compartments, including endosomes, multivesicular bodies (MVBs),
and mitochondria (not depicted). The extracellular Aβ monomers aggregate into oligomers and
then into fibrils, eventually forming senile plaques. Tau protein is a microtubule-binding protein,
which is hyperphosphorylated in AD neurons. The phosphor-tau monomer may also aggregate into
tau oligomers and, finally, into neurofibrillary tangles (NFTs). The intraneuronal Aβ species also
oligomerize or even mix with tau proteins to form mixed aggregates. The extracellular senile plaques,
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the extracellular and intraneuronal Aβ oligomers, as well as tau oligomers and NFTs, together lead
to excessive production of reactive oxygen species (ROS), Ca2+ overload, mitochondrial dysfunction,
and disrupted energy homeostasis, ultimately causing neuronal death. In addition to those pictured
above, other pathogenic mechanisms are not demonstrated in this figure due to limited space. For
example, loss of tau binding destabilizes microtubules, thus compromising anterograde axonal
transport of proteins, mitochondria, and vesicles from soma to the nerve terminals, which may
negatively impact nerve transmission. Conversely, neurotrophic factors, especially neurotrophins,
secreted from target cells also fail to be retrogradely transported from the nerve terminal back to the
soma to nourish the neurons, also leading to neuronal demise. Please see the text for more details.

Sestrins, including sestrin1, sestrin2, and sestrin3, belong to a group of highly evolu-
tionarily conserved proteins in mammalian cells, and may play a crucial role in stressful
conditions, such as oxidative stress, hypoxia, and DNA damage [31–34]. While the struc-
tures of sestrin1 and sestrin3 await further elucidation, the essential characteristics of
sestrin2 have been gradually revealed in recent years [35,36]. Three distinctive functional
sites were identified, which are critical for inhibition of ROS production, modulation of
the mammalian/mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), and for
leucine-binding [35,36]. Inhibiting either ROS for antioxidation or mTORC1 for autophagy
promotion may attenuate degenerative processes associated with aging [35]. Therefore,
sestrins may possess two beneficial effects that are pivotal for anti-aging [37,38].

Despite the potential effect of sestrins on age-related neurological disorders, only quite
limited studies about AD have been reported. We have shown in a previous study that
sestrin2 was induced by Aβ in primary rat cortical neurons and an increased expression
of sestrin2 was also found in the cortices of 1-year-old AD transgenic mice [39]. We also
showed that sestrin2 functions as an endogenous protective mediator against Aβ-induced
neurotoxicity, in part through enhancement of autophagy activity [39]. In another recent
study, we further demonstrated that Aβ-induced sestrin2 expression contributes to an-
tioxidative activity in neurons; furthermore, Aβ induction of sestrin2 is at least partly
mediated by the activation of transcription factors NF-κB and p53 [40]. In this review
article, we discuss recent progress in revealing the underlying molecular mechanisms
concerning the sestrin2-mediated protective effects against neuronal dysfunction in AD.
Better understanding of the potential novel pathway in AD may guide further research into
developing effective therapeutic regimens in the future. Finding the way to augmenting
sestrin2 expression may have significant clinical implications, especially in treating many
devastating neurodegenerative diseases, including AD.

2. The Biological Roles of Sestrin2

Sestrins, including sestrin1, sestrin2, and sestrin3, belong to a gene family and function
as stress-inducible proteins that affect metabolism through perceiving nutrient status and
redox level in living organisms. Sestrin1 (also known as PA26) was initially discovered in
human Saos-2 osteosarcoma cells as one of the p53-induced transcripts and was mapped to
chromosome 6q21 through a differential display screening [34,41]. Sestrin1 is ubiquitously
expressed in most tissues, including lung, kidney, pancreas, skeletal muscle, and brain tis-
sues [33], and it can be activated under oxidative stress and irradiation in a p53-dependent
fashion [34,42]. Sestrin2 (also known as Hi95), located in chromosome 1p35.3, was first
discovered in glioblastoma cells under prolonged hypoxia and its transcription was found
to be increased following DNA damage [33]. Later, it was noted that sestrin1 and sestrin2,
through activating the AMP-dependent kinase (AMPK) pathway, may affect tuberous scle-
rosis complex 2 (TSC2) expression to inhibit mTOR-mediated cell over-proliferation [43].
Sestrin3, located in chromosome 11q21, was identified from database mining of the PA26-
related gene family [32,33]. mRNA expression of these sestrin genes is presented diffusely
during mouse embryogenesis and also in adult tissues at various levels [32]. Sestrin1 is
robustly expressed in the brain, heart, liver, and skeletal muscle; sestrin2 is expressed more
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in the kidney, leucocytes, lungs, and liver; sestrin3 is expressed at higher levels in the brain,
kidney, small intestine, and skeletal muscle [32,34,44].

It has been revealed that the crystal structure of human sestrin2 (hSesn2) has dis-
tinct globular subdomains, each possessing separate functions [35]. As shown below
in Figure 2A, the N-terminal domain (Sesn-A) diminishes alkyl hydroperoxide radicals
through the helix-turn-helix oxidoreductase motif. Mutations of Cys125, His132, and
Tyr127, which are, respectively, the catalytic cysteine, the residue critical for the conserved
proton relay system, and the residue potentially involved in the catalytic process, reduce
this redox activity. The C-terminal domain (Sesn-C) of hSesn2, whose sequence is highly
conserved across the sestrin family, has lost its antioxidant activity but acquired another
important function in mTORC1 inhibition via physical association with GTPase-activating
protein activity toward the Rags-2 (GATOR2) complex, in which process Asp406 and
Asp407 (the DD motif) are vital. Furthermore, the DD motif is involved in activation of
AMP-dependent protein kinase (AMPK), which is also important for mTORC1 inhibition.
Besides GATOR2 binding and AMPK activation for mTOR inhibition, sestrin2 may also
carry the guanosine nucleotide dissociation inhibition (GDI) function. However, mutation
studies of Arg419/Lys422/Lys426 in Sesn-C suggested that whether these amino acid
residues are truly critical for GDI functions is still in question [35].

The availability of amino acids is critical for the regulation of protein synthesis in
living organisms. Leucine, one of the essential amino acids, is indispensable for this process
and, more importantly, leucine was found to be crucial for mTORC1 activation in cells [45].
Located in the Sesn-C of hSesn2 (Figure 2A), charged residues Glu451 and Arg390, from
two sides of a single binding pocket, anchor leucine in place through salt bridges with
the free amine and carboxyl groups, respectively, whereas the isopropyl side chain of the
bound leucine forms extensive hydrophobic interactions with residues Leu389, Trp444,
and Phe447 in the pocket. In addition to contacting the charged sides and hydrophobic
base of the pocket, three threonine residues (Thr374, Thr377, and Thr386) are positioned
directly above the leucine to form a “lid” that encloses the top of the leucine, thereby
locking the ligand in place [36]. As a leucine sensor, sestrin2 inhibits mTORC1 activity
through the Rag guanosine triphosphatases (GTPase) and its regulators-GATOR1 and
GATOR2. Thus, the binding of leucine with sestrin2 disrupts the connection of sestrin2
with GATOR2, allowing GATOR2 to enhance mTORC1 activity [36]. It has previously
been demonstrated that adult sestrin2 gene knockout mice subject to a fasting/refeeding
regimen or maintained with a high-fat diet suffered from various metabolic derangements,
such as hepatosteatosis, insulin resistance, and glucose intolerance, with increased ROS
extent and mTORC1 activity [38,46].

Despite the availability of the crystal structure of hSesn2, the detailed molecular
information for sestrin1 and sestrin3 remains to be fully elucidated. However, sequence
alignment of the three human sestrins revealed an overall 44.8% amino acid sequence
identity [47]. Furthermore, the amino acid residues critical for alkyl hydroperoxidase
activity (Cys125, His132, and Tyr127), GATOR2-binding and AMPK activation for mTORC1
inhibition (Asp406 and Asp407), and leucine-binding (Glu451 and Arg390; Leu389, Trp444,
and Phe447; Thr374, Thr377, and Thr386) are all evolutionarily conserved in the three
human sestrins. It is therefore reasonable to speculate that hSesn1 and hSesn3 may share
most, if not all, of the functional roles of hSesn2. However, as compared with sestrin2, the
potential involvement of sestrin1 and sestrin3 in nervous systems has been studied much
less well. Below, in Figure 2B, is the list of known biological functions of all three sestrins.
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Figure 2. The structural and functional domains as well as the biological functions of three sestrin
members. (A) The strip diagram illustrates the three major structural domains (Sesn-A, Sesn-B, and
Sesn-C). Cys125/Tyr127/His132, located within the Sesn-A domain, is critical for alkyl hydroperoxi-
dase activity. The Asp406/Asp407 residues, the so-called “DD motif”, located within Sesn-C are vital
for GATOR2 binding and AMPK activation, both contributing to mTORC1 suppression. The leucine
binding pocket spanning from Thr374 to Glu451 in the Sesn-C is also important for amino acid sens-
ing and mTOR regulation. The guanosine nucleotide dissociation inhibition (GDI) domain containing
Arg419/Lys422/Lys426 is also shown in Sesn-C. Based on the crystal structure, however, whether
these amino acid residues are critical for GDI functions remains questionable. All the information was
based on Kim et al., 2015 [35] and Saxton et al., 2016 [36]. (B) Potential biological functions of three ses-
trins are listed. Information was derived from UniProt (https://www.uniprot.org) for human sestrin1
[UniProtKB-Q9Y6P5 (SESN1_HUMAN)], human sestrin2 [UniProtKB-P58004 (SESN2_HUMAN),
human sestrin3 [UniProtKB-P58005 (SESN3_HUMAN)], and mouse sestrin3 [UniProtKB- Q9CYP7
(SESN3_MOUSE)].

Expression of the sestrin2 genes is regulated by several critical transcription factors,
enabling the cells to cope with various stressful insults. Initially the crucial role of the p53
tumor suppressor in regulating the expression of sestrin2 under hypoxic and genotoxic
stress was revealed [33]. Later, additional studies revealed further transcription factors that
are critical for the expression of sestrin2 under a variety of stressful conditions. Oxidative
stress can activate the nuclear factor erythroid 2-related factor-2 (Nrf2) to regulate sestrin2
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expression [48,49]. Hypoxia may induce sestrin2 expression where hypoxia-inducible
factor-1 (HIF-1) may play a certain role [33,50–52], although the detailed mechanism is
not well understood. In our earlier study [53], we found that brain-derived neurotrophic
factor (BDNF) induced sestrin2 expression, which required dimerization of nuclear factor-
κB (NF-κB) subunits p65 and p50. Further, BDNF also enhanced production of nitric
oxide (NO), formation of 3′,5′-cyclic guanosine monophosphate (cGMP), and activation of
cGMP-dependent protein kinase (PKG). Indeed, BDNF induced nuclear translocation of
PKG-1 and its direct interaction with p65/p50 to form a ternary complex, thereby leading
to heightened NF-κB binding to the sestrin2 gene promoter with resultant upregulation
of its mRNA and proteins [53]. Apart from PKG/NF-κB, BDNF has also been shown to
induce sestrin2 in neurons by activating transcription factor-4 (ATF4) [54]. In another
recent study [40], we also found that NF-κB and p53 are involved in Aβ-induced sestrin2
expression in primary cortical neurons. Additional regulatory mechanisms responsible for
sestrin2 induction under various stressful or physiological conditions may emerge in the
near future

Nutrients including amino acids, lipids, and glucose are crucial for the biosynthetic
processes in the cell. An inadequate supply of nutrients can seriously modify cellular
metabolism. Sestrin2 activation may serve as one of the metabolic accommodations to
nutrient deficiency in cells [38]. Glucose starvation, inhibition of glycolysis, and impair-
ment of mitochondrial respiration can disrupt energy production, leading to the activation
of two transcription factors, ATF4 and Nrf2, that can bind directly to the consensus se-
quences within the promoter to induce sestrin2 gene transcription [49,55–57]. ATF4 is also
involved in the induction of sestrin2 as a result of a deficiency in amino acid supply in
mouse embryonic fibroblasts [58]. The inadequacy of growth factors may result in the
expression of sestrin2. It has been demonstrated in cancer cells that serum deprivation can
activate the c-Jun N-terminal kinase (JNK) pathway and upregulate sestrin2 expression,
which could be abolished by specific siRNAs against JNK1/2 or c-Jun [59]. Various phys-
iological and pathological conditions, such as excessive ROS generation, ischemia, Ca2+

dyshomeostasis, and inflammatory response can all cause an accumulation of misfolded
proteins in the endoplasmic reticulum (ER), with resultant ER stress [60]. ER stress may
lead to cellular dysfunction and/or cell death and contributes to the progression of many
diseases. Modulation of ER stress pathways may represent a potential therapeutic strategy.
It was reported that activating transcription factor-6 (ATF6)-dependent sestrin2 induction
can lessen the severity of ER stress-mediated liver injury [61]. In another study, it was
shown that the hepatoprotective role of sestrin2 against chronic ER stress depends on
the regulation of CCAAT-enhancer-binding protein-beta (c/EBPβ) [62]. Together, these
previous reports identify the crucial roles played by sestrin2 in dealing with various cellular
stresses under diverse physiological and pathological conditions. A simplified diagram
(Figure 3) demonstrates that distinct transcription factors are activated under a variety of
stressful conditions, thereby leading to induction of sestrin2 expression, which can regulate
autophagy and contribute to antioxidation.
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Figure 3. Brain trauma, stroke, neurological disorders, and aging induce hypoxia, the production of
reactive oxygen species (ROS), Ca2+ overload, metabolic dyshomeostasis, and neuronal inflammation.
Subsequently, the injury-induced signaling pathways promote sestrin2 expression via the activation
of various transcription factors (which particular factors depending on which stressors), such as
transcription factor-4 (ATF4), ATF6, hypoxia-inducible factor-1 (HIF-1), nuclear factor erythroid
2-related factor-2 (Nrf2), c-Jun N-terminal kinase (JNK)/c-Jun, and CCAAT-enhancer-binding protein-
beta (C/EBPβ). Sestrin2, as a sensor for essential amino acids with a leucine-binding pocket, also has
a binding site for the GTPase-activating protein activity toward Rags-2 (GATOR2). In the presence
of sufficient amino acids available for protein synthesis, sestrin2 may bind to leucine and release
the bound GATOR2. The freed GATOR2 can then physically associate with GATOR1, which can no
longer bind to, and hence inhibit, mTORC1, thereby promoting protein synthesis while inhibiting
autophagy. Under the stressful condition in which amino acids are insufficient, binding of GATOR2 to
sestrin2 allows GATOR1 to inhibit mTORC1, thereby promoting autophagy while inhibiting protein
synthesis. In addition to regulating autophagy and protein synthesis via binding with leucine or
GATOR2, the endogenous alkyl hydroperoxidase activity of sestrin2 also exerts direct antioxidative
actions.

3. Sestrin2 in Age-Related Clinical Conditions

Persuasive evidence supports the notion that aging is related to various harmful
mechanisms, such as escalation of oxidative stress, instability of genetic materials, declined
protein homeostasis, impaired mitochondrial function, increased cellular senescence, and
stem cell exhaustion [63]. The accumulation of various cellular damages among tissues
in aging organisms leads eventually to functional breakdown, causing disability or death.
Therefore, aging is believed to be a risk factor for various disorders, such as cardiovascular
diseases, stroke, type II diabetes, cancers, and neurodegenerative diseases [63–65]. Inhibi-
tion of either ROS production or mTORC1 activation may counteract aging [35], and as
sestrin2 is characterized by both these functions, it may exert such beneficial effects [66,67].
In fact, enhancement of sestrin2 expression reduces aging markers. Conversely, lessening
sestrin2 expression accelerates aging processes [68].

Aging is a predetermined time-related deterioration in various physiological condi-
tions, and is a critical risk factor for cancer development. Cancer and aging involve similar
processes of progressive time-dependent cellular damage. As sestrin2 is critically involved
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in aging [38,67], it may play a pivotal role in cancer progression, and is regarded as a po-
tential tumor suppressor. In non-small cell lung cancer patients, higher sestrin2 expression
was a favorable prognostic factor, while lower sestrin2 expression was accompanied by
poor tumor cell differentiation, as well as more advanced staging in terms of tumor, node,
and metastasis (TNM) [69]. It was shown that colorectal cancer patients with lower ex-
pression of sestrin2 showed poor prognostic outcomes [70]. Docosahexaenoic acid (DHA)
can increase oxaliplatin-induced autophagic cell death through the ER stress/sestrin2
pathway in colorectal cancer [71], whereas downregulation of sestrin2 can accelerate colon
carcinogenesis [72].

Hypernutrition, causing obesity, hepatosteatosis, and insulin resistance, is related to
chronic activation of p70S6 kinase and mTORC1 [73]. Activation of sestrin2 can lower
the extents of fatty liver and insulin resistance [73]. Sestrin2 can activate AMPK, inhibit
mTORC1 activity, and maintain a high AKT level to suppress the extent of gluconeogenesis
in the liver, thereby reducing the level of blood sugar. Sestrin2-deficient obese mice
were found to present an evident decline of AKT activity, leading to insulin resistance
and a higher level of glucose production [73]. In a recent study, serum levels of sestrins
are significantly decreased in patients with diabetes and dyslipidemia. It appears that
sestrin2 levels are robustly associated with diabetes, dyslipidemia, atherosclerosis, and
the atherogenic index [74]. Declined serum sestrin2 levels were also observed in diabetic
patients with nephropathy, particularly in those with macroalbuminuria [75].

It was demonstrated previously that loss of dSestrin (the only one sestrin homologue
in Drosophila) results in age-associated pathologies, including cardiac dysfunction, muscle
degeneration, and triglyceride accumulation. The cardiac dysfunction showed reduced
heart rate and compromised heart function. The detrimental effects induced by dSestrin
deficiency were generally inhibited by AICAR and rapamycin, the AMPK activator and the
mTORC1 inhibitor, respectively [67]. These results indicate that the sestrin family may play
crucial roles in the pathophysiology of cardiac regulation [76]. In a recent review article,
sestrin2 is considered a rising star among antioxidants, with future therapeutic potential
for reducing heart injury induced by oxidative stress, promoting cell survival through
the activation of Nrf2/AMPK, and inhibiting mTORC1 to combat various cardiovascular
diseases, such as cardiomyopathy, heart failure, and myocardial infarction [77]. Despite
these promises, however, the occurrence of major adverse cardiac events is predicted in
patients with chronic heart failure who have higher plasma sestrin2 concentrations [78].
The conflicting results as far as the beneficial or detrimental effects of sestrin2 in heart
failure are concerned await further clarification.

Stroke is the most common age-related cerebral vascular disease and the chief cause
of physical and intellectual disability in adults, as well as the leading cause of mortality
in developed countries [79]. Several studies have investigated the roles of sestrin2 in
cerebral ischemia [80–83]. It was demonstrated that sestrin2 can activate the Nrf2/heme
oxygenase-1 (HO-1) pathway, leading to augmentation of angiogenesis following focal
cerebral ischemia [82]. Another study also showed the critical role of sestrin2 in pro-
moting angiogenesis in focal cerebral ischemia by activating the Nrf2/p62 pathway [81].
In contrast, silencing sestrin2 expression may reduce mitochondrial activity, suppress
mitochondrial biogenesis, and ultimately exacerbate cerebral ischemia/reperfusion in-
jury by preventing the AMPK/PGC-1α pathway [83]. Although sestrin2 seems to have
pro-survival characteristics in the context of ischemic brain injury, the anti-inflammatory
role of sestrin2 is unknown. In a recent study, it was demonstrated that sestrin2 exerts
neuroprotective effects by changing microglial polarization and mitigating the extent of
inflammation in the ischemic mouse brain, which may be due to the inhibition of the mTOR
pathway and the restoration of autophagic flux [80]. It is to be expected that knowledge of
the mechanisms underlying additional protective effects of sestrin2 may emerge in the not
too distant future.
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4. Potential Roles of Sestrin2 in Age-Related Neurodegenerative Diseases: Focusing
on AD

As mentioned above, the sequences of the critical amino acid residues important for
known biological activities of hSesn2, including alkyl hydroperoxide reductase, mTORC1
inhibition, and leucine binding, are also conserved in hSesn1 and hSesn3. However, the
crystal structures of sestrin1 and sestrin3 are still not available. Nevertheless, there are a
few studies implicating sestrin1 and sestrin3 in nervous system disorders. For example, ses-
trin1 may exert protective effects in oxygen-glucose deprivation/reoxygenation (OGD/R)-
induced neuronal injury, a cellular model for mimicking cerebral ischemia/reperfusion
injury in vitro [84]. Furthermore, sestrin3 has been identified as a pro-convulsant gene net-
work in the human epileptic hippocampus [85]. Results derived from sestrin3 knockout rats
also suggested that sestrin3 may increase the occurrence and/or severity of seizures [86].
Conversely, silencing rno-miR-155-5p in vivo mitigated the pathophysiological features
associated with the status epilepticus, which was accompanied by attenuation of apoptosis
in the hippocampus, by enhancing expression of sestrin3 in rats, implying that sestrin3
plays a beneficial role in offsetting temporal lobe epilepsy [87]. Further dissection of the
pathophysiological roles of sestrin1 and sestrin3 will require a greater understanding of
their molecular structures, as well as the upstream regulatory mechanisms involved in
their expression in nervous systems.

Among age-related disorders, chronic neurodegenerative diseases are particularly
concerning due to the lack of efficacious treatments, their irremediable clinical course, and
their association with substantial social-economic burdens [1–3]. The potential roles of
sestrin2 in combatting neurodegenerative diseases, including AD, Parkinson’s disease (PD),
and Huntington’s disease (HD), while still awaiting further evidence, have gradually been
recognized in recent years.

It is widely accepted that maintaining proper levels of reactive nitrogen species
and ROS are crucial for ensuring regular neuronal function [88]. Yet, excessive ROS
generation with heightened levels of oxidation in lipids, proteins, and DNA, or inherent
lower antioxidant competence in the brain, may have detrimental effects on the organism
and play a role in the pathophysiology of various chronic neurodegenerative diseases,
including AD, PD, and HD [89,90]. Numerous mechanisms underlie oxidative stress-
mediated neurodegeneration; these include calcium overload, glutamate excitotoxicity,
inflammation, functional impairment of mitochondria, and apoptotic processes [88]. The
ability to lessen these harmful effects may be the key to developing effective treatments for
neurodegenerative diseases.

As mentioned above, sestrin2, with its dual functions, can directly reduce oxidative
stress through restoring overoxidized peroxiredoxins, and indirectly lessen oxidative
stress through regulating mTOR to augment the activity of autophagy, or specifically,
mitophagy, to remove the worn-out or damaged mitochondria with higher levels of electron
leakage and hence free radical production. The N-terminal domain of sestrin2 decreases
oxidative stress by its helix-turn-helix motif, while the C-terminal domain of sestrin2 may
physically associate with GATOR2, thereby causing the inhibition of mTORC1 [35]. Apart
from the effect of oxidative stress, one more common pathogenic mechanism in chronic
neurodegeneration is the deposition of aberrant and/or misfolded proteins, such as Aβ

and tau protein in AD, Lewy body (LB) in PD, and mutant huntingtin in HD. Enhancing the
activity of autophagy may help to eradicate neuronal dysfunction induced by misfolded
proteins, thereby opening an opportunity towards developing a new therapeutic strategy
for treating neurodegenerative diseases [91]. The dual biological functions of sestrin2, with
increasing antioxidative ability and autophagy-promoting activity to eliminate aggregated
proteins and damaged mitochondria, give this molecule a unique position in protecting
neurons against degeneration.

PD is the second most common aging-related neurodegenerative disease that mainly
presents syndromes with slow movements, tremors, and rigidity. The underlying cause
of PD is not well understood but may involve various genetic and environmental fac-



Biomedicines 2021, 9, 1308 11 of 22

tors [92]. The main pathological feature of PD is LB, which is composed of ubiquitin-bound,
misfolded α-synuclein protein in the dopamine neurons in the substantia nigra of the mid-
brain [93,94]. In an in vitro PD model with 1-methyl-4-phenylpyridinium (MPP+), it was
revealed that MPP+ neurotoxicity increases sestrin2 expression, whereas downregulation
of sestrin2 with small interference RNA augments MPP+-related neurotoxicity in SH-SY5Y
cells [95]. In another in vivo PD model induced by rotenone, sestrin2 exerts a protective
effect over dopaminergic neurons against rotenone-induced neurotoxicity by activating
an AMPK-dependent autophagy pathway [96]. In a clinical study, serum sestrin2 levels
were found to be elevated in PD patients compared to controls [97]. In postmortem human
samples, it was found that PD patients had higher expression levels of sestrin2 in the
midbrain [95].

No report was available concerning HD and sestrin2 either in the clinical or pre-clinical
studies. 3-Nitropropionic acid (3-NP) can inhibit the function of the mitochondrial respira-
tory complex II (also named succinate dehydrogenase), decrease ATP production, impair
cellular energy metabolism, aggravate the extent of oxidative stress, cause mitochondrial
DNA damage, and thus impair the function of mitochondria [98,99]. Although genetic
models of HD are more popular due to their similarity to the phenotypes observed in HD,
3-NP is still a useful model to study neurotoxic phenomena, mitochondrial alterations, and
neuroprotective effects for HD patients [100]. Therefore, 3-NP has been used as a pharma-
cological model to study neurodegeneration and neuronal death involving mitochondrial
dysfunction in HD [101]. Despite the indirect relationship, we have shown that BDNF
protects 3-NP-induced oxidative stress through augmenting sestrin2 expression. Further-
more, BDNF induction of sestrin2 implicates the NO/PKG/NF-κB pathway [53]. This
study thus highlights the probable beneficial role of sestrin2 in this devastating hereditary
neurodegenerative disease. Understanding the potential role of sestrin2 in impeding HD
pathogenesis may require further investigation into the genetic models of HD, such as
R6/2 or other knock-in mice.

AD is the most common age-related neurodegenerative disease involving various
pathogenic mechanisms such as excitotoxicity, excessive generation of ROS, aberrant
cell cycle reentry, impaired mitochondrial function, and DNA damage [15–19]. Although
emerging roles of sestrin2 in various neurological diseases have been suggested before [102],
limited studies concerning sestrin2 and AD have been reported [39,40,103–107]. In a 2003
study, in which human neuroblastoma CHP134 cells were analyzed with cDNA microarray
technology with confirmation by semi-quantitative RT-PCR, it was revealed that sestrin2
is overexpressed under treatment of Aβ [107]. Furthermore, in human neuroblastoma
SH-SY5Y cells, Aβ1-42 dose-dependently enhanced sestrin2 expression, whereas cotreat-
ment with atorvastatin reversed sestrin2 back to the control level [103]. We have also
demonstrated, in primary cortical neurons, that both Aβ25-35 and Aβ1-42 triggered the
expression of sestrin2 [39,40], as is discussed in more detail below. In addition to these
pre-clinical studies, the first human study reported in 2012 using postmortem brain tissues
from advanced AD patients with immunohistochemistry findings showed intense sestrin2
expression in the neuropil, which may suggest a diffuse expression in various compo-
nents among neurons, glia, and vascular cells. Using double-labeling immunofluorescence
microscopy, co-localization between phosphorylated tau and sestrin2 is observed in the
neurons and the neurites in neurofibrillary lesions [106]. These findings together implied
that sestrin2 is expressed at least in the neurons of AD patients. Another clinical study
demonstrated significant overexpression of sestrin2 protein and mRNA in the serum of
AD patients as compared to the mild cognitive impairment (MCI) and the age-matched
control groups. A difference in serum sestrin2 concentration between MCI and the control
groups was also evident. However, no significant difference in sestrin1 levels was observed
among the study groups. These results therefore suggested the potential role of sestrin2
as a biomarker in the analysis of peripheral blood in AD patients, and highlighted the
importance of sestrin2, as opposed to sestrin1, in the progression of AD [104]. Despite
these arguments supporting the important roles of sestrin2 in AD, it should be noted
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that, with similar biological functions and significantly conserved amino acid sequences
identified across the different members of the sestrin family, although potential involve-
ments of sestrin1 and sestrin3 in AD have not been reported, they certainly cannot be
overlooked. Overall, this review has only focused on discussing the potential roles of
sestrin2 in neurodegenerative disorders, AD in particular.

We have explored the potential link between sestrin2 and Aβ-induced neurotoxic-
ity [39,40]. In an in vitro study, we demonstrated that sestrin2 was induced by Aβs, includ-
ing both Aβ25-35 and Aβ1-42, in primary culture of fetal rat cortical neurons. We further
showed an in vivo result of increased sestrin2 expression in the aged APPswe/PSEN1dE9
transgenic mice. More importantly, sestrin2 functions as an endogenous protective mod-
erator, through the adjustment of autophagy, against Aβ-induced neurotoxicity [39]. It
is well known that sestrin2 has an antioxidant character and plays a critical role in age-
related diseases [66]. In our recent report [40], Aβ-induced sestrin2 expression in primary
cortical neurons was found to have an antioxidant effect, resulting in the suppression
of Aβ-mediated ROS production, enhancement of lipid peroxidation, and formation of
8-hydroxy-2-deoxyguanosine (8-OH-dG) as an index of oxidative DNA damage. Inter-
estingly, we found that lentivirus-mediated overexpression of the N-terminal domain of
sestrin2 in primary cortical neurons completely blocked Aβ25-35-induced ROS production,
whereas overexpression of the C-terminal domain partially, but statistically significantly,
suppressed ROS formation. Although the sestrin2 C-terminal domain is known to have
the capability of inhibiting mTORC1 to promote autophagy [35], we speculated that aug-
mentation of autophagy with enhanced removal of damaged mitochondria, or mitophagy,
may also contribute to the antioxidant function of sestrin2. Upstream of sestrin2, we found
that the observed Aβ effect on sestrin2 expression is at least partially mediated by p53 and
NF-κB. Indeed, apart from regulating sestrin2 induction, p53 and NF-κB subunits p65/p50
also affect the expression of each other [40]. Furthermore, upstream of p53 and NF-κB, we
identified at least two signaling pathways, namely nitric oxide synthase/cGMP-dependent
protein kinase (NOS/PKG) and phosphatidylinositol 3-kinase (PI3K)/Akt, that may have
contributed to the observed Aβ induction of sestrin2 in cortical neurons [40]. A diagram
summarizing our findings is shown in Figure 4, below.

The synaptic activity of neurons can affect the homeostasis of Aβ and tau. Both are
aggregated and accumulated during the progression of AD and are critical for neuronal
function. Furthermore, impairment of synaptic activity is linked with AD [108]. Physiologic
synaptic activity, through NMDA receptor signaling, can enhance antioxidant activity
and increase sestrin2 expression to exert a protective effect through transcription factor
C/EBPbeta [109]. Presenilin proteins are catalytic components of γ-secretase involved
in various functions such as proteolytic cleavage of the Notch and APP, adjustment of
neurotransmitter release, and are vital for the survival of neurons in aging [110]. Mutations
of the presenilin genes are one of the main causes of familial AD [111]. Impairment of
presenilin activity may compromise synaptic functions, resulting in neurodegeneration
and ultimately dementia [112]. It was demonstrated that cells deficient in presenilin have
lower levels of sestrin2 and are accompanied with mTORC1 dysregulation. These findings
show that sestrin2, through attenuation of oxidative stress and its nutrient-sensing ability
via mTOR, plays a critical role in AD-related conditions [105].

Emerging evidence suggested the potential benefit of sestrin2 in AD. Medications with
the capability to alter sestrin2 expression may therefore have the potential to prevent or
delay the clinical deterioration of this neurodegenerative disease. It was previously shown
that atorvastatin reduces Aβ-induced synaptotoxicity and memory impairment through
a p38MAP kinase pathway [113]. Atorvastatin could also activate autophagy through
AMPK/mTOR signaling [113,114]. In a recent study, it was demonstrated that sestrin2 and
the autophagy marker LC3II were increased with Aβ treatment in human neuroblastoma
cells; co-treatment of atorvastatin and Aβ reduced oxidative stress and decreased sestrin2
expression [103]. We have shown before that BDNF can induce sestrin2 expression in
rat primary cortical neurons and exert a protective effect against 3-NP neurotoxicity by
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reducing the production of free radicals [53]. BDNF is known to protect against Aβ-induced
neurotoxicity in vitro as well as in rodent and primate models [115,116]. However, whether
sestrin2 induction by BDNF contributes to this neuroprotective effect has not been tested.
The possibility certainly cannot, however, be excluded.
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Figure 4. Amyloid-beta peptide (Aβ) enhances calcium dyshomeostasis and the generation of reactive
oxygen species (ROS), thereby leading to oxidative stress with damaged mitochondria. Meanwhile,
Aβ also induces p53, as well as nuclear factor-kappaB (NF-κB) subunits p65 and p50 via activation
of nitric oxide synthase (NOS)/cGMP-dependent protein kinase (PKG) and phosphatidylinositol
3-kinase (PI3K)/Akt. The transcription factors, p50, p65, and p53 translocate into the nucleus of
the neuron to promote expression of sestrin2 mRNA, as indicated by the red dashed arrow. The
alkyl hydroperoxidase activity of sestrin2 may neutralize excessive ROS generated by Aβ with
antioxidative functions. In addition, sestrin2 may trigger autophagy, as is indicated by the conversion
of the microtubule-associated protein-1 light-chain 3B-I (LC3B-I) into LC3B-II, and possibly also
mitophagy, in order to remove Aβ-damaged mitochondria known to produce more ROS. Sestrin2
thus may function as an endogenous protective mediator inducible by Aβ that contributes to neuronal
survival against Aβ neurotoxicity.

In addition to alkyl hydroperoxidase activity and enhanced autophagy to alleviate
oxidative stress, sestrin2 may also trigger the Nrf2/ARE pathway to augment antioxidant
responses. For example, following photochemical cerebral ischemia in rats, expression of
sestrin2, Nrf2, HO-1, and VEGF were significantly increased. Overexpression of sestrin2 by
AAV injection further enhanced their expression [82]. In another study of photothrombotic
ischemia in rats, sestrin2 may promote angiogenesis by activating Nrf2 via upregulation of
p62 with enhanced interaction between p62 and Keap1, thereby improving the neurological
function, reducing brain infarction, and alleviating brain edema [81]. Sestrin2 was also a
direct target of microRNA miR-148b-3p in the HT22 hippocampal neurons challenged with
OGD/R. Furthermore, Nrf2/ARE was a downstream antioxidant signal contributing to the
observed protective effects through miR-148b-3p inhibition, and hence sestrin2 induction,
in response to OGD/R injury [117]. In the H2O2-stimulated retinal ganglion cells (RGCs),
sestrin2 overexpression increased the nuclear translocation of Nrf2, thereby upregulating
the Nrf2/ARE target genes, including HO-1 and NAD(P)H quinone oxidoreductase-1 [118].
As mentioned above, sestrin2 itself may be a downstream target of Nrf2 [48,49]. Although



Biomedicines 2021, 9, 1308 14 of 22

these studies were conducted in non-neuronal cells like mammary epithelial cells and
hepatocytes, the possibility that Nrf2 activation may induce sestrin2 expression in the
nervous system cannot be excluded. Whether sestrin2 may trigger its own expression,
thereby forming a positive feedforward loop, via Nrf2/ARE in neurons, also requires
further investigation. The potential role of sestrin2 in age-related neurodegenerative
diseases is demonstrated in Figure 5.
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Figure 5. Multiple pathogenic mechanisms including oxidative stress, with excessive production of
reactive oxygen species (ROS), glutamate-induced excitotoxicity, calcium overload, mitochondrial
dysfunction, and inflammation contribute to neuronal death in various neurodegenerative disorders
like Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Brain-
derived neurotrophic factor (BDNF) enhances sestrin2 expression via signaling pathways involving
nitric oxide (NO)/3′,5′-cyclic guanosine monophosphate (cGMP)-dependent protein kinase-1 (PKG-
1)/nuclear factor-kappaB (NF-κB). In addition to the alkyl hydroperoxidase activity and autophagy
promotion, sestrin2 may also have antioxidant properties by activating nuclear factor erythroid
2-related factor-2 (Nrf2) with enhanced expression of antioxidant proteins like heme oxygenase-
1 (HO-1), vascular endothelial growth factor (VEGF), and NAD(P)H quinone oxidoreductase-1.
These antioxidant proteins then mitigate oxidative stress, as indicated by the red arrow, that is
commonly observed in various neurodegenerative diseases. The possibility that BDNF may exert its
neuroprotective effects, in addition to its well-known neurotrophic actions, via induction of sestrin2
in various neurodegenerative disorders, requires further investigation.

5. Medications or Chemical Compounds Capable of Altering Sestrin2 Expression

The outcomes of clinical trials using drugs to target amyloid and tau have been unsat-
isfactory up to now, thereby leading to enthusiasm in targeting alternative mechanisms in
AD studies [119,120]. Drug repurposing involves taking the research into an existing, ready-
to-use drug and assessing its therapeutic potential with respect to another disease [121,122].
Several well-known success stories include aspirin, sildenafil, and thalidomide [123]. This
approach may provide a less expensive and quicker method of drug discovery. Several
recent review articles emphasize the clinical potential of drug repurposing in the context of
AD [120,124–126]. It would be worthwhile to search among medications with neuroprotec-
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tive effects, as these are likely to have a better chance of achieving clinically meaningful
results with neurodegenerative diseases [127]. The potential of certain medications to
activate sestrin2 expression requires further investigation.

Several studies revealed that certain drugs capable of activating sestrin2 expression
in various disease models may be worth testing in AD as well. It was shown that em-
pagliflozin, which is a sodium-glucose cotransporter 2 (SGLT2) inhibitor useful for treating
diabetes mellitus (DM) patients, can regulate sestrin2, the AMPK-mTOR pathway, and ROS
homeostasis to improve obesity-related cardiac dysfunction in mice [128]. Another study
demonstrated that liraglutide, a glucagon-like peptide 1 (GLP-1) agonist for DM patients,
may lessen obesity-related fatty liver disease through regulating the sestrin2-mediated
Nrf2/HO-1 pathway [129].

5-Fluorouracil is an antimetabolite widely used for chemotherapeutic treatment of can-
cers [130,131]. It was shown that 5-fluorouracil increases sestrin2 levels in a p53-dependent
pathway and inhibits cancer cell migration in an in vitro colon cancer study [132]. Nel-
finavir, an ER stress-inducing agent, and bortezomib, a proteasome inhibitor, can both
enhance sestrin2 expression, which may be useful to treat cancers [133]. Interestingly,
nelfinavir inhibited endogenous Aβ1-40 production from primary cultured human cortical
neurons [134]. Whether these reagents may also carry therapeutic potential for AD requires
further investigation.

Other chemical compounds such as resveratrol and melatonin possessing pleiotropic
effects like antioxidancy or anti-inflammation were studied based on their capability of
upregulating sestrin2 in various disease models [135–137]. Resveratrol is a naturally occur-
ring polyphenol that is abundant in grape seeds and skin [138,139]. It can offer protective
effects against various age-related diseases like AD through diverse mechanisms [138,140].
These molecular mechanisms include modulation of NF-κB, regulation of inflammatory
cytokines, production of antioxidant enzymes, angiogenesis, apoptosis, lipid metabolism,
and mitochondrial biogenesis-all critical for its potential clinical application [141,142]. It
was demonstrated before that resveratrol affects sestrin2 gene induction and inhibits liver X
receptor-alpha (LXRα)-mediated hepatic lipogenesis [137]. Methylglyoxal is implicated in
the formation of advanced glycation end-products associated with diabetes and age-related
neurodegenerative diseases [143]. In a previous study using methylglyoxal to induce
cell death in HepG2, a human liver cancer cell line, it was found that resveratrol reduces
methylglyoxal-induced mitochondrial impairment and apoptosis through sestrin2 induc-
tion [136]. Other flavonoid polyphenols or flavone derivatives, such as eupatilin [144,145],
pentamethylquercetin [146], and isorhamentin [147], also possess the capability to alter
sestrin2 expression and are worth studying further in AD models.

Melatonin, a molecule widely distributed in living organisms, is involved in various
physiological and biological functions among diverse tissues and organs. It possesses
prominent antioxidant effects, functions as a free radical scavenger, augments antioxidant
enzymes, lessens mitochondrial electron leakage, and reduces pro-inflammatory signaling
pathways [148]. These properties of melatonin underline the possibility for future clin-
ical use in numerous disorders, including neurodegeneration [149]. It was shown that
melatonin can inhibit proliferation and apoptosis in the vascular smooth muscle through
upregulation of sestrin2, which may be important in preventing atherosclerosis and resteno-
sis of vessel lumen [135]. It would be interesting to know the effect of sestrin2 expression
under melatonin treatment in a stressful condition, such as in Aβ-induced neurotoxicity.

It is believed that a long list of medications, natural products, chemical compounds,
or small molecules capable of altering sestrin2 expression may exert beneficial effects
over AD-related mechanisms. This awaits further investigation and may lead to more
opportunities for treating such devastating neurodegenerative diseases as AD.
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6. Conclusions and Future Perspectives

Being a member of the sestrin family, sestrin2 acts as a crucial intracellular detector
capable of regulating various biological processes to maintain the homeostasis of living or-
ganisms. Emerging evidence reveals that sestrin2 may have beneficial effects for vulnerable
cells, such that they may adapt to numerous pathological situations under diverse stressful
conditions, including DNA injury, hypoxic state, metabolic dyshomeostasis, and oxidative
stress. In age-related neurodegenerative disorders, excessive generation of ROS and dys-
function of autophagy may play pivotal roles in the pathogenesis among these diseases.
Sestrin2, with distinctive dual-functional sites to counteract excessive ROS generation and
inhibit mTOR activity for autophagy promotion, is presumed to play a crucial role in AD,
although at present only limited information is available to firmly establish this notion.
Certain medicinal compounds or natural products, such as flavonoid-related products, can
alter the expression levels of sestrin2. It is believed that any means of increasing sestrin2
expression may possess significant clinical implications for the abatement of AD-related
neurodegeneration. The possibility awaits further investigation. It is uncertain, however,
whether the overactivation of sestrin2 may result in detrimental effects due to autophagic
dysfunction. It may be difficult to determine the pros and cons of excessive activation or
inhibition of autophagy in terms of neurodegenerative diseases, including AD. This concern
further reveals the crucial need for a thorough understanding of both the downstream
targets, as well as the upstream regulators, of sestrin2. Fuller elucidation of the signaling
pathways of sestrin2 would accelerate the discovery of novel therapies for disease treatment,
especially for those diseases with a devastating clinical course, such as AD.
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