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Despite its omnipresence in everyday interactions and its importance for mental health, mood and its neuronal underpinnings
are poorly understood. Computational models can help identify parameters affecting self-reported mood during mood induction
tasks. Here, we test if computationally modeled dynamics of self-reported mood during monetary gambling can be used to identify
trial-by-trial variations in neuronal activity. To this end, we shifted mood in healthy (N = 24) and depressed (N = 30) adolescents
by delivering individually tailored reward prediction errors while recording magnetoencephalography (MEG) data. Following a pre-
registered analysis, we hypothesize that the expectation component of mood would be predictive of beta-gamma oscillatory power
(25–40 Hz). We also hypothesize that trial variations in the source localized responses to reward feedback would be predicted by
mood and by its reward prediction error component. Through our multilevel statistical analysis, we found confirmatory evidence that
beta-gamma power is positively related to reward expectation during mood shifts, with localized sources in the posterior cingulate
cortex. We also confirmed reward prediction error to be predictive of trial-level variations in the response of the paracentral lobule.
To our knowledge, this is the first study to harness computational models of mood to relate mood fluctuations to variations in neural
oscillations with MEG.
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Introduction

Humans report on their moods in their everyday con-
versations and subjective mood reports form the basis
of clinical assessment and much of research in affective
neuroscience. Advances in computational modeling lend
support to the idea that mood is intricately linked with
reward processing and that it serves to integrate over a
person’s history of rewards and punishers (Nettle and
Bateson 2012; Rutledge et al. 2014; Keren et al. 2021). Yet,
despite its ubiquity and importance, the brain mecha-
nisms underlying mood and its relationship with changes
in reward contingencies in the environment are surpris-
ingly understudied.

Mood is understood to integrate over events in the
environment and is a potentially emergent property of
the coordinated activity of many neural populations.
Such activity is thought to manifest as the synchrony of
oscillations, which supports functional connections and
communication in the brain. In this context, it is notewor-
thy that oscillatory power is correlated with treatment-
induced changes that have been described to occur in

mood disorders (Fingelkurts and Fingelkurts 2015; Kaiser
et al. 2015; Nugent et al. 2019a, 2019b). Mood is also highly
dynamic during development, especially in adolescence
(Klimstra et al. 2016) when incidence of depression is
up to 13% in the United States according to the 2017
National Survey on Drug Use and Health (NIMH » Major
Depression [WWW Document]. 2021). Understanding the
temporal structure—including very early responses—
to changes in environmental incentives that influence
mood can offer important insights into the genesis and
remission of mood disorders and can inform the timing
of potential interventions (such as through transcranial
magnetic stimulation) that aim to modify it for clinical
purposes (Tremblay et al. 2019; Zrenner et al. 2020).

Therefore, understanding the role of oscillations and
fast neuronal responses in the interplay between mood
and environmental incentives is key and magnetoen-
cephalography (MEG) offers a great opportunity to do so
non-invasively.

Unlike mood induction paradigms involving emotional
music, videos and reminiscence, changes in mood dur-
ing decision-making, reward and gambling tasks can be
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modeled by integrating reward outcomes and reward
prediction errors (RPEs) experienced over time (Rutledge
et al. 2014; Eldar et al. 2016; Vinckier et al. 2018). The
selection of a monetary gambling task allows for a more
straightforward quantification of task parameters poten-
tially affecting mood.

Recent work by Keren et al. (2021) proposed a new
descriptive model of mood dynamics, the primacy mood
model, where participants’ responses to rewards and
mood changes are more strongly influenced by early
experiences. The primacy mood model was shown to
describe self-reported mood better than other tested
mood models that weighted rewards experienced last
more strongly. Together with this model, Keren et al.
(2021) developed a monetary gambling task designed to
induce mood changes by delivering reward prediction
errors based on the difference between the participants
current mood and the mood target for that block. This
adaptive controller was shown to be effective in para-
metrically shifting self-reported mood in both healthy
volunteers (n = 29) and patients diagnosed with major
depression (n = 43). Moreover, this approach to mood
induction (Keren et al. 2021) avoids some of the pitfalls
related to demand characteristics where participants are
explicitly asked to transfer themselves mentally in a
negative or positive event.

The primacy mood model combines the reward expec-
tation and the reward prediction errors, with subject
specific weighting parameters derived by fitting expec-
tation and RPEs to the reported mood. In the model
framework two subject specific weight parameters cor-
respond to mood reactivity to experienced reward out-
comes (referred to as expectation) and to the difference
between each reward outcome and previous experiences
(reward prediction error). Keren et al. (2021) tested neural
activity correlates of parameters from the mood model,
showing that subject expectation weights positively cor-
related with BOLD signal activity in ACC and vmPFC,
cortical areas involved in mood regulation and reward-
driven decision-making (Bush et al. 2000; Zald et al. 2002;
Stevens et al. 2011; Etkin et al. 2015; Hiser and Koenigs
2018), measured in the “rest” time period before mood
rating.

Here we aim to expand on this work by identifying
correlates of the primacy mood model parameters in
MEG neural activity data, with our main goal being to
identify how the progressive change of mood over time
is related to neural responses at a single trial level.

In a pilot analysis (n = 14, age 16.22 years, see Supple-
mentary Materials), we tested with linear mixed effect
models whether brain oscillations and trial-level changes
in evoked responses would show a relationship with
mood or its model components.

Following our pilot analysis we pre-registered three
hypotheses, which we test here on a confirmatory sample
(pre-registered analysis available on OSF (https://osf.io/
djw8h), pre-registration was made before pre-processing
of the confirmatory dataset).

Motivated by major concerns about false positive
results in neuroscience in general and neuroimaging
in particular (Turner et al. 2018; Pavlov et al. 2021),
we split our data into pilot and confirmatory samples
to finalize our analysis methods before processing
the larger confirmatory sample. While a small pilot
sample in itself has low statistical power, including a
confirmatory sample where we narrow the hypothesis
space and research degrees of freedom gives us low
type-1 “false positive” error rates (see section “Statistical
Power Calculation” in Supplementary Material). We were
motivated to make this trade-off because of the major
concerns in the field cited above but also specifically
for results derived from methods with a potentially vast
range of features and therefore statistical testing space,
as is common in electrophysiology (Larson and Carbine
2017; Pernet et al. 2020).

Our first question was to see if brain oscillations were
related to mood or to its two model predictors, i.e., expec-
tation and RPE. We then state the following hypothesis:

1) “We hypothesize that beta-gamma oscillatory power
(25–40 Hz) measured by MEG in the time interval
preceding mood rating will be positively correlated
with the reward expectation term derived from the
primacy mood model, with a source space cluster
covering the frontal superior and medial cortex and
the ACC.”

Given the strong predictive effect of reward expecta-
tion on mood, we propose that identifying brain activity
related to reward expectation could be an important
step in further identifying and testing the brain circuits
responsible for the experience of mood.

In our pilot analysis, no other standard frequency
bands (delta, theta, alpha, beta, high-gamma) showed
significant correlations with mood or its predictors
(expectation or RPE) in the same time window. The
beta-gamma band was defined to include frequencies
between 25 and 40 Hz, based on previous work by
Marco-Pallarés et al. (2015) who showed modulation of
this frequency in response to positive feedback rewards.

Brain response to reward feedback have been related
to RPE with both EEG and MEG (Holroyd et al. 2003;
Doñamayor et al. 2012; Talmi et al. 2012; Marco-Pallarés
et al. 2015), but little is known on the effect of mood
on these same processes (Paul and Pourtois 2017). In
our pilot sample, we tested if MEG evoked responses to
reward feedback had any relation to mood, or its expec-
tation and RPE model components. We found two source
space ROIs, paracentral lobule, and precuneus, showing
significant negative relationship to primacy model RPE;
i.e., negative RPE were correlated with stronger response
to reward feedback, and activity in the right insula show-
ing an inverse relationship to mood. We then hypothesize
that in our confirmatory sample:

2) “RPE and self-reported mood will be correlated
with the variability in the evoked response to the
gamble outcome (feedback), in right precuneus and
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paracentral lobule (at ∼500 ms) for RPE and in the
right insular cortex (at ∼400 ms after feedback
presentation) for mood.”

As mood also affects decision-making (Vinckier et al.
2018) in our pilot data, we tested whether mood or expec-
tation might predict MEG evoked responses following the
presentation of gambling options and following choice
selection (decision to gamble or not). From our pilot
data results showing significant effects surviving multi-
ple comparisons we hypothesize that:

3) “The reward expectation term from the primacy
mood model will be predictive of the signal in poste-
rior MEG sensors during the 250–400 ms period after
presentation of gambling options”.

We initially selected the 250–400 ms time window
based on observations on modulations of the P300 com-
ponent in EEG (De Pascalis et al. 2004; Sur and Sinha
2009). In the pilot data, we did not see any significant
effects of mood or of its model predictor following gam-
ble choice selection (related to error monitoring).

While previous studies have looked at influence of
mood on trial-averaged responses (Paul and Pourtois
2017), to our knowledge this is the first study to relate
the temporal dynamics of mood to trial level variations
in evoked responses and oscillatory power with non-
invasive electrophysiology in humans. Characterizing the
neural substrates that link mood and reward is essential
to understanding how disrupted reward processing
contributes to mood disorders and may be instrumental
in predicting symptom trajectory and response to
treatment.

Materials and Methods
Sample
Study participants are adolescent volunteers (age 12–
19 years) recruited through mail, online advertisement
and direct referrals from clinical sources. Participants
provided informed consent to a protocol approved by
the NIH Institutional Review Board (clinical trial no.
NCT03388606) before completing questionnaires and an
in-person evaluation with a medical practitioner at the
NIH clinical center to guarantee their suitability to enroll
in the study. Both healthy volunteers (not satisfying cri-
teria for any diagnosis according to DSM-5) and patients
with a primary diagnosis of major depression (MDD) or
sub-threshold depression were included. All participants
received the same scripted instructions for their partic-
ipation in this study. The full list of inclusion and exclu-
sion criteria is outlined in the Supplementary Material.

Following in-person screening, MEG data were col-
lected with a 275-channel CTF scanner (272 working
channels, sampling at 1200 Hz, third-order synthetic gra-
diometer configuration) and a structural MRI (MPRAGE,
1 mm isotropic resolution) of the subject’s head was
acquired with a 3 T GE MRI scanner (collected within
6 months of the MEG scan), both housed in the NMR suite
of the NIH clinical center.

We collected MEG data from 56 volunteers that passed
our inclusion criteria. Of this sample, 2 participants
were excluded from all reported analysis, one due to
artifacts during data collection, and one from reporting
to have misunderstood task instructions at the end of
the experiment. Of the included 54 participants (age
16.3 ± 1.8 years, 30 MDDs, 35 females), all were included
in sensor based analyses, and 51 (age 16.3 ± 1.8 years, 29
MDDs, 33 females) were included in our source space
analysis (two participants did not have a structural
MRI due to laboratory shutdown in March 2020 and
one participant had large errors >> 5 mm in the initial
localization of the MEG fiducial coils). Data from fourteen
participants were initially analyzed as an exploratory
sample to inform the study hypotheses (as reported
in our preregistration available on OSF (https://osf.
io/djw8h)), leaving a separate confirmatory sample
of 40 participants for analyses at the sensor level
and a subsample of 37 participants at the source
level.

Task Description
While in the MEG scanner, participants played a mon-
etary gambling task. The task consists of three blocks,
where in each block an adaptive closed-loop mood
controller delivers reward prediction errors to try to
move the participant’s mood to a target value (Keren
et al. 2021). The targets of the controller are to reach
the highest mood (1) in the first block, lowest (0) in the
second block, and then highest mood again in third block.
Every 2–3 gambling trials (for a total of 34 times per
task), participants are asked to report their mood at that
moment on a sliding scale with the words “Unhappy” on
the left end and “Happy” on the right end of the scale.
The mood ratings are used as inputs of a proportional-
integral (PI) mood controller, which accordingly modifies
the gambling amounts and the RPE values to push partic-
ipants mood rating towards the desired end of the mood
scale. Within each block, 70% of trials are congruent
(delivering positive RPE in the high mood target blocks
and negative RPE in the low mood block) and 30% are
incongruent (delivering negative RPEs in the high mood
target blocks and positive RPEs in the low mood block).
While the mood target for each block and the proportion
of congruent versus incongruent trials is equal for every
participant, the PI mood controller changes the range of
gambling values and RPEs received for each participants.
From Keren et al. (2021), we expect the mood induction
to have the strongest effect in the second negative block
and the smallest effect in the first positive block (they
report a mean (± SD) effect size per block of 0.92 ± 1.60
in the block 1, −1.75 ± 1.10 in block 2 and 1.45 ± 1.70 in
block 3).

Before entering the scanner, participants are instructed
on how to perform the task knowing that the final
amount they win in the task will be converted to a
proportional amount of money but are not informed
about the mood manipulation.
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Fig. 1. Structure of the closed-loop gambling task. The gambling amounts are presented on the right side of the screen (in this example a possible win
of 10 points or loss or − 10 points), while the certain choice (here a win of 1 point) is on the left. If choosing to gamble the certain amount disappears
from the screen. The two possible gambling amounts are displayed on the screen for 4 s before the outcome is revealed (here a win of 10 points). There
is a 2 s inter trial interval (ITI) before the start of the next trial. Every 2–3 trials participants are prompted to rate their mood. The mood question “How
happy are you at this moment?” remains on the screen for 3 s before a sliding scale appears with the words “Unhappy” on the left end and “Happy” on
the right, allowing participants to rate their mood with the FORP buttons.

Each block consists of 27 trials for a total of 81 tri-
als. An example of a task trial selecting the gambling
option is shown in Figure 1. In each trial, participants are
presented with a certain amount (displayed on the left
side of the screen) and two possible gambling outcomes
(on the right side of the screen). The gambling amounts
are selected by the closed loop controller based on the
mood target and the participant’s self-reported mood.
Participants are given 3 s to decide to either gamble
or select the fixed outcome, by pressing the right or
left button on a fiber optic response pad (FORP). When
participants do not make a selection in time, the task
controller automatically selects the gambling option.

After choice selection, there is a 4 s waiting period,
then (for the gamble selection) the gamble outcome is
revealed and remains on the screen for 1 s. After each
trial, there is a 2 s inter-trial-interval time when only a
fixation cross is displayed. Every 2 or 3 trials participants
are prompted to rate their current mood on a horizontal
slider. The cursor on the slider can be moved continu-
ously by pressing and holding the right and left buttons
on the FORP.

At the end of each block, participants are given a
break from the task while remaining in the scanner and
can proceed to the next block by pressing a button on
the FORP.

At the end of the MEG scanning session, participants
are debriefed to ask about their experience in the
scanner.

Mood Model
Participants rate their mood with a slider between a value
of 0 and 1 (with 0 being the lowest and 1 being the
highest) every 2 to 3 trials of the gambling task. We can
model how reported mood changes over trials with the
primacy mood model proposed by Keren et al. (2021),
taking into account previous gambling outcomes and
reward prediction errors. We selected the primacy mood
model as it was shown to better fit self-reported mood,
for both healthy and depressed participants, compared
to recency models (weighting more heavily recent reward

experiences) and other temporal representations. More-
over subject specific parameters (βE) calculated from the
primacy model were found to correlate with BOLD activ-
ity in the anterior cingulate cortex and prefrontal cortex
(brain regions implicated in mood regulation) motivating
our choice to further explore correlates of the primacy
mood model parameters with neural data. According to
the primacy model, reward expectation Et at each trial
is calculated as the average of all previously received
outcomes At:

Et = 1
t − 1

∑t−1

i=1
Ai

The reward prediction error at each trial is then
defined as the difference between the received outcome
and the expectation:

Rt = At − Et (1)

We model the self-reported mood at time Mt as:

Mt = M0 + βEηt + βRρt + εt (2)

where we call the contributions of expectation, ηt, and
RPE, ρt,to mood at time t as:

ηt = 1
t

∑t

j=1
γ t−jEj, ρt = 1

t

∑t

j=1
γt−jRj (3)

We calculate the accumulated expectation ηt and the
accumulated RPE ρt at trial t by summing over all past
trials (j = 1 to j = t

)
, changing the exponent of parameter

γ to give a stronger weight to early trials (e.g., for t = 3 :
ηt = 1

3

(
γ 2E1 +γ 1E2 +E3

)
, with the model fit constraint γ >

1). The model parameters M0, γ, βE, and βR are subject spe-
cific and are derived by fitting self-reported mood data to
the model: M0 is the participant’s baseline mood, βE and
βR are subject level parameters representing subject’s
sensitivity to expectation and surprise (prediction error),
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respectively, γ is a parameter representing the subject’s
rate of temporal discounting, and εt is the error term. The
full description of the model and implementation with
python’s TensorFlow package is described in Keren et al.
(2021).

All trial dependent parameters obtained from the
model fit are sampled at every trial, but participants
report mood every 2–3 trials during the gambling
task. In order to use self-reported mood in our linear
mixed model to test variability over all trials, mood
ratings are interpolated with a Piecewise Cubic Hermite
Interpolating Polynomial implemented in Matlab.

MEG Data
MEG data analysis is performed on the NIH HPC Biowulf
cluster (http://hpc.nih.gov) with Matlab (The MathWorks,
Inc., Natick, Massachusetts, United States of America)
and functions from the FieldTrip toolbox ((Oostenveld
et al. 2011); http://fieldtriptoolbox.org). Following initial
visual inspection, MEG data are pre-processed in Mat-
lab: third-order synthetic gradiometer configuration is
applied; segments with motion exceeding a threshold of
5 mm or including noticeable artifacts are eliminated;
data are bandpass filtered between 0.5 and 300 Hz, base-
line corrected, and a 60 Hz notch filter is applied to
reduce power line noise. Data are then corrected for
eye movements and heartbeat artifacts with ICA fastica
algorithm (30 independent components are calculated
and a maximum of 4 components, 2 heartbeat, and 2 eye
movement ICs, are eliminated for each dataset).

Data Processing
Source data reconstruction are achieved by a beam-
former approach and a forward model based on Nolte’s
spherical approximation (Veen et al. 1997; Nolte 2003)
implemented in FieldTrip. Subjects’ individual brain
MRIs are co-registered to the MEG data by identification
of three fiducial coils (nasion, right/left preauricular
points). Source level activity is reconstructed on a 5 mm
grid based on the MNI brain and warped to individual
anatomy. Beamformer weights are calculated based on
the data covariance over the whole task with a covari-
ance regularization equal to 5% of its maximum singular
value (a high regularization is selected to improve SNR
and increase spatial smoothness (Brookes et al. 2008);
the effects of matrix regularization and forward model
selection is explored in supplementary analysis).

Confirmatory Analyses
We apply linear mixed effects models to estimate the
contribution of trial level mood, expectation and reward
prediction error to response variability in the MEG data.
The use of linear mixed effect models allows us to ana-
lyze data from all participants in a single model while
accounting for inter-subject differences.

Hypothesis 1—Beta-Gamma Oscillatory Power

Following our pre-registered hypotheses, we estimate
beta-gamma oscillatory power in the 3 s waiting period

preceding mood-rating. MEG signal is first band pass
filtered in the frequency band of interest (25–40 Hz) then,
for sensor space analysis oscillatory power is estimated
by measuring the signal variance in each 3 s window. For
source space analysis, oscillatory power in each voxel i is
estimated as

wiCwi

wi�wi
(4)

where wi are the beamformer weights, C is the data
covariance matrix in the 3 s window of interest, and �

the estimated noise covariance matrix.
The effect of expectation on beta-gamma power is

tested in our confirmatory sample for the accumulated
expectation term ηt. Our formulation is as follows:

S(r) ∼ η + (
η|subject

) + 1
∣∣trial + 1

∣∣ recording, (5)

where S
(
r
)

indicates the MEG signal at location r (either
sensor or source voxel).

The recording random effect is included to account for
participants who had to be repositioned in the scanner
during the task due to excessive movement (>5 mm).

S
(
r
)

is a vector with dimension 1 × Nm, where Nm is the
number of mood rating trials from all participants (There
are 34 mood ratings per task when all trials are included.)

Hypothesis 2—Evoked Response to Feedback

For the analysis of evoked responses, a low-pass filter of
30 Hz is applied following the pre-processing steps before
calculation of the beamformer weights.

Regions of interest (ROI) are defined by the Automated
Anatomical Labeling (AAL) atlas available in fieldtrip.
The signal from an ROI is estimated from its geometrical
centroid. We select a time window −200 to 1000 ms with
respect to the presentation of the gamble feedback.

There are 81 trials per task where participants can
choose to gamble and then wait to receive feedback. For
this hypothesis, we consider only trials when participants
choose to gamble over selecting a certain reward.

The source data time course is estimated and then
downsampled to 300 Hz to reduce the number of time
points to test.

It is important to note that with beamforming, the
sign of evoked responses in source space is uncertain
(i.e., sign may be flipped between participants). For each
participant, the sign of the source signal for an ROI or
voxel is estimated by maximizing the correlation over
subjects of their trial averaged evoked response to the
stimulus (gambling option or feedback presentation).

In our confirmatory analysis, we test if mood predicts
MEG signal in the right insula, and if the ρ parameter pre-
dicts response variation in the right paracentral lobule
and precuneus.

Our formulation is as follows (here presented for the
mood fixed effect):

S (t, r) ∼ mood + (
mood|subject

) + 1 | trial, (6)

http://hpc.nih.gov
http://fieldtriptoolbox.org
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where S
(
t, r

)
indicates the source reconstructed MEG sig-

nal in ROI r and at time t with respect to the task event.
S
(
t, r

)
is a vector with dimension 1 × Nf , where Nf is the

number of feedback trials from all participants.

Hypothesis 3—Evoked Response to Gambling Options

Again a low-pass filter of 30 Hz is applied following
the pre-processing steps before calculation of the beam-
former weights. We select the average response in the
time window of 250–400 ms with respect to the pre-
sentation of the gambling options for the analysis of
the evoked responses at both sensor and source level.
For source space analysis, the data time course is first
reconstructed at each source voxel and then the evoked
response for each trial is estimated as the average signal
in the 250–400 ms time window.

We test the effect of trial expectation, as defined by
the primacy model (ηt) on the average evoked response
in the 250–400 ms window following gamble options
presentation. There are total of 81 gambling trials per
subject.

Our formulation is as follows:

S(r) ∼ η + (
η|subject

) + 1
∣∣trial + 1

∣∣ recording, (7)

where S(r) indicates the MEG signal at location r (either
sensor or source voxel).

S(r) is a vector with dimension 1 × No, where No is the
number of task trials from all participants.

We run our statistical model at each sensor and source
space voxel.

Random Permutations
For all linear mixed effect models, we test for statistical
significance over multiple voxels or sensors by applying
threshold free cluster enhancement (TFCE) spatial clus-
tering with parameters E = 0.5, H = 2, dh = 0.1 as indicated
in Smith and Nichols (2009).

Null distributions are obtained by running the same
linear mixed model after random permutation of S over
trials for each participant (10 000 random permutations
for the sensor space analysis, 2000 random permutation
for the voxel space). Each random permutation is used for
all sensors/voxel, TFCE is applied on the t-values for the
fixed effect and the maximum (and minimum) spatial
cluster value is included in the null distribution.

We then use a two-tailed t-test against the null dis-
tribution to infer statistical significance of the spatial
clusters (α = 0.05) corrected with Bonferroni for the
multiple hypotheses tested.

Exploratory Analyses:
The following exploratory analyses are run with the
whole sample of available participants (N = 51 at the
source level).

Comparison with Previous fMRI Results

Previously published results using the same gambling
task reported a significant cluster of fMRI BOLD activa-
tion in the ACC correlating with the expectation weight,
βE (Keren et al. 2021). The expectation weight βEis a sub-
ject specific term in the primacy mood model (see equa-
tion (2)), derived by best fitting subject’s mood ratings to
the model equation. Following our hypothesis that trial
variations in beta-gamma power are related to reward
expectation, we then test if the subject average beta-
gamma power is correlated to βE in an analogous anal-
ysis. For this analysis, the average beta-gamma power is
calculated at the voxel level by averaging the previously
estimated MEG power in the 3 s pre mood rating period
over all available trials for each participant.

A Pearson correlation between subject average beta-
gamma power and βE is then run and significant clusters
are calculated. Null distributions are obtained by calcu-
lating maximum TFCE value in random permutations
(N = 5000).

The significant cluster from Keren et al. (2021) is then
compared to the MEG cluster in MNI space to check for
congruent cross-modality results.

Sensitivity Analysis: Primacy Model Fit

In our initial hypotheses, we set to test how trial vari-
ations in MEG data could be predicted by parameters
of the primacy mood model, based on previous results
from Keren et al. (2021), showing its best performance
over alternative models. In order to derive meaningful
conclusions on the validity of prediction, we have to
check how well the model is fitting our behavioral data.
Based on the previous data by Keren et al. (2021), we set
a threshold of 0.5 r-squared and a minimum mood range
of 0.1 (mood scale limits 0–1) to determine a sensitivity
sample that responded to the mood induction and whose
behavior was well represented by the model. We then
repeat the same mixed effect model analyses outlined in
the confirmatory analysis including all participants that
pass the sensitivity criteria, to determine whether the
correlation between model parameters and MEG neural
data will improve.

Effects of Group: MDD/HV and MFQ Scores

In all our analyses as described above, we selected to
include in the same sample both adolescents with past
or current diagnosis of major depression and adolescents
with no history of MDD. We motivated this choice in order
to include a better representation of the full spectrum of
mood variations. Nevertheless, there could be meaning-
ful variations in the neural activity of MDDs compared
to HVs. As an exploratory analysis, we therefore test two
alternative prediction models on the sensitivity subsam-
ple that confirmed our initial hypotheses:

(1) a categorical fixed effect term for group (MDD or HV)
and its interaction with the other fixed effect (here
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Fig. 2. Participants’ self-reported mood during the 3-blocks of the gambling task. Positive blocks have a white background while the negative block is
shaded in gray. The left panel shows the average (n = 54) reported mood of all participants as a black line with standard deviation over subjects shaded
in gray. The middle and right panels show, respectively, the average mood of all participants diagnosed with MDD (n = 30) and of all healthy volunteers
(n = 24), with all individual reported moods shown as thinner black lines.

presented for η)

S(r) ∼ η + group + η : group + (
η|subject

)

+ 1
∣∣trial + 1

∣∣ recording

(2) a fixed effected term for the short MFQ score col-
lected at the time of the experiment and its inter-
action with the other fixed effect (here presented
for η)

S(r) ∼ η + MFQ + η : MFQ + (
η|subject

)

+ 1
∣∣trial + 1

∣∣ recording

We then repeat the random permutation process with
the new models (2000 random permutations each, with
TFCE) and report whether MDD group, MFQ scores or
their interaction with the main predictor showed a sig-
nificant effect.

Results
Mood Manipulation
Our gambling task was effective in inducing mood
changes with an average effect size of the mood
induction of (Cohen’s d, mean ± SD): 0.8 ± 2.3 for block 1,
−1.9 ± 2.1 for block 2, and 1.7 ± 2.5 for block 3 (see Fig. 2).
The average effect of the negative mood induction is
comparable for MDDs and HVs (Cohen’s d, mean ± SD,
MDD: −1.8 ± 2.0; HV: −2.1 ± 2.1). The positive mood
induction has a stronger effect for MDDs in the first block
(Cohen’s d, mean ± SD, MDD: 1.1 ± 2.3; HV: 0.4 ± 2.2) since
on average they start with a lower mood. The positive
mood induction in the last block shows instead a stronger
effect for healthy volunteers (Cohen’s d, mean ± SD,
MDD: 1.2 ± 2.7; HV: 2.3 ± 2.3).

Confirmatory Analysis
Hypothesis 1: Trial Variations in Beta-Gamma Oscillatory
Power Measured in the 3 s Time Interval Preceding Mood
Rating Will be Positively Correlated with Expectation ηt

For our first hypothesis, we set to test if trial variations
in beta-gamma (25–40 Hz) oscillatory power are affected
by reward expectation.

We report results for the linear mixed model analy-
sis with accumulated expectation (ηt) as fixed effect of
the model. At the sensor level we found a significant
cluster of sensors (Fig. 3A) where beta-gamma power is
positively related to ηt (peak on channel MRC25, fixed
effect t-stat = 3.64, uncorrected P-value = 2.8e-04).

At the source level, we found a significant cluster
where ηt predicted beta-gamma power in the mid to
posterior cingulate cortex and extending to the paracen-
tral lobule (Fig. 3B cluster peak at MNI coordinate [−2,
−40, 30]mm, T-stat = 4.78, uncorrected P-value = 2.0e-06).
Other significant clusters were present in the occipi-
tal cortex, caudate and the ACC. By exploration of the
covariance regularization parameter (5%, 1%, and 0.2% of
the maximum singular value of the covariance matrix),
we found significant clusters to be highly dependent
on regularization, with clusters in supplementary motor
cortex and frontal superior cortex becoming prominent
at lower regularization values (Figure S13 in Supplemen-
tary Material). Over our explored range of regulariza-
tion values, the mid-posterior cingulate cortex cluster
remained present.

Hypothesis 2: Self-Reported Mood and RPE from the
Primacy Model Can Predict Changes in the Response to
Reward. Rt and ρt Will Be Correlated with the Variability in
the Evoked Response in Right Precuneus and Paracentral
Lobule (at ∼500 ms) and for moodt in the Right Insular
Cortex (at ∼400 ms after Feedback Presentation)

In order to test the effect of mood and RPE on the evoked
response following gambling feedback, we ran models
independently for the three separate fixed effects. From

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab417#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab417#supplementary-data
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Fig. 3. A. Maps of MEG sensors where the expectation parameter ηt significantly predict beta-gamma power preceding mood rating in confirmatory
sample. Sensors surviving clustering correction (α < 0.05, two-tailed, 10 000 random permutations) are shown in color. Color bar indicates t-statistic of
the fixed effect. B. Source space maps showing brain regions where expectation ηt predicts beta-gamma power preceding mood rating in confirmatory
sample. Color bar indicates t-statistic of the fixed effect. Top row shows cluster peak in coronal and sagittal views. The plot on the bottom shows the
significant cluster over multiple axial slices. Both predictors show similar significant clusters with a peak in the left posterior cingulate cortex (MNI
coordinate [−2, −40, 30 mm) extending to mid cingulate, parietal cortex and the caudate.

our exploratory analysis, we hypothesized to find sig-
nificant clusters in the right insula cortex for the mood
predictor and right precuneus and paracentral lobule for
ρt. In our confirmatory analysis, we found no significant
effect of self-reported mood on the evoked response
source localized to the right insula.

The ρt parameter was confirmed to predict the
response on the right paracentral lobule at 500 ms, and at
an earlier peak at ∼250 ms (Fig. 4). We could not predict
the response in the right precuneus at 500 ms.

Hypothesis 3: The Reward Expectation Parameters from the
Primacy Mood Model (ηt) Will Be Predictive of the Signal in
Posterior MEG Sensors during the 250–400 ms Time
Window after the Presentation of Gambling Options

For our last hypothesis, we tested whether the trial level
variation in evoked response 250–400 ms after presenta-
tion of gambling options could be predicted by the model
expectation parameters.

Agreeing with our initial hypothesis, we found that ηt

significantly predicted signal response in clusters of MEG
axial gradiometers (Fig. 5B). Though at the source level,
we could not find a corresponding significant cluster sur-
viving multiple comparison correction (P-value > 0.05).

Exploratory Analysis
Comparison with fMRI Results

We found that subject average beta-gamma power in
the pre mood rating period was significantly (α < 0.05,
5000 random permutations, TFCE cluster correction) cor-
related with the subject expectation weight βEfrom the
primacy mood model (Fig. 6). We found significant clus-
ters with peaks in the ACC (r = 0.6, P-value = 3 × 10–6),
caudate and occipital cortex. By comparing (Keren et al.
2021) previous fMRI work, we found overlap between MEG
and BOLD fMRI activation correlating to βE in the ACC.

Exploratory Sensitivity Analysis

As part of our exploratory analysis, we aimed to see if
the relationships between expectation and beta-gamma
power may be an effect of group differences or depended
on poor mood model fit.

We selected a subsample with self-reported mood well
described by the primacy model (model fit r-squared
> 0.5 and mood range > 0.1). This threshold included 30
participants from the full sample (30/54 = 56% of sample).
Two participants in this group did not have a structural
anatomical. For our analyses at source level, the sample
therefore included 28 participants (age 16.0 ± 1.9 years,
12 MDDs, 18 females).
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Fig. 4. Response to reward feedback in ROIs from the AAL atlas hypothe-
sized to vary with mood or with the reward prediction error parameters.
A. Response to feedback in the right insula cortex and prediction from
self-reported mood. No significant temporal clusters were found in the
confirmatory sample. B. ROIs with significant temporal clusters for the
ρt fixed effect. ρt was confirmed to predict responses in right paracentral
lobule (cluster peaks at 248 and 502 ms). No significant effect of ρt was
found in the right precuneus.

Beta-Gamma Power Is Positively Related to Expectation:

in our sensitivity sample (N = 28) we found that expec-
tation still significantly (P < 0.05, two-tailed null distri-
bution, TFCE) predicted beta-gamma power in a cluster
including posterior cingulate. Compared to the results
of the confirmatory analysis the significant cluster
extended more into left temporal cortex and frontal
cortex, with a peak in the ACC and frontal superior
medial cortex (Fig. 7A).

Effects of Group: MDD/HV and MFQ Scores

We then tested the effects of MFQ score and MDD
diagnosis in the sensitivity sub-sample (n = 30), which
responded well to the mood induction.

Relationship between Beta-Gamma Power and Expectation:

We found that MFQ score and its interaction with expec-
tation do not have any significant effect on beta-gamma
power. MDD diagnosis is also not predictive of beta-
gamma power, but its inclusion in the prediction model
reduces the trial variance explained by ηt (Fig. 7B) and
the interaction of MDD diagnosis with the accumulated

expectation (ηt) shows a significant cluster in the left mid
and superior temporal cortex (Fig. 7C).

Discussion
With a confirmatory sample of 40 participants, we found
support in our pre-registered hypothesis that reward
expectation, defined by the computational primacy
mood model, is positively related to beta-gamma power
over central MEG sensors. The same linear mixed
effect analysis at the source space localized the main
significant cluster over the posterior cingulate cortex
(PCC), extending to mid cingulate, paracentral lobule,
and parietal cortex. No significant clusters were found in
superior or medial frontal cortex when including the full
confirmatory sample. Our sensitivity analysis, selecting
a sub-sample of participants well described by the
primacy mood model, showed even better prediction of
beta-gamma power from expectation, with a significant
cluster also in frontal superior cortex and ACC, as well
as a cluster in the left temporal cortex predicted by
MDD diagnosis. The cingulate cortex is thought to have
an important role in integrative brain functions, being
involved in emotional processing, memory, and learning.
The PCC in particular is involved in memory processes
and strongly connected to the hippocampus as well as
being a key node in the resting state network.

It is interesting to note that from our model defini-
tion, reward expectation is the equivalent to the average
of all experienced rewards during the gambling task, a
mental representation that we expect to involve memory
processes. Though our results do not link directly beta-
gamma power with self-reported mood, our computa-
tional mood model support the idea that reward expec-
tation is a key component in mood processes, suggesting
that it may be important to identify the separate mental
processes that contribute to form mood if we hope to
understand its integrative function in the human brain.

With this result, we also identify that brain oscilla-
tions may have an important, and measurable, role in
mood dynamics, as previously found in studies involv-
ing pharmacological manipulation (e.g., ketamine) and
group comparisons between MDDs and HVs showing in
particular how reduced frontal gamma oscillations may
be a marker of depression (Fitzgerald and Watson 2018;
Nugent et al. 2019a).

Brain oscillations are believed to be key to brain
communication (supported by an expanding literature in
MEG functional connectivity) and their function, depend-
ing on oscillatory frequency, in conjunction with other
techniques (PET, MRS) can be used to explore the specific
function of neuronal assemblies (e.g., glutamatergic exci-
tatory vs. GABAergic inhibitory processes). This is key to
determine possible dysfunctions in mood disorders such
as depression, and possibly developing more effective
pharmacological therapies than current antidepressants.
Previous work in brain electrophysiology has identified
high-frequency gamma oscillations as possible markers
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Fig. 5. Expectation predicts the evoked response 250–400 ms after presentation of gambling options. A. Topographic map of the z-scored average MEG
signal over all trials and subjects in the 250–400 ms time window after presentation of gambling options. B. Maps of MEG sensors where expectation
parameter ηt significantly predicts MEG response 250–400 ms following presentation of gambling options. Sensors surviving clustering correction
(α < 0.05, two-tailed, 10 000 random permutations) are shown in color. Color bar indicates t-statistic of the fixed effect. Predictor ηt did not show
any surviving significant clusters. In source space. C. Time course of the evoked response (average over all trials and subjects in confirmatory sample)
over all significant sensors (clusters in Fig. 5B). The time window of interest is highlighted in gray.

Fig. 6. Subject level analysis: subject level expectation weight βE significantly (α < 0.05, 5000 random permutations) correlates with subject average
beta-gamma power preceding mood rating. Color bar indicates Pearson’s correlation (r) for MEG power. Source map showing significantly correlated
clusters has been masked with cortical and subcortical regions included in the AAL atlas. Subject beta-gamma power shows significant correlation
clusters in subgenual ACC, caudate and occipital cortex. Voxels of overlap between MEG and fMRI results (Keren et al. 2021) are displayed in green and
voxels where only fMRI showed significant correlation are in blue. Both modalities show a subject level brain activity correlating with βE in ACC regions.

of depression, with depressed patient showing reduced
gamma power in the frontal cortex (Fitzgerald and
Watson 2018).

Beta-gamma oscillations have been observed if mul-
tiple EEG studies, synchronizing in response to positive
feedback (HajiHosseini and Holroyd 2015; Marco-Pallarés
et al. 2015). The naming of the band in the literature is
unclear, with different authors also referring to it as high-
beta or low-gamma bands. We initially selected the 25–
40 Hz band based on these studies and analysis of our
exploratory sample with standard frequency bands. We
believe these results may be a start for further studies
exploring how changes in beta-gamma power and beta-
gamma functional connectivity in the cingulate cortex

relate to reward presentation (as observed in EEG follow-
ing reward feedback) and mood.

Looking at evoked responses, we had hypothesized
that the response of the insular cortex to reward feed-
back would be correlated with self-reported mood. The
insular cortex is thought to be a key area for reward
processes, interoception, and mood (Preuschoff et al.
2008; Singer et al. 2009) with multiple studies identi-
fying changes in insula function in depressed patients.
While we observed activation of the right insular cortex
following reward feedback (both positive and negative),
in this study we could not find significant evidence that
insula response is directly influenced by participants’
self-reported mood.
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Fig. 7. Sensitivity analysis for beta-gamma power and the accumulated expectation ηt. (A) Source clusters where expectation ηt significantly predicts
beta-gamma power in the sensitivity sample. (B) Multivariate analysis including fixed effect of group (HV or MDD) shows a reduced effect of ηt with
surviving clusters in the frontal cortex. (C) Significant effect of ηt and MDD group interaction in the left temporal cortex.

We found instead confirmatory evidence that RPE (a
predictor of mood as defined from the primacy model)
modulates the evoked potential in the paracentral lobule
both at an early 200–300 ms and later time ∼ 500 ms
from feedback presentation. Further sensitivity analysis
showed that in participants whose behavior was well
described by the primacy mood model, RPE was predic-
tive of response to feedback between 200–300 ms in a
number of ROIs including paracentral lobule, mid and
posterior cingulate, and right basal ganglia. The direc-
tion of the prediction in all of these results indicated a
stronger response to negative reward prediction errors.
This is in agreement with previous literature on the
feedback related negativity (FRN), extensively observed
in EEG. The localization of the FRN, observed on fronto-
central sensors in EEG, is still unclear. Doñamayor et al.
(2012) localized the FRN from MEG data to the PCC, while
other studies combing EEG and fMRI localized the FRN to
the dorsal ACC (Hauser et al. 2014).

In our sensitivity analysis, we also found that both self-
reported mood and the accumulated RPE were predictive
of the peak at ∼265 ms in response to feedback in the
paracentral lobule. This result, combined with previous
EEG work by Paul and Pourtois (2017), showing a likely
effect of mood on the FRN, lends support to the idea that
we may be able to measure the effect of mood on fast
reward processes. We propose that this may be a starting
point in exploring of mood is represented in the neu-
ral activity and modified by the experience of different
reward environments in both healthy volunteers and in
major depression.

Though we found some evidence that cerebellum
activity is correlated with reward expectation following
the presentation of gambling options (see Fig. S3 and S12
in Supplementary Material), this was not confirmed in
our source level analysis of the confirmatory sample.
Several papers have highlighted the involvement of
cerebellum in reward processing and its connection to
basal ganglia (Bostan et al. 2010; Wagner et al. 2017;
Pierce and Péron 2020), but how well we can measure

cerebellar activity with non-invasive electrophysiology
remains largely unexplored.

Although we tried to mitigate statistical bias by pre-
registering our approach, our analysis still has some
technical limitations. We are analyzing the change in
MEG signal over trials: this gives lower signal to noise
compared to a standard beamformer localization where
multiple trials are averaged together. While we are using
a linear mixed effects model to include all our available
data into one statistical test, source localization in M/EEG
always maintains a degree of uncertainty due to the ill
posed nature of the inverse problem and its estimate is
dependent on signal SNR (as well as choice of head model
and co-registration accuracy (Jaiswal et al. 2020)).

We explored the choice of forward model and beam-
former parameters in Supplementary Material, finding
a strong effect of beamformer parameter choice on our
localization results for beta-gamma power. We suggest
that for similar analyses it might be beneficial to apply
an adaptive regularization as proposed in Woolrich et al.
(2011)) or test localization accuracy at similar SNR level
with computational models to determine the best source
localization parameters.

While most of our hypotheses do not test for the effect
of mood directly, we start from the proven relationship
between mood and reward environment (the progressive
update of reward expectation and prediction errors) to
define task parameters that are both correlated to self-
reported mood and to measurable brain activity. We can
see how key features of rewards that influence mood
dynamics (i.e., expectation and reward prediction error)
are encoded in multiple brain regions at different times
and with different mechanisms (both stimulus evoked
responses and oscillations).

To our knowledge, this paper offers new evidence
that it is possible to track the effect of changes in
mood predictors in neuronal activity (non-invasively)
at the minute time scales. Based on our pre-registered
exploratory analysis, within our task we only expected
to see direct correlates of mood on neural activity on the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab417#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab417#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab417#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab417#supplementary-data
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insula, but this was not confirmed by our results. While
univariate analysis did show significant effects of mood,
multivariate analysis may be more suited to reveal how
our perceived mood affects brain function. We believe
mood to be an integrative function, which cannot be
accurately reflected by the activity of a single brain area
but is the result of activity and communication between
multiple cortical and sub-cortical regions. Mood may not
be measured as activation of a brain region, but rather
a shift in baseline activity and functional connectivity
of brain networks, priming the brain to respond more
strongly to certain stimuli (and/or “inhibiting” the brain
to respond less strongly to others), similar to the effect
of attention and arousal (Bowrey et al. 2017). We hope
this start may help laying some of the groundwork
to determine possible causality in reward and mood
processes in humans in vivo by identifying both ROIs
and accurate timing.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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