
Celebrating 20 years of live single-actin-filament
studies with five golden rules
Hugo Wiolanda,1, Antoine J�egoua,1 , and Guillaume Romet-Lemonnea,1

Edited by Edward Egelman, Department of Biochemistry andMolecular Genetics, University of Virginia, Charlottesville, VA; received
July 22, 2021; accepted November 22, 2021

The precise assembly and disassembly of actin filaments is required for several cellular processes, and their
regulation has been scrutinized for decades. Twenty years ago, a handful of studies marked the advent of a
new type of experiment to study actin dynamics: using optical microscopy to look at individual events, tak-
ing place on individual filaments in real time. Here, we summarize the main characteristics of this approach
and how it has changed our ability to understand actin assembly dynamics. We also highlight some of its
caveats and reflect on what we have learned over the past 20 years, leading us to propose a set of guide-
lines, which we hope will contribute to a better exploitation of this powerful tool.
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Actin filaments and networks play such key and ver-
satile roles in cells that we must understand every
aspect of their assembly. We thus need to accurately
describe the mechanisms that regulate actin assem-
bly, and quantify their reaction rates.

A lot of our early knowledge of actin, following
its identification in the 1940s as a substrate required
to “activate” myosin motors (ref. 1 has a review),
comes from electron microscopy (EM), which pro-
vided detailed images of fixed filaments (2). Fila-
ments could not be imaged “live,” but in the early
1980s, by taking EM snapshots of individual fila-
ments at different time points, Pollard and Mooseker
(3, 4) managed to derive kinetic rates of actin assem-
bly. At that time, bulk solution studies were emerg-
ing as the tool of choice to study actin biochemistry:
in particular, cosedimentation assays to investigate
the binding of proteins to filaments, and spectro-
fluorimetry exploiting the enhanced fluorescence of
pyrenyl-labeled actin incorporated into filaments (5)
to quantify assembly kinetics. These bulk solution
assays are still extensively used today.

Also in the 1980s, fluorescent microscopy emerged
as another method to study actin filaments in vitro, first
by labeling the filament-stabilizing drug phalloidin (6)
and later by directly labeling actin (7, 8) with a fluoro-
phore such as rhodamine. In principle, the availability
of fluorescently labeled actin allowed one to directly

monitor dynamic filaments. Yet, until the turn of the
century, only stabilized actin filaments were observed
in vitro using light microscopy. These experiments
nonetheless provided important measurements
regarding, for example, the mechanical properties of
actin filaments and of Arp2/3 branch junctions (8–11),
the severing of phalloidin-stabilized filaments by acto-
phorin, the cofilin ortholog in amoeba (12), and the
properties of myosin motor proteins (6, 13, 14).

A key limitation to monitor dynamic actin fila-
ments is the background signal from fluorescently
labeled proteins in solution (in particular, actin
monomers if one wishes to monitor elongating fila-
ments). This problem can be solved by total internal
reflection fluorescence (TIRF) microscopy, a tech-
nique where only a shallow region above the cover-
slip is illuminated (Fig. 1A), which has been used to
image cells since the early 1980s (15). In the 1990s,
TIRF was also used to monitor individual proteins
in vitro, like myosins (16), interacting with stabilized
actin filaments (17). In 2001 and 2002, for the first
time, dynamic actin filaments were visualized in real
time using TIRF (18–20) and confocal microscopy
(21). These pioneer studies provided the first live
observations of Arp2/3-mediated branching (18, 19,
21) and of filament treadmilling (20). Most impor-
tantly, they mark the birth of a new powerful assay
to directly monitor actin dynamics.
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Live single-actin-filament assays can have technical differ-
ences (Fig. 1), but they all exhibit the following basic features.
First, actin and actin-binding proteins (ABPs) are purified to be
used outside of the cell. This provides control over the nature
and concentrations of proteins regulating actin assembly. Puri-
fied proteins can be supplemented by cell extracts (22). Second,
actin (and sometimes ABPs) is fluorescently labeled in order to
visualize filaments directly. Techniques such as high-speed
atomic force microscopy can be used to avoid this requirement,
but their use on actin filaments remains scarce (23, 24). Third,
filaments are constrained in a region close to the coverslip
surface. Various techniques can be used to achieve this quasi-
two-dimensional confinement: multiple anchoring points (Fig.
1B), crowding agents (Fig. 1C), and microfluidics (Fig. 1D). This
feature is required to maintain the filaments in the focal plane of
the microscope, so that they are entirely visible and can be
monitored over time. While epifluorescence can be used in
many cases, this confinement near the coverslip also enables
the use of TIRF microscopy, which is today the most widely
used technique to monitor single filaments live (25), as it pro-
vides high-quality images and is now easy to use thanks to the
development of objective-based TIRF (16, 26). Other techni-
ques, such as optical traps, allow one to manipulate filaments in
a plane farther above the surface (14), but they make it difficult
to observe elongation or depolymerization from either end.

Live Single-Filament Studies Have Changed Our Ability
to Understand Actin Dynamics
In vitro studies, using purified proteins, allow us to decipher the
regulatory mechanisms that control actin assembly. On their
own, they are not enough to explain how actin works in cells,
but they are a necessary piece of the puzzle. In that respect,
being able to observe individual reactions on individual

filaments is a major step forward and opens new avenues to
study actin dynamics (Fig. 2).

Qualitatively, a great asset of single-filament observations,
sometimes reinforced by the observation of single fluorescent
ABPs, is that they provide direct information. One can directly
assess where events take place on the filaments and what basic
architectural elements (e.g., side branching) emerge from these
events. One can disentangle the different reactions involving an
ABP rather than simply observing their collective outcome. One
can readily distinguish severing from depolymerization or sepa-
rate the contributions of nucleation and elongation, which can
be very difficult with solution assays.

Quantitatively, as single-filament studies allow us to monitor
events over time, they are also a powerful means to determine
reaction rates (27). When observing individual events, such as
the barbed end binding and unbinding by a capping protein
(28–31) or by a formin (29, 30, 32, 33), rates can be extracted
from exponential fits of the survival functions, and reliable num-
bers can be derived from the observations of only a few tens of
events. Since hundreds of individual filaments can be observed,
these reasonable requirements make it possible to quantify sev-
eral individual reactions in several conditions.

Thanks to these assets, live single-actin-filament observa-
tions have quickly confirmed rates previously measured using
other techniques, such as the elongation and depolymerization
rates of barbed and pointed ends (18, 34, 35) and the rate at
which capping proteins bind and unbind barbed ends (28, 29,
31). The live observation of filament branching by the Arp2/3
complex (18, 19, 21) confirmed that branches grew off the sides
of existing filaments, as already concluded from experiments
using stabilized filaments (11). Subsequent experiments visualiz-
ing live branching events went further and were able, notably,
to decipher the molecular steps leading to branch formation
(36) and to demonstrate the acceleration of debranching by
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Fig. 1. Main single-filament techniques used to study actin dynamics. (A) In TIRF microscopy, a shallow region of the sample, a few hundred
nanometers above the coverslip, is illuminated by the evanescent wave resulting from the total reflection of the incoming light. Note that if
the concentration of labeled proteins is low, TIRF may not be necessary, and epifluorescence can be used. (B–D) Actin filaments can be main-
tained close to the surface by specific anchors (A), by a crowding agent present in solution (B), or by a microfluidic flow while they are
anchored by one end only (here, via a seed; C). (B, Right; C, Right; and D, Right) Actin filaments (10% labeled with AlexaFluor-488 and 1%
biotinylated actin subunits on surface lysines) anchored to a streptavidin functionalized coverslip (A), actin filaments (10% labeled with Alexa-
Fluor-568) with 0.3% methylcellulose (4,000 cP at 2%; B), and actin filaments (10% labeled with AlexaFluor-488) polymerized from spectrin-
actin seeds inside a microfluidic chamber (C). All filaments are made with rabbit alpha-skeletal actin, imaged in the same buffer (5 mM
Tris�HCl, pH 7.4, 50 mM KCl, 1 mM MgCl2, 0.2 mM EGTA, 0.2 mM ATP, 10 mM DTT, 1 mM DABCO). EGTA, ethylene glycol tetraacetic acid;
DTT, dithiothreitol; DABCO, diazabicyclooctane.
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proteins (37–39) and more recently, by mechanical forces (40).
The cooperative formation of cofilin clusters on the side of actin
filaments and the severing of the filament at the boundaries of
these clusters had been deduced from a number of studies
using other techniques (41, 42) and were later observed directly
on single filaments using fluorescently labeled cofilin (43). In
addition, such direct observations further revealed information
that seems inaccessible to other methods: that cofilin-induced
severing occurred preferentially at the cluster boundary located
toward the pointed end of the filament (31, 44, 45), how fast
severing per cofilin cluster occurred (31), and how the action of
cofilin is affected by other proteins (22, 44, 46–51) or by the oxi-
dation of actin filaments (51, 52). The cooperative formation of
tropomyosin clusters was also confirmed on single filaments (48,
49, 53), and single-filament studies further revealed that tropo-
myosins independently decorate the two filament strands (48,
54). Another example of key information provided by live

single-filament observation is the assessment of formin proces-
sivity at the barbed end of a growing filament (32, 55, 56).
Revisiting classical assays with nonstabilized filaments can yield
unexpected results, such as myosin 1b’s ability to enhance
barbed end depolymerization in a standard gliding assay (57)
and myosins’ preference for either ADP- or ADP-Pi–rich actin fil-
aments revealed by monitoring individual motors on dynamic
filaments (58).

Advances in the observation of single fluorescent molecules
have reinforced the potency of single-filament studies. Notably,
they provide a direct means to detect the presence of individual
ABPs at either end or on the side of the filaments, quantify their
interactions, and shed light on their regulatory mechanisms. Key
molecular details were thus discovered by monitoring individual
fluorescently labeled Arp2/3 complexes (36, 59), capping pro-
tein (30), Ena/VASP (60), VopF/VopL (61), formins (30, 62, 63),
DIP/SPIN90 (64–66), and Srv2/CAP (67, 68).
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The results provided by live single-actin-filament studies are
too numerous to be all listed here. The aforementioned exam-
ples (some of which are sketched in Fig. 2A) illustrate the enor-
mous impact that this technique has had on our understanding
of the molecular processes regulating actin assembly. A partial
selection of findings, which would not have been possible with-
out observing single filaments in real time, is put on a time line
in Fig. 2B.

Requirements of Live Single-Filament Studies
As for any biochemical experiment carried out in vitro, great
care must be taken to ensure the quality and stability of the
purified proteins (69). In addition, when biological objects are
put in an artificial context, one must make sure that this context
is not changing their behavior. Fortunately, single-filament tech-
niques are quantitative, and experimental conditions can be
controlled well enough so that potential artifacts can be readily
identified and quantified. Early live single-filament studies,

including the first one by Amann and Pollard (18), already iden-
tified the two probably most important caveats: the potential
impact of fluorescent labeling and of surface–filament interac-
tions. They can be minimized and taken into account.

Perhaps the best-known and most dramatic artifact that can
occur when observing an actin filament in fluorescent microscopy
is photo-induced severing (Fig. 3B). Other less obvious artifacts
include the formation of photo-induced covalent actin dimers
within filaments (70) and the supercoiling of phalloidin-decorated
filaments exposed to strong illumination (71). Even in the absence
of illumination, the presence of the fluorescent label itself can
have an impact on protein–protein interactions. The first live
single-filament studies established that actin monomers labeled
on Cys374 with Rhodamine or Oregon Green dyes hardly inte-
grated the filaments (18, 34). The location of Cys374, on the
barbed face of the actin monomer (Fig. 3A), also impedes the
binding to profilin, and as a result, filaments elongated by formins
in the presence of profilin were shown to incorporate even lower
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amounts of labeled actin (32), a feature that could actually be
used as a means to identify formin-elongated filaments. In con-
trast, labeling actin on surface lysines with AlexaFluor dyes
appeared to have no impact on free barbed end dynamics (33,
72) and a moderate impact on formin-assisted barbed end elon-
gation (33, 73). Several lysines are available on the surface of poly-
merized actin and could potentially bind the AlexaFluor dye, but
mass spectrometry revealed that Lys328 was the preferred label-
ing site (74) (Fig. 3A). Fluorescently labeling ABPs can also be an
issue and has long hindered the visualization of functional cofilin
and tropomyosins. The nature of the fluorescent label can have
subtle consequences; for example, the binding of cofilin-1 to the
filament sides is barely affected by the N-terminal fusion of
enhanced green fluorescent protein, while mCherry-cofilin-1 binds
30% slower than unlabeled cofilin-1 (31).

Early single-filament studies observed pauses, randomly
occurring during both elongation and depolymerization of
surface-anchored filaments, and attributed them to interac-
tions between the filament end and the surface either via
anchoring points or via nonspecific interactions (34, 75). One
can recover the correct depolymerization rate constant by
excluding these pauses from the analysis (34, 76). Fig. 3C illus-
trates this artifact. It was also reported that the density of
anchoring points enhanced cofilin-induced severing (77). It
was recently shown that the rate of severing at the edge of a
cofilin cluster was enhanced up to 100-fold between anchoring
points because of the filament’s inability to rotate and relax
torsional strain (78). Since actin filaments in cells are often
interconnected, this is a relevant configuration. What was first
identified as an artifact led to the discovery of a mechanism of
physiological importance.

Single-filament studies, thanks to the direct observation and
the control they provide, offer the possibility to identify artifacts
and sometimes even exploit them. In a way, these assays con-
tain their own antidote. They can also be used to detect and
quantify artifacts that may take place in cells, with widely used
probes like GFP-Lifeact (79), and that would otherwise remain
unnoticed.

Where Do We Stand Now That This Field Is 20
Years Old?
Today, looking at single events live on actin filaments is one
of the most powerful tools in our arsenal to study actin
assembly dynamics. Putting key dates on a time line (Fig.
2B), it is striking to see how the advent of this technique, 20
years ago, has triggered an explosion of results that would
have otherwise largely remained inaccessible. It is also notable
that TIRF microscopy was first applied to study dynamic actin fil-
aments several years after its invention. This highlights the
importance of all the incremental improvements that constitute
the backdrop of such a time line; fluorophores, cameras, micro-
scope objectives, and computers all got better over the years
and contributed to making the technique more sensitive, more
reliable, and easier to use.

Importantly, these technical improvements are still going on
today and directly benefit single-actin-filament studies. New
tools for the production and characterization of proteins should
provide a better control of which isoform is studied and what
posttranslational modifications it harbors (80, 81). New ways to
fluorescently label actin filaments have been proposed, offering
interesting possibilities; the fluorescently labeled Calponin
Homology domains of utrophin, which efficiently decorate actin

filaments, have been used to successfully monitor the rapid
elongation of filaments exposed to over 100 μM unlabeled
monomeric actin (i.e., concentrations where the background
signal from labeled monomers would preclude imaging fila-
ments, even in TIRF) (82). Another study has shown that the fluo-
rescent nucleotide analog ATP-ATTO-488 could be used as an
indirect yet reliable way to label actin monomers, with little
impact on their kinetic rates and interaction with ABPs (83).
Additional developments are likely to emerge in the future,
such as new fluorescent probes or fully automated image analy-
sis, and will certainly continue to expand our ability to monitor
individual reactions on dynamic actin filaments.

Improvements also come from the addition of independent
technical features to basic single-filament assays. These assays,
which can already be performed in different ways (Fig. 1), can
be complemented by other approaches, such as surface micro-
patterning in order to restrict protein activity to a specific region
(84). They can be used to apply mechanical stress to several fila-
ments simultaneously, thereby adding a new dimension to the
questions they can address, thanks to microfluidics (33, 40, 78,
85, 86), or to a combination of myosins with opposite polarities
(87). In addition, the single-filament realm is expanding to
include filament bundles (48, 88–91), and in vitro studies using
purified proteins now cover multiple scales, from single-
molecule assays to the construction of filament networks with
diverse architectures (44, 92–94).

Thanks to these ongoing technical improvements, live
single-filament techniques are more powerful than ever and will
certainly provide essential results in the next decades.

Another thing we have learned over the past 20 years is that
apparent discrepancies in single-actin-filament studies usually
come from differences in experimental conditions (such as pH,
salt, and temperature) (Fig. 4) or from overlooked artifacts
(Fig. 3). Knowing this, the results from different studies are
remarkably consistent. Apparent discrepancies are eventually
solved, yielding valuable insights, and it is worth addressing
them by repeating existing experiments and comparing results.
Recent work on the action of twinfilin at the barbed end is a
good example of what can be gained by collectively repeating
assays until a consensus is reached (76, 95). In time, by repeat-
ing experiments, we should be able to clarify whether aip1
causes filaments decorated by cofilin and coronin to disassem-
ble in dramatic “bursts” (46, 96) or if it simply causes their sever-
ing (47). We should also find out why, depending on how
tension is applied to a filament, it appears to provide protection
against cofilin-induced severing (97) or not (78).

Five Golden Rules for Single-Actin-Filament Studies
In order to further improve the reliability of single-filament
results and to facilitate the fruitful comparison of results from
different studies, we propose here a set of guidelines. The fol-
lowing five “golden rules” are often basic reminders of good
scientific practice, applicable to other types of experiments.
Yet, most reports of live single-filament studies (including our
own, admittedly) follow only some of these rules, which is a pity
because they are particularly meaningful for this type of
experiment.

Be Explicit about Experimental Conditions. Seemingly identical
experiments may actually differ in a number of ways. Proteins
may be different isoforms, with partial truncations and with dif-
ferent tags. Buffers may differ in pH and ionic strength. These
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details often matter. For instance, pH is known to impact several
reaction rates (98, 99). Whether the pH is 7.0 or 7.8, one can
reach opposite conclusions regarding the acceleration of

pointed end depolymerization by cofilin, for example (Fig. 4A).
Experiments are usually carried out “at room temperature,”
which can effectively be anywhere between 18 and 28 °C,
depending on the efficiency of air conditioning and on the num-
ber of electrical devices running nearby. Over this temperature
range, reaction rates can vary by a factor of two (100) (Fig. 4B)
and certainly more for higher-order reactions, like filament
nucleation. If temperature cannot be accurately controlled, it
can at least be measured near the sample and reported.

Readers should be able to find all these details rapidly. Sum-
marizing them in a couple of sentences in the text and remind-
ing of them in the figures can be very helpful.

Hunt Down Potential Artifacts. Seeing an individual reaction
take place live, before our own eyes, can give the compelling
impression that we are looking at the naked truth. We are
not. Proteins are observed in an artificial context, and as dis-
cussed earlier, several artifacts (in particular, caused by label-
ing, illumination, and surface interactions) (Fig. 3) can lead to
the misinterpretation of single-filament data. Thankfully, these
assays provide the means to vary conditions and track down
potential artifacts. This should be systematically done, as
much as possible.

Any Experiment Bears Repeating. Cell biologists have long
known the importance of repeating experiments, and are now
improving ways to present these datasets [e.g., by using
“superplots” (101, 102)]. In vitro single-filament studies have
not yet adopted such standards. Results are often presented
based on several observations (several individual events or sev-
eral filaments) from a single experiment. However, many param-
eters escape our control (pipetting errors, variations in surface
passivation), and the only way to assess reproducibility is to
repeat the experiment.

Importantly, it is also worth repeating experiments from
previous papers, whether from your laboratory or other labo-
ratories. The trustworthiness of a result and its benefit to the
community are greatly enhanced when it has been observed
on independent occasions. If discrepancies arise, they are
likely due to differences in the way the experiment was car-
ried out and analyzed, and identifying them will drive the field
forward.

Show Your Hand (Raw Data and Methodology). In order to
properly reproduce your results, readers need to know in
detail how you performed your experiments (beyond the basic
biochemical conditions listed in the first point). They should
also be able to compare their data with your data. Others may
obtain new results by analyzing your data in a different way.
This is beneficial to all, and you can make it easier by sharing
detailed protocols and by sharing your raw data (movies,
kymographs), at least for key representative experiments.
Nowadays, all this is easily done thanks to online supplemen-
tary data, online data repositories, video protocols, and even
your personal website.

Studying Single Filaments Is a Collective Endeavor. Following
the previous rules should make it easier for others to reproduce
your results and to compare their data with your data. The cor-
ollary is to put your new results in the perspective of previous
work. If your results differ from published work, try to repeat
that previous experiment in order to identify where the differ-
ence comes from. Earlier studies are not necessarily right, but if
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Fig. 4. Impact of pH and temperature on reaction rates. (A) Depolymer-
ization of actin filament pointed ends (15% labeled with AlexaFluor-568
on surface lysines) at different buffer pH (5 mM Tris�HCl, 50 mM KCl, 1
mM MgCl2, 0.4 mM CaCl2, 0.2 mM EGTA, 0.2 mM ATP, 10 mM DTT, 1
mM DABCO) supplemented with 1 to 2 μM ADF or cofilin-1 as indi-
cated. Filaments are attached to the coverslip at their barbed end by
gelsolin in a microfluidics chamber. Depolymerization of bare and ADF/
cofilin-decorated filaments was recorded for up to 30 min at one frame
every 30 to 60 s. Each data point represents the mean and SD over 14
to 36 filaments (from one experiment). Data adapted from ref. 99 with
permission from the American Chemical Society (ACS), further permis-
sion should be directed to the ACS. (B) Elongation of the actin filament
barbed end from anchored spectrin-actin seeds in a microfluidics flow,
at different temperatures, exposed to 1 μM Mg-ATP-actin (10%
AlexaFluor-488 labeled on surface lysines) in buffer (5 mM Tris�HCl, pH
7.4, 50 mM KCl, 1 mM MgCl2, 0.2 mM EGTA, 0.2 mM ATP, 10 mM
DTT, 1 mM DABCO). Elongation was recorded for 5 min at one frame
every 10 s, and n > 30 filaments were analyzed for each condition.
(Inset) The slope of the linear relation of log(elongation rate) as a func-
tion of the inverse of the temperature (Arrhenius plot) allows us to esti-
mate the free energy associated with actin monomer addition at the
barbed end to be 37.8 kJ/mol (9.03 kcal/mol), similar to the value
reported by Drenckhahn and Pollard (100) using EM. Data can be found
in Dataset S1. ADF, actin depolymerizing factor; EGTA, ethylene glycol
tetraacetic acid; DTT, dithiothreitol; DABCO, diazabicyclooctane.
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you find rates that disagree with well-established values
obtained by independent laboratories (Table 1 shows some
examples), it is probably worth taking a closer look at your
experiment (rules 2 and 3).

Conclusion
Being able to observe reactions taking place on individual
actin filaments, live, has greatly expanded our understanding
of the molecular processes that regulate actin dynamics. This
experimental saga started decades ago, and we celebrate
here the 20th anniversary of some of its landmark publica-
tions. In the coming years, we expect that this technique will
provide many more results and will expand the list of quanti-
fied reaction rates, confirmed by independent measurements
(we have compiled some in Table 1). These numbers should

serve as references for experiments, provide rate constants
for theoretical models, and guide the interpretation of cell
data.

Data Availability. Previously published data were used for this
work (99). All data are included in the manuscript and/or support-
ing information.
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