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Simple Summary: Conventional therapies such as chemotherapy and radiation in leukemia increase
infection susceptibility, adverse side effects and immune cell inactivation. Natural killer (NK)
cells are the first line of defense against cancer and are critical in the recognition and cytolysis of
rapidly dividing and abnormal cell populations. In this review, we describe NK cells and NK cell
receptors, functional impairment of NK cells in leukemia, NK cell immunotherapies currently under
investigation including monoclonal antibodies (mAbs), adoptive transfer, chimeric antigen receptor-
NKs (CAR-NKs), bi-specific/tri-specific killer engagers (BiKEs/TriKEs) and potential targets of NK
cell-mediated immunotherapy for leukemia in the future.

Abstract: Leukemia is a malignancy of the bone marrow and blood resulting from the abnormal
differentiation of hematopoietic stem cells (HSCs). There are four main types of leukemia including
acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia
(CML), and chronic lymphocytic leukemia (CLL). While chemotherapy and radiation have been
conventional forms of treatment for leukemia, these therapies increase infection susceptibility, adverse
side effects and immune cell inactivation. Immunotherapies are becoming promising treatment
options for leukemia, with natural killer (NK) cell-mediated therapy providing a specific direction
of interest. The role of NK cells is critical for cancer cell elimination as these immune cells are the
first line of defense against cancer proliferation and are involved in both recognition and cytolysis of
rapidly dividing and abnormal cell populations. NK cells possess various activating and inhibitory
receptors, which regulate NK cell function, signaling either inhibition and continued surveillance,
or activation and subsequent cytotoxic activity. In this review, we describe NK cells and NK cell
receptors, functional impairment of NK cells in leukemia, NK cell immunotherapies currently under
investigation, including monoclonal antibodies (mAbs), adoptive transfer, chimeric antigen receptor-
NKs (CAR-NKs), bi-specific/tri-specific killer engagers (BiKEs/TriKEs) and future potential targets
of NK cell-based immunotherapy for leukemia.
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1. Introduction

Although approximately 14 billion dollars are spent annually on leukemia care alone
in the US, 5-year patient mortality rates have remained consistent over the past 30 years
at ~35% [1,2]. In 2022, a projected 60,650 new cases will be diagnosed, with an estimated
24,000 patient deaths [3]. These alarmingly high statistics present a pressing need to develop
new therapies in order to improve treatment strategies and subsequent patient recovery [4].
Treatment for leukemia patients can vary depending on the type of leukemia, the age of the
patient and stage of cancer development but will often include chemotherapy and radiation
therapy [5,6]. While effective in some cases, both chemotherapy and radiation therapy
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are aggressive forms of treatment that can cause toxic side effects, leading to significant
damage in not only the target cells, but also healthy tissues [7,8]. Recently, several forms of
immunotherapy options for leukemia have been marketed including targeted antibodies,
adoptive cell therapy and immunomodulators [9]. In contrast to the non-specific cell
destruction induced by chemotherapy and radiation, immunotherapy offers a targeted,
antigen-specific treatment option that utilizes the patient’s own immune system to combat
cancer proliferation [10,11]. NK cell treatments specifically are a topic of interest as these
immune cells inherently possess anti-tumorigenic characteristics and appear to present
both an effective and potentially less toxic option [12,13].

1.1. Leukemia

Leukemia is characterized as multiple malignancies that affect the blood and bone
marrow and is often the result of both genetic and environmental factors [14]. During
leukemia, excess proliferation of leukemic cells from hematopoietic stem cells (HSCs)
occurs, resulting in a crowding out of developing immune cells and decreased production
of important lymphoid or myeloid cells. Leukemic cells are also capable of eventually
infiltrating from the bone marrow into the bloodstream and have the potential to infect
systemically, affecting both the peripheral and central nervous systems [15].

There are four main types of leukemia including chronic myeloid leukemia (CML),
acute myeloid leukemia (AML), acute lymphoblastic/lymphocytic leukemia (ALL) and
chronic lymphocytic leukemia (CLL). While these four types of leukemia are the most
common and will be the primary topics of discussion, it is important to note that there are
several other rare forms of leukemia as well, including prolymphocytic leukemia (PLL),
large granular lymphocytic leukemia (LGL) and hairy cell leukemia (HCL). The four more
common types of leukemia are separated not only by acute vs. chronic presentation, but
also by the specific lineage the leukemia originates from [14]. Acute leukemia is typically
more severe as cancerous cells in this state proliferate rapidly, preventing blood stem cell
maturation, while chronic leukemia progresses more slowly and prevents development
of blood cells from HSCs. Myeloid leukemia develops from potential myeloid cells that
would typically differentiate into red blood cells, platelets or white blood cells including
granulocytes or monocytes such as neutrophils, basophils and eosinophils. In contrast,
lymphocytic leukemia develops from potential lymphocytic cells that would, under normal
circumstances, differentiate into T cells, B cells and NK cells [16].

Conventional modalities of treatment for leukemia include chemotherapy, targeted
therapy, and radiation treatment with possible bone marrow transplantation (BMT) if
needed. Although these treatment models have shown various success rates in the past,
patients are subject to multiple adverse side effects, increased risk of infection and the
possibility of leukemic relapse. Patients with a previous history of chemotherapy or
radiation therapy also have an increased risk of developing secondary leukemia, which is
often difficult to treat and has a poor prognosis [16].

While overall 5-year survival rates for leukemia remain high, treatment of relapsed
leukemia remains a major obstacle as these patients often present with chemoresistance
and a significantly impaired immune system [17,18]. CAR-T cell therapies have been
explored for use in leukemia and have shown some success in recognition of cancer cells,
but this form of treatment is often coupled with severe side effects including encephalopa-
thy, coagulopathy, hypoxia, and neurotoxicity [19–22]. With the success of targeting the
immune system for improved patient recovery, less toxic alternatives to CAR-T therapies
are being actively explored. Natural killer cell dysfunction has been well characterized
in leukemia and shown to play a role in both disease severity and progression [23,24].
NK-cell based immunotherapies in the form of adoptive transfer and immune checkpoint
inhibitors (ICIs) have shown promise for treatment of both primary and relapsed leukemic
presentation [25–27].
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1.1.1. Myeloid Leukemia

Acute myeloid leukemia (AML) often occurs due to chromosomal abnormalities or
mutations in the genes NPM1, CEPBA, RUNX1 and FLT3 and is characterized by an over-
accumulation of abnormal cells called myeloblasts. AML occurs more frequently in older
populations with the average age of diagnosis reported as ~65 years of age and the current
5-year survival rate stands at 28% [28]. This reportedly older age of diagnosis presents
complications as some physicians may have reservations using traditional, rigorous treat-
ment methods for elderly and subsequently more at-risk patients [28]. Treatment phases
for AML typically includes induction therapy to destroy the leukemia cells followed by
consolidation to kill any remaining cancer cells. Anthracycline is often the standard of
care for AML, which is a drug that increases the patient’s risk of congestive heart failure.
Even though rigorous treatment methods are used, 40–60% of patients relapse after initial
treatment, requiring subsequent follow-up therapy in the form of hematopoietic stem cell
transplants (HSCTs), additional chemotherapy, or targeted therapies [29]. Several forms
of immunotherapy are currently under investigation for treatment of AML, including
bispecific antibodies, CAR-T cell therapy and NK cell therapy [30].

Chronic myeloid leukemia occurs as the result of a translocation occurring between
chromosomes 9 and 22, causing an abnormal gene fusion of BCR-ABL1. This is a somatic
rather than acquired mutation, meaning it can occur randomly and does not require genetic
predisposition. This gene fusion causes uncontrolled cell division and blockage of apoptosis,
resulting in excess production of abnormal cells from HSCs, resulting in CML [31]. In
similarity to AML, CML primarily affects older populations, with over half of the diagnoses
being above the age of 64 [31]. Additionally, it affects slightly more men than women and
accounts for approximately 15% of leukemia cases nationwide [32,33].

In theory, the translocation mutation is an excellent target using tyrosine kinase
inhibitors (TKIs); however, many patients fail to fully respond, with a decreased rate of
recovery after each subsequent treatment [34]. Even though the majority of CML patients
present with resistance and in some cases intolerance to TKIs such as nilotinib, dasatinib
and bosutinib, this form of therapy remains mainstay for high-risk patients [35]. TKI
treatment has been shown to have a direct effect on NK cell activity. Dasatinib has been
shown to increase expression of both inhibitory and activating NK cell receptors, while
Imatinib has been shown to play a primarily stimulatory role by upregulating expression of
only activating receptors [36,37]. Research exploring alternative therapies for TKI-resistant
CML patients has shown that NK cell transfusions have the capability to overcome this
drug resistance in advanced stages of development [38,39]. Since TKIs have been identified
as playing a role in regulating NK cell activity, future research focused on using TKIs in
combination with checkpoint inhibitors that upregulate NK cells could prove beneficial for
the improvement of treatment strategies.

1.1.2. Lymphocytic/Lymphoblastic Leukemia

Acute lymphocytic/lymphoblastic leukemia (ALL) is the most common form of
leukemia in children and is caused by chromosomal changes such as translocations, inser-
tions or deletions that lead to excess cell division [40]. The most common mutations that
have been identified in ALL patients include translocations in BCR-ABL1, ETV6-RUNX1,
TCF3-PBX1, and MLL-AFF1 with additional mutations occurring in PAX5 and IKZF1 [41].
ALL can be further categorized based on both the chromosomal and genetic mutations
observed as well as the lymphocyte subtype affected (B cell lymphocytic/lymphoblastic
leukemia vs. T cell lymphocytic/lymphoblastic leukemia). While 5-year survival rates for
childhood ALL patients is an encouraging 87%, this survival rate significantly decreases
following relapse, emphasizing the need for treatment that returns the immune system to a
more homeostatic state to prevent this relapse from occurring [42]. The current standard
of treatment for pediatric ALL includes combination chemotherapy, and clinical trials are
underway to determine effectiveness of combining chemotherapy with targeted mono-
clonal antibody treatment (blinatumomab) [43]. Since leukemia cells have the potential
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to spread to the brain and spinal cord, treatment often includes intrathecal chemotherapy.
Stem cell transplants may also be performed if a pediatric patient does not respond well
to conventional treatment [44].Continued investigation of targeted immunotherapy for
ALL patients remains a priority to maximize patient recovery. ALL patients with systemic
peripheral leukemia have been shown to express elevated levels of IL-15, which is involved
in activation of NK cells. As NK cells have been shown to be capable of direct lysis of
abnormal immature WBCs in these patients, NK cell transfusions from healthy donors
show promise in improving patient prognoses [45].

Chronic lymphocytic leukemia (CLL) is the most common type of adult leukemia and
while it can affect both sexes, occurs more frequently in men than women. CLL is thought to
occur due to damage of genes involved in blood development and results in the production
of abnormal cells that would typically differentiate into the B cell subset [46]. Several
somatic mutations involved in development of CLL include ATM, TP53, RB1, BIRC3 and
MYD88 as well as gene rearrangements of BCR-ABL [47]. B cell deficiency characterized
by this form of leukemia causes patients to have a significantly increased risk of acquiring
bacterial infections. Current first lines of treatment for CLL include chemotherapy in
combination with monoclonal antibodies or other forms of targeted treatment; however,
these forms of therapy are not always effective [48]. Recent research suggests that use of
allogeneic natural killer cells may be the future of CLL treatment [49,50].

2. Natural Killer (NK) Cells

NK cells are derived from HSCs via the lymphocyte cell lineage and make up ~10%
of circulating lymphocytes in the human body [51]. NK cells are an important part of
the innate immune system involved in recognition of virally infected or cancerous cells
and are classified as CD3−CD56+ cells that can be divided into two subtypes,
including CD3−CD56dimCD16+ NK cells and CD3−CD56brightCD16− NK cells [51,52].
CD3−CD56brightCD16− NK cells are typically found in secondary lymphoid tissues includ-
ing the lymph nodes and are responsible for the potent production of cytokines in response
to tumor cell proliferation or viral infection [52,53]. In contrast, CD3−CD56dimCD16+ NK
cells primarily circulate in the peripheral blood and are involved in cytolytic activity when
activated, releasing perforin and granzymes onto target cells [52]. Research has shown
that CD56bright NK cells can differentiate into CD56dim NK cells upon stimulation with
peripheral tissue fibroblasts [54]. Recently, studies have shown that NK cells are capable of
memory, a novel finding further emphasizing the role these innate immune cells play in
cancer cell surveillance [55].

2.1. Natural Killer Cell Mechanism of Action

Unlike T cell activity, which is antigen-specific, NK cell activity is controlled via a
balance of activating and inhibitory interactions [56]. Expressed on the surface of each NK
cell is an abundant assortment of activating, inhibitory and cytokine receptors that interact
with their specific ligands expressed on the surfaces of other cells including immune cells,
host tissues and foreign invaders [57,58]. Under normal conditions, NK cells circulate
in a latent state, neither activated nor inhibited, waiting for receptor-ligand interactions
to induce stimulation. When an NK cell comes in contact with a healthy host tissue or
immune cell, inhibitory receptor-ligands will interact, sending signals to the NK cell that
prevent cytotoxic activity [58]. When an NK cell encounters a virally infected or cancerous
cell, activating receptor-ligand interactions are employed, resulting in subsequent release
of lytic granules or cytokine production to induce apoptosis of the target cell. For NK cell
activation or inhibition to occur, multiple receptor-ligand interactions must occur [59]. This
protective mechanism is crucial to ensure that NK cells do not mass-destruct healthy tissues
and that activation can only be employed when multiple interactions deem apoptosis or
cytokine production necessary. Initially, it was thought that NK cell interactions relied
solely on the presence or absence of MHC I, an adaptive immune receptor expressed on
the surfaces of all nucleated cells [60]. While this was later disproven as red blood cells
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(RBCs) do not express MHC I and NK cells do not kill them, MHC I interactions remain an
important mechanism by which NK cell inhibition occurs [61,62]. Although NK cells do not
destroy RBCs, recognition of cells not expressing MHC I is a common trigger of apoptosis.

In the presence of tumor cells, NK cells have two main roles: degranulation resulting
in cytolytic apoptosis of unrecognized cells and cytokine release to alert circulating immune
cells. NK cells primarily release cytokines such as IFN-γ, TNF-α, Granulocyte-Macrophage
Colony-Stimulating Factor (GM-CSF), and IL-33. These cytokines, along with IL-4, IL-7,
and IL-12 stimulate recruitment and activity of hematopoietic cells for an increased immune
response [63]. Cytolytic killing of tumor cells can occur either directly by activation of
NK cells to induce release of cytolytic granules (perforin, granzyme, and granulysin) into
affected targets or by antibody-dependent cellular cytotoxicity (ADCC) [64–66]. During
ADCC, secreted antibodies will bind to an antigen expressed on the surface of a target cell
via the Fab region. Circulating NK cells expressing the CD16 receptor recognize the Fc
portion of the antibody and bind to it, inducing cross-linking of the receptors. This cross-
linking activates the NK cell, signaling for the release of lytic granules and subsequent
death of the target cell [67]. Some of the notable NK cell receptors that are associated
with tumor surveillance and could provide therapeutic targets for leukemia treatment are
natural killer group 2D (NKG2D), DNAM-1, PD-1, 2B4 (CD244, SLAMF4), CS1(CD319,
SLAMF7), LLT1 (CLEC2D, OCIL), aKIRs and iKIRs, and natural cytotoxicity receptors
(NCRs) such as NKp44, NKp30, and NKp46 (Figure 1).
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2.2. Natural Killer Cell Receptors

An activating receptor widely recognized as an important modulator of cancer prolif-
eration is NKG2D. NKG2D is expressed on all NK cells and recognizes its ligands MHC
class I polypeptide related sequence A (MICA), MHC class I polypeptide-related sequence
B (MICB) and UL16 binding protein 1 (ULBP1-6) [68,69]. MICA, MICB and ULBP1-6 are
typically expressed in very low concentrations in healthy cells, primarily upregulated in
stress-induced or cancerous tissues to stimulate NK cell activation [70]. Unsurprisingly, re-
search has shown that NKG2D-deficient mice present with unchecked cancer proliferation
due to the ability of cancerous tissue to remain incognito and avoid recognition [70]. Re-
search has also shown that MICA and MICB possess shedding capabilities when expressed
on cancer cells in an effort to avoid immune recognition. Use of a blocking antibody has
been shown to reduce this downregulatory mechanism, allowing NK cell recognition.
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A second major mediator of cancer cell recognition by NK cells is the DNAM-1
receptor, an adhesion receptor involved in activation of NK cell cytotoxicity. Ligands for
DNAM-1 include CD155 and CD112, and DNAM-1-CD155 or DNAM-1-CD112 interactions
stimulate apoptosis of the target cell via cytolysis [71]. The T cell immunoreceptor with
immunoglobulin and ITIM domain (TIGIT), an inhibitory receptor expressed by NK cells,
is also capable of interacting with CD155 and CD112, preventing lytic degranulation [72].
Blockage of TIGIT-CD112 and TIGIT-CD155 interactions has been shown to improve
immune function of the recipient and the ability of both NK cells and CD8+ T cells to
recognize and clear cancerous cells [72]. While not extensively studied in hematological
cancers, PD-L1 is a ligand of interest shown to be upregulated on cancer cells of AML
patients with FLT3 and NPM1 mutations [73]. PD-L1 interacts via its receptor PD-1,
expressed on the surfaces of both T and NK cells, suppressing immune responses. A
study using anti-PD-L1 blocking antibodies in a xenograft mouse model of AML found
that improved tumor lysis occurred, implying the role this receptor plays in immune
suppression [74]. Studies suggest that using an anti-PD-L1 blocking antibody may be
beneficial for treatment of various types of cancer when used in conjunction with NK
cell-targeted immunotherapy [75,76].

Defects in any of the nine SLAM family receptors have also been associated with
immune deficiencies, implicating their role in immune cell function [77]. These homophilic
receptors consist of nine distinct receptors including SLAMF1-SLAMF9 [77]. SLAMF4
(2B4) and SLAMF7 (CS1) are NK cell targets of interest for the development of NK cell
immunotherapies [77]. Natural cytotoxicity receptors (NCRs) are also important regulators
of cancer proliferation in humans and were identified as some of the first activating NK cell
receptors cloned [78]. This family of receptors includes NKp30, NKp44 and NKp46, and
while these receptors are primarily involved with activating properties, NKp44 interacts
with one of its ligands, PCNA, in an inhibitory fashion [79,80]. Killer cell immunoglobulin-
like receptors (KIR) are receptors expressed by NK cells that recognize HLA class I (MHC
class I) ligands [81]. KIR2DS1 and KIR2DL4 are two activating receptors of interest in the
context of cancer elimination, while KIR2DL1, KIR2DL2/3, KIR3DL1 and KIR3DL2 are
inhibitory receptors [82]. These receptor-ligand interactions occur through an immune
tyrosine-based inhibitory motif (ITIM) by phosphorylating tyrosine kinases via protein
tyrosine phosphatases (SHP-1 and SHP-2) [82]. Another inhibitory receptor of interest is the
CD94/NKG2A receptor, which functions by recognizing levels of HLA-class I molecules
present on target cells [83]. CD94/NKG2A receptors are expressed on NK cells early in
the maturation process, whereas KIRs tend to be expressed later, on more mature NK
cells [83]. An additional biomarker of interest is LLT1, a CLEC2D family receptor that,
when upregulated on cancer cells, acts as an inhibitory biomarker of NK cell activity upon
interactions with its ligand NKRP1A [84].

NK cells also express cytokine receptors including IL-21R, IL-18R, IL-12R, IL-10R, IL-
4R and IL-2R [85]. These cytokine receptors will bind cytokines secreted by other immune
cells, resulting in NK cell activation [85]. In addition to inducing NK cell activation,
cytokine binding to the respective receptor can also stimulate prolonged functional abilities,
generating long-lived NK cells. This characteristic is especially important in the context of
cancer to allow adequate cytotoxicity and hinder cancer development.

2.3. Immune Evasion in Leukemia

The immune system is adept at recognizing abnormal or foreign cell proliferation and
eliminating it before it becomes a systemic issue. Therefore, cancer cells have had to adapt
multiple mechanisms by which to evade immune cell recognition. Several ways cancer
cells can do this that include antigenic modulation, inducing a tumor microenvironment,
suppressing immune cell function and imitation of healthy tissues [86,87]. Due to the
characteristically low mutational burden observed in leukemia patients, relatively low
quantities of neoantigens are presented, resulting in minimal T cell activation [88]. In the
context of NK cells, leukemia can also avoid recognition by manipulating the expression of
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activating and inhibitory ligands on their surface [69]. Upregulation of inhibitory ligands
increases the probability that corresponding NK cell receptors will recognize this ligand
and continue with circulation rather than marking the cell for apoptosis. In addition to
upregulation of inhibitory receptors, cancer cells can also shed HLA molecules to avoid
detection by T cells [84,89–92]. Downregulated expression of MICA/MICB receptors
is another mechanism of tumor escape from NK cells, given these receptors interact via
NKG2D to activate NK cell activity [93,94]. This mechanism of tumor resistance is indicative
of a poor prognosis in patients with leukemia specifically. Another method of tumor escape
from NK cell recognition involves NKp44 interactions via its ligands with proliferating
cell nuclear antigen (PCNA) and HLA I, which have shown upregulation on cancerous
cells [95]. NKp44 can act as an inhibitory or activating receptor depending on the ligand
interactions involved, but interactions with PCNA or HLA I cause inhibition of NK cell
activity [96].

In addition to upregulation of inhibitory receptor interactions, the tumor microen-
vironment can also actively suppress the immune response by secreting molecules such
as transforming growth factor-β (TGF-β), which inhibits NK cell effector function and
survival [97,98]. Secreted enzymes such as matrix metalloproteinases (MMPs), disintegrin
and metalloproteinase (ADAM) also act to shed receptors from the surface of tumor cells,
further impairing immune cell-mediated elimination of tumor cells [99].

2.4. Functional Impairment of NK Cells in Leukemia

Research has shown that the leukemic microenvironment induces a decrease not only
in the number of active NK cells, but also in the cytotoxic and degranulation capabilities
of these innate immune cells [100]. A study observing lymphocyte population subsets in
CML patients vs. healthy volunteers showed that CD8+, CD4+, CD3+ T cell and B cell
numbers remained consistent, while NK cell counts dropped significantly [100]. Patients
in this study treated with imatinib, a TKI, did not see a significant improvement in either
NK cell activation or degranulation capabilities, indicating a continuation of a suppressed
microenvironment [100]. A study looking at NK cell function in CLL established that
NK cells had defective degranulation capabilities and were maintained in a primarily
hyporesponsive state, while another study using AML patients showed not only reduced
NK cell degranulation capabilities, but also upregulated inhibitory receptor expression and
reduced TNF-α production by NK cells [101,102].

A study looking at NK cell activity in B- and T-ALL patients showed that numbers
were significantly decreased in both the bone marrow and peripheral blood [103]. B-ALL
NK cells were shown to have significantly decreased cytotoxic capabilities compared to
NK cells from healthy donors when killing assays were employed with ALL sensitive
leukemia cells, indicating an immunosuppressed phenotype. Further analysis showed
that NK cells from B- and T-ALL patients were predominantly from the CD56bright subset,
which is considered an immature precursor to the more cytotoxic CD56dim NK subset. This
study implies that NK cell maturation and differentiation into more cytotoxic counterparts
is impaired during leukemia. Suppressed NK cell activity has also been implicated in B-
and T-lymphoid malignancies that present with MYC oncogenic abnormalities [104].

Mouse experiments comparing NK cell populations in healthy vs. MYC-activated
leukemic and MYC-suppressed leukemic groups discovered that the group with MYC-
activated oncogenes had drastically reduced NK cell numbers. When MYC was suppressed,
NK cell populations were at nearly normal levels, indicating that NK cell suppression is
MYC-dependent. Further downstream signaling pathways implicated to play a role in
suppression include STAT1/2 and type 1 IFN, which are repressed by MYC overexpression.
A study investigating NK cell dysfunction in AML used a RAG GC KO mouse model
to show that when the mice were injected with leukemic blasts in combination with NK
cells, there were significantly lower numbers and impaired capabilities of these NK cells
21 days after the transfusion [105]. Wild-type mice NK cells presented with higher percent
perforin, granzyme B and IFN-γ expression. Flow cytometry staining of Ki62 (a marker of
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proliferation) on NK cells showed that NK cells in the leukemic environment had impaired
proliferative capabilities.

Similar to previous studies, leukemia-treated mice presented with impaired NK cell
maturation. microRNA miR-29b was noted as highly upregulated in NK cells from
leukemia-treated mice and as this miRNA has been shown to regulate T cell activity
via EOMEs and T-bet, knockdowns were performed on miR-29b and found to restore
NK cell activity to heightened proliferative levels. While the mechanism behind regula-
tion of NK cell activity in leukemia is not fully understood, it is likely that the leukemic
microenvironment directly (secretion of IL-10 or TGF-β) or indirectly (overexpression
of suppressive-associated genes) suppresses activity via multiple different mechanisms.
Collectively, these findings suggest that NK cell dysfunction is a major proponent of the
leukemia microenvironment and studies focused on targeting specific receptors involved
in NK-cell-suppressive effects could maximize immune function and patient survival.

3. Natural Killer Cell Immunotherapy for Treatment of Leukemia

NK cell-mediated immunotherapy attempts to heighten NK cell activation via block-
age of inhibitory interactions, expansion of NK cell populations and enhancement of
overall function. Current types of NK cell-based immunotherapies under investiga-
tion for treatment of leukemia include adoptive transfer, monoclonal antibodies (mAbs),
chimeric antigen receptor-NK Cells (CAR-NKs), and bi-specific/tri-specific killer engagers
(BiKEs/TriKEs) as shown in Figure 2. Research utilizing NK-based immunotherapeutic
models of therapy aim to increase cases of complete remission in patients while decreasing
adverse side effects often associated with the treatment.
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to heightened proliferative levels. While the mechanism behind regulation of NK cell ac-
tivity in leukemia is not fully understood, it is likely that the leukemic microenvironment 
directly (secretion of IL-10 or TGF-β) or indirectly (overexpression of suppressive-associ-
ated genes) suppresses activity via multiple different mechanisms. Collectively, these 
findings suggest that NK cell dysfunction is a major proponent of the leukemia microen-
vironment and studies focused on targeting specific receptors involved in NK-cell-sup-
pressive effects could maximize immune function and patient survival. 

3. Natural Killer Cell Immunotherapy for Treatment of Leukemia 
NK cell-mediated immunotherapy attempts to heighten NK cell activation via block-

age of inhibitory interactions, expansion of NK cell populations and enhancement of over-
all function. Current types of NK cell-based immunotherapies under investigation for 
treatment of leukemia include adoptive transfer, monoclonal antibodies (mAbs), chimeric 
antigen receptor-NK Cells (CAR-NKs), and bi-specific/tri-specific killer engagers 
(BiKEs/TriKEs) as shown in Figure 2. Research utilizing NK-based immunotherapeutic 
models of therapy aim to increase cases of complete remission in patients while decreas-
ing adverse side effects often associated with the treatment. 

 
Figure 2. Mechanisms for increasing an NK cell response against tumor cells. (A) Blockage of KIR-
HLA interactions by a monoclonal antibody (IPH 2102/lirilumab). (B) Inhibitory signals from KIR-

Figure 2. Mechanisms for increasing an NK cell response against tumor cells. (A) Blockage of
KIR-HLA interactions by a monoclonal antibody (IPH 2102/lirilumab). (B) Inhibitory signals from
KIR-HLA interactions are nullified by binding and activation of CD16 to monoclonal antibodies
bound to CD19 antigens. (C) Activation of NK cells by a CD16xCD19 BiKE. (D) Activation of NK
cells by a CD16 × CD19 × CD33 TriKE. (E) Utilization of CD19-recognizing CAR-NK cells with
CD3ζ/NKG2D transmembrane domains.
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3.1. Monoclonal Antibodies

Monoclonal antibodies (mAbs) are currently one of the most common forms of NK
cell-mediated immunotherapy and can be utilized for both blocking certain biomarkers
and boosting NK cell function by increasing ADCC. Clinical trials are currently underway
to test the efficacy of combining mAb treatment with recombinant human (rh) IL-15 in
order to optimize proliferation of NK cells [106]. In addition to IL-15, a pilot trial utilizing
a monoclonal antibody conjugated to IL-2 showed promise for treatment of advanced
melanomas [107]. Other efforts have sought to increase binding affinity of mAbs to NK
cells to increase cytotoxic activity and even override inhibitory signals being transduced
from iKIRs [108].

Current studies utilizing mAbs against leukemia have targeted iKIRs, aKIRs and
NCRs. Early research on an anti-KIR mAb called IPH 2101 showed both restoration and
enhancement of NK cell alloreactivity in adult AML patients and significantly improved
patient prognosis [109]. Lirilumab, an IgG4 anti-KIR2DL-1, 2, 3 mAb, has also shown
promising results in pediatric BCP-ALL patients, and clinical trials testing efficacy for
treatment of both CLL and AML showed improvements in patient recovery [109,110].

Azacytidine, a chemotherapy with anti-leukemic properties, was combined with
Lirilumab for clinical trials with the intent of treating AML patients. Although both drugs
have shown some success separately, combining the two did not appear to significantly
improve patient prognosis and trials are still ongoing to determine efficacy [111].

Since NK cells have shown high efficacy at inducing ADCC via mAb treatment, a phase
I trial combined transfusions of expanded autologous NK cells with rituximab (anti-CD20
mAb) following chemotherapy and found that patients receiving this form of treatment
displayed increased NK-mediated B cell lymphoma lysis [112]. Out of the nine patients in
this trial, seven had a complete response; however, due to the low sample size, additional
trials must be done to confirm efficacy [112]. Additional mAb trials remain underway to
determine the effectiveness of targeting biomarkers involved in inhibition of both T and
NK cells to optimize activity of both lymphocyte subsets against leukemia [113].

3.2. Adoptive Transfer of NK Cells

Adoptive transfer of NK cells has been shown to be efficacious in clinical trials for the
treatment of hematological cancers as well as some solid tumors. During adoptive transfer,
NK cells are isolated from the peripheral blood, bone marrow, or umbilical cord from
either a healthy donor (allogeneic) or the patient (autologous) [114]. These NK cells can be
purified, then genetically modified and/or expanded with cytokines such as IL-2, IL-15,
and IL-21, and then infused into the patient for increased NK cell density and function [115].
Autologous HSCT is simpler to perform, but allogeneic transfer specifically shows enhanced
alloreactivity assuming mismatched KIR and HLA ligands [116]. Incompatible ligands can
result in graft-versus-leukemia (GVL) disease, causing increased NK cell activity because
minimal inhibition will be able to occur and allowing the infused NK cells to effectively kill
host leukemic cells [117–119].

While T cell infusions have the potential to cause GVHD (graft versus host disease)
leading to significant off-target tissue damage, NK cells can suppress this interaction by
secretion of IL-10 and directly lysing host-antigen-presenting cells while simultaneously
targeting leukemia [119]. This important protective feature of donor NK cells emphasizes
the value of using them following allogeneic hematopoietic cell transplantations. Research
investigating the protective nature of NK cells has shown that this immune cell subset
is the first to recover following chemotherapy or hematopoietic transplant and has been
implicated in regulation of T cell activity [120]. NK cells have also been shown to limit
MHC-antigen-driven proliferation of T cells and use perforin, FasL and the potentially
activating receptor NKG2D to limit the expansion and activity of conventional T cell
subsets [119,121–123].

Research has shown that using allogeneic HSCT for NK cells increases cytotoxic
effects against both AML and pediatric B-cell precursor ALL (BCP-ALL) [124–126]. An
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early clinical study for allogeneic adoptive transfer using haploidentical donors treated
poor-prognosis AML patients with immunosuppressive chemotherapeutics including
cyclophosphamide and methylprednisolone followed by NK infusion [127]. Over 25% of
AML patients in this study achieved complete remission following adoptive transfer, with
mismatched donors obtaining higher complete remission rates compared to matched, a
finding indicative of NK cell alloreactive capabilities [127]. A clinical study beginning
in 2009 examined the effect of high dose (10–20x higher than previously used dosages)
HLA-haploidentical HCT on chemo-resistant leukemia patients and found that there was
a significant reduction in AML and ALL progression following treatment [128]. While
only one-third of the patients obtained complete remission following therapy, this is still
significant since these patients had acquired chemo-resistance and the cancer was no longer
treatable with conventional therapies [128].

While allogenic transplants have shown effectiveness in treatment of AML especially,
relapse due to this form of treatment is common, emphasizing the importance of post-
transplant pharmacological agents to minimize mortality rates [129]. More recent clinical
studies looking at post-transplant treatment tested a variety of targeted agents and found
that isocitrate dehydrogenase (for IDH mutated AML), Ivosidenib (for IDH1 mutated
AML), Enasidenib (for IDH2 mutated AML) and Venetoclax (selective BCL2 inhibitor) all
improved clinical outcomes of AML patients meeting the drug-specific criteria [130–132].

A clinical trial testing treatment of intermediate AML in pediatric patients via adoptive
transfer of NK cells showed minimal improvement in patient cases, indicating that either
the intermediate stage of AML development or pediatric criteria may not be receptive to
this form of treatment [133]. Adoptive transfer research remains important for effective
treatment as it is a promising mechanism by which to improve patient immune responses
without significantly damaging off-target tissues [134]. More recently, research focused
on CAR-NK cell transfusions have revolutionized the future of treatment for not only
leukemia and lymphomas, but also non-hematological cancers including glioblastoma and
breast cancer [135–138].

3.3. CAR-NK Cells

CAR-T cell therapies have shown some clinical success in refractory and relapsed
B-ALL cancers. However, this form of treatment is often accompanied by neurotoxicity,
cytokine release syndrome (CRS) and the potential to develop GvHD [139]. Anti-CD-19
CAR-T therapy for relapsed B-ALL patients was shown to cause both GVHD and CRS in
over half the patients in the study, with two patients dying from infection and another
from cardiac arrest [140]. While the reported leukemia-free survival rate at 180 days was
54%, indicating treatment efficacy, 40% of patients in the study had died either due to side
effects or unsuccessful leukemia neutralization. Another study using anti-CD-19 CAR-T
therapy for relapsed childhood ALL presented with similar results: toxicity and severe
side effects with half of the patients relapsing following treatment [141]. Recently, research
investigating the long-term success of CAR-T therapies suggests that this form of treatment
may not be as successful as previously thought [142]. CAR-NK cell therapy is a more
recently explored option for leukemia, and while still in its experimental phases, it has
shown killing of cancer with minimal risk of toxicity or GvHD [138,143,144]. In addition to
enhanced efficacy and reduced negative side effects, CAR-NK therapy offers the potential
for an off-the-shelf form of treatment that does not have to be individualized (in the form
of HLA typing), decreasing cost and increasing the rate at which patients have access to
treatment. In vivo mouse studies of the long-term effects of CAR-NKs have suggested that
this form of treatment persists for as long as a year, minimizing the risk of relapse [145].

NK cells derived from multiple different sources have been engineered for comparison
of efficacy including cell lines (NK92s), the peripheral blood (PB), umbilical cord derived
and induced pluripotent stem cell (iPSC) derived NK cells [146,147]. While immortalized
NK cell lines such as NK92 provide a convenient option, these cells must be irradiated prior
to use to prevent lethal effects, resulting in less persistent NK cells that are active in a host for
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a short amount of time [147]. NK92 cells are also CD16- and therefore do not induce ADCC
unless engineered to do so. Although these cells present some challenges with long-term
stability and lysis by host PBMCs, they are nonetheless an attractive option for engineering
due to their relatively versatile characteristics and robust anti-tumor activity [148,149]. PB
NK cells are found in relatively high quantity and are easy to isolate, but these cells have
been identified as more difficult to engineer due to low transfection efficiency [150].

In addition, cryopreservation for long-term storage has been shown to decrease cy-
totoxic capabilities [151]. In contrast, umbilical cord derived NK cells can undergo cryop-
reservation with minimal alterations and have been shown to display high proliferative
capabilities, working effectively for in vivo studies [147].

Umbilical derived NK cells also express higher levels of CXCR4, a marker associated
with bone marrow migration, implicating the ability to infiltrate bone-marrow derived
tumors [152]. An in vitro comparison of PB vs. umbilical-derived NKs showed similar
cytotoxic capabilities against CD19+ CLL and ALL, but in vivo research suggests PB NKs
possess limited proliferation [147,153]. A clinical trial using umbilical-derived, HLA-
mismatched anti-CD19+ CAR-NKs for treatment of relapsed and refractory lymphoma
and CLL resulted in complete remission in 73% of patients [154]. All patients in this
trial displayed rapid responses to the CAR-NK therapy without significant negative side
effects. CAR-NK proliferative capabilities were also monitored and discovered to continue
expansion properties for up to 12 months following transfusion [154]. iPSC NK cells are
currently being explored and provide both a convenient safe and, standardized population
for genetic engineering. This option provides an off-the-shelf form of therapy that is quick
to obtain and shows high cytotoxic capabilities against tumor cells, when used with or
without CAR expression [155,156].

CAR-NK constructs have been compared to mAb therapy for treatment of leukemia
and data suggest that CAR-NK cells induce higher levels of cytotoxicity and are more
effective overall at tumor elimination [157]. Anti-CD20+ mAb treatment has been shown to
improve treatment of B-cell leukemias with upregulated CD20+ expression by enhancing
NK cell activity and overcoming tumor resistance [158]. A research study of CD20+ CLL
xenograft models compared the efficacy of using anti-CD20+ mAbs vs. treatment with
anti-CD20+ CAR-NKs and discovered that CAR-NKs had significantly higher cytotoxicity
against the tumors [157].

In addition to ligand-specific CAR-NK research, genome editing of NK cells to up-
regulate activity is also being explored. Upregulated expression of inhibitory receptors
has been well-implicated in serving an inhibitory role in NK cell activation, providing
a target to determine efficacy of knocking down genes coding for receptors involved in
suppression. The use of CRISPR/Cas9 has revolutionized our ability to make specific and
permanent gene modifications and research focused on knocking out (KO) suppression-
associated markers including ADAM17 (involved in cleavage of CD16) and PD-1 have
shown success in upregulating NK cell cytotoxic abilities [159]. ADAM17 KO NK cells
showed potent degranulation capabilities when ADCC assays were employed with CD20
mAb-treated Raji cells. Subsequently, PD-1 KO NK cells significantly increased survival
when transfused into a mouse xenograft model of ovarian cancer. This finding suggests
not only the potential of gene-edited NK cells for treatment, but also that PD-1 is a major
regulator of NK cell activity in prostate cancer. Issues with gene editing of NK cells include
resistance to delivery methods such as plasmid-based editing, but studies investigating
nucleofection of DNA into NK cells have shown high success rates [160]. In addition, NK
cells that underwent nucleofection could be cryopreserved with minimal impact on efficacy.
Editing NK cells and having prepared, off-the-shelf edited options for patients depending
on presentation could provide an additional form of treatment. Future studies focused on
long-term effects of this form of therapy are crucial to determine potential off-target effects.
While still a relatively new form of therapy, the future of CAR-NK and gene edited cells for
treatment of hematological cancers is bright, with multiple clinical trials (see Table 1) being
actively explored to enhance NK cell activity against leukemia.
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Table 1. Current NK-cell immunotherapy clinical trials for Leukemia.

Treatment Leukemia NK Source Phase Status Identifier

NKX019 B-cell ALL, CLL Allogeneic 1 Recruiting NCT05020678

Anti-CD33 CAR- NK +
Fludarabine and Cytoxan

Relapsed/refractory
AML N/A 1 Recruiting NCT05008575

Anti-CD19 CAR-NK +
Fludarabine and

Cyclophosphamide

B lymphoid
malignancies

Cord blood
derived 1 Recruiting NCT04796675

CAR-NK-CD19 + Fludarabine
and Cyclophosphamide

ALL, CLL, B-cell
lymphoma AT19 1 Recruiting NCT04796688

iC9/CAR.19/IL15-transduced
NK cells + Fludarabine,

Cyclophosphamide or Mesna

B lymphoid
malignancies, ALL,

CLL

Cord blood
derived 1 Active, not

recruiting NCT03056339

CAR.70/IL15-transduced NK
cells + Fludarabine and

Cyclophosphamide
AML Cord blood

derived 1 Not yet
recruiting NCT05092451

CD16/IL-15/CD33 GTB-3550
Tri-Specific Killer
Engager (TriKE)

AML N/A 1 & 2 Active, not
recruiting NCT03214666

NK cell infusion + Fludarabine,
Cyclophosphamide and

Mogamulizumab
T-cell leukemia Third party 1 Recruiting NCT04848064

HSCT + NK infusion +
Elotuzumab and Lenalidomide

or Melphalan
Plasma cell leukemia Cord blood

derived 2 Active, not
recruiting NCT01729091

FT538 NK cells + Fludarabine
and Cyclophosphamide AML iPSC 1 Recruiting NCT04614636

NK92 + cord blood transplant +
Chemo + Rituximab AML, ALL, CML NK92 2 Recruiting NCT02727803

NK cells + ALT803 AML, ALL, CML, CLL Non-HLA
matched donor 1 Active, not

recruiting NCT02890758

FT516 NK cells +
Rituximab/Obinutuzumab,

IL-2, Fludarabine and
Cyclophosphamide

AML iPSC 1 Recruiting NCT04023071

oNKord + Fludarabine and
Cyclophosphamide AML Cord blood

derived 1&2 Recruiting NCT04632316

3.4. Bi- or Tri-Specific Killer Engagers (BiKEs/TriKEs)

BiKEs and TriKEs are monoclonal antibodies made bi- and tri- specific for tumor
antigens, respectively. These antibodies are engineered by fusing together single chain
variable fragments (scFv) specific for the tumor antigens of interest. This form of treatment
allows for targeting multiple antigens using a single form of therapy, and once bound to the
target cell, circulating NK cells are able to recognize the BiKE or TriKE and act via antibody-
dependent cell mediated cytotoxicity to induce apoptosis of their target [161,162]. Current
scFv targets include CD16, CD19, CD33, PD1, CTLA4, NKG2A and NKG2D [106,121,162].
The addition of cytokine moieties such as IL-12 or IL-15 have also been used to expand
NK cells prior to treatment in order to increase both density and immune function against
tumor cells. In 2018, a study utilizing a CS1 × NKG2D BiKE made of an anti-CS1 scFv
and anti-NKG2D scFv showed increased cytokine production and NK cell lytic activity
when used to treat a mouse xenograft model of multiple myeloma [163]. While BiKEs have
shown some success in inducing ADCC on target cells, research shows that, comparatively,
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TriKEs show superiority in regards to inducing cytotoxicity, degranulation and cytokine
production. A study comparing a CD16 × CD33 BiKE to a CD16 × IL-15 × CD33 TriKE
in an in vivo xenograft model of AML showed that TriKE treatment paired with an allo-
geneic stem cell transplantation significantly restored NK cell function and activity against
AML cells [164]. While the BiKE construct showed some success as well, NK cells were
not as readily activated and had poorer survival comparatively, a logical finding consid-
ering IL-15 is a strong mediator of NK cell expansion [164]. An in vitro research study
combining a CD16 × CD33 BiKE with ADAM17 inhibition found that combining these
two forms of treatments significantly improved NK cell activity against tumor cells [165].
Current, only one TriKE clinical trial is underway, specific for CD33+ upregulated tumors
(CD16 × IL-15 × CD33) including high-risk myelodysplastic syndromes, AML, systemic
mastocytosis and mast cell leukemia [166].

While Table 1 showing current NK-cell immunotherapy clinical trials for leukemia is
by no means comprehensive, it provides a look into the variety of options currently being
explored including CAR-NKs, TriKEs, expanded NK cell infusions with mAbs, etc.

4. Potential Future Targets for NK Cell-Mediated Treatment of Leukemia

Leukemia cells have demonstrated the ability to manipulate expression of NK cell
receptors in order to evade recognition. Targeting biomarkers involved in these suppressive
effects can be beneficial in improving NK cell responses in leukemia patients. NK cell
receptors 2B4, CS1, and LLT1 have been identified as playing integral roles in regulation of
NK cell-mediated cytolytic activity during cancer and may provide promising targets for
treatment of leukemia.

4.1. 2B4 (SLAMF4, CD244)

2B4 (SLAMF4, CD244) has been characterized as a receptor involved in activation of
NK cell activity and is considered a biomarker of interest in AML patients [155,167]. Two
different human isoforms of 2B4 have been identified including h2B4-A and h2B4-B [168].
Both isoforms have identical cytoplasmic domains with four immunoreceptor tyrosine-
based switch motifs but differ in their extracellular domain due to the differential splicing of
hnRNA that result in the addition of five amino acids in h2B4-B. Both the isoforms interact
via their ligand CD48, which is often upregulated on the surfaces of multiple different
types of cancer [84]. Upon interaction with CD48, h2B4-A increases cytolytic activity and
intracellular calcium levels in NK cells, whereas h2B4-B does not activate NK cells [168]. The
activation capabilities of 2B4 rely on the protein expression of SLAM-associated proteins
(SAP) [84,169]. In the presence of SAP, 2B4-CD48 interactions result in NK cell activation
and subsequent release of cytotoxicity on the target cell [169]. This interaction in the
absence of SAP, however, can suppress NK cell activity [168,169]. Consistent 2B4-CD48
interactions can eventually result in the downregulation of 2B4 expression, a mechanism to
prevent excess NK cell activity [170]. 2B4 expression can also be impacted by the presence
of immunomodulatory peptides such as alloferon, which is commonly used for increasing
IFN-γ and TNF-α production and NK cell activity [171]. An in vitro study looking at the
effects of 2B4-specific CAR-NK cells against K562 cells (AML) showed potent co-stimulatory
benefits when engineered with an intact zeta domain [172].

4.2. CS1 (SLAMF7, CD319)

CS1 (SLAMF7, CD319) is a homophilic receptor with two isotypes in humans including
CS1-S and CS1-L. The CS1-L isotype is capable of activating NK cell cytotoxicity and
has been identified as a receptor of interest for treatment of cancers that upregulate CS1
expression. Activation of CS1 results in increased production of mRNA transcripts of Fms-
related tyrosine kinase 3 ligand (Ftl3l), lymphocyte-function associated antigens 1 and 3
(LFA-1, LFA-3), TNF-α, and IL-14 [173]. These cytokines and messengers are involved
in the activation of inflammatory and signaling pathways to increase immune response
against tumor proliferation. Elotuzumab (Empliciti) is an anti-CS1 mAb that has shown
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clinical efficacy and is an FDA-approved immunotherapy for relapsed/refractory multiple
myeloma (MM), a type of hematopoietic cancer caused by invasion of the bone marrow
by malignant plasma cells overexpressing CS1 [173,174]. Elotuzumab increases ADCC
via Fc-binding to CD16 and CS1 receptors on NK cells for increased cytotoxic response to
tumor cells [175–178]. CAR-NK92 cell lines containing CS1-specific scFv models increased
production of IFN-γ in MM treatment models [84,179]. BiKE constructs have also been
made with anti-CS1 and anti-NKG2D scFv agents in vitro (Figure 2). These models have
shown similar effects to anti-CS1 CAR-NKCs, with dose-dependent increases in NK cell
cytotoxicity and cytokine production. While limited research has been conducted on
CS1-targeted therapy for leukemia specifically, elotuzumab could present as an effective
treatment for large granular lymphocytic leukemia (LGL), as the increased presence of CS1
in LGL tumor cells decreases pro-inflammatory cytokine release [180].

4.3. LLT1

LLT1 is a receptor expressed on several different cancer types including triple negative
breast cancer (TNBC), glioblastoma and prostate cancer [181,182]. LLT1 interacts via its
ligand NKRP1A in an inhibitory manner, preventing NK cell cytotoxic capabilities [183].
Increased expression of LLT1 implies that cancer cells actively upregulate LLT1 expres-
sion, but the mechanism by which this occurs is unknown. Since LLT1 is expressed on
different cells and tissue types, it presents the possibility of cancer cells escaping the im-
munosurveillance of NK cells. Blocking the LLT1 receptor with an anti-LLT1 mAb has
been shown to increase NK cell cytotoxicity against both triple negative breast cancer
and prostate cancer [182,183]. Our studies on LLT1 expression in NK cells from pediatric
ALL subjects showed significant upregulation compared to NK cells taken from healthy
subjects, indicating that LLT1 may play a role in immunosuppressive effects during ALL
(unpublished data). Since LLT1 was shown to be significantly upregulated in pediatric
ALL patients, future research investigating how blockage of this receptor via an anti-LLT1
mAb impacts NK cell responses to leukemia cells may provide insight into whether or not
this receptor provides a relevant target for treatment of leukemia.

5. Conclusions

The future of treatment for leukemia is bright, with the utilization of NK cells against
cancer cells drastically shifting the previous modalities of effective leukemia treatment. In
addition to providing an alternative therapy for patients who may not respond to conven-
tional treatment, NK cell immunotherapy focuses on harnessing a patient’s own immune
system to fight cancer proliferation, minimizing off-target effects. Ongoing clinical trials
are underway to determine the effectiveness of various NK cell-mediated therapies. Future
research focusing on receptor-ligand interactions involved in NK cell immunosuppres-
sion including CS1-CS1, 2B4-CD48 and LLT1-NKRP1A may prove beneficial for better
understanding and treatment of leukemia. While NK cell immunotherapies have shown
success independently in the form of adoptive transfer or mAb treatment, future research
on combination therapies such as targeted treatment combined with TKIs could optimize
treatment for relapsed and refractory forms of leukemia. Continued research investigating
the multimodal mechanisms by which leukemia evades detection will lead to a better
understanding of the associated microenvironment and the possibility of generating more
effective treatment plans.
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