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Abstract: Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly
regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the
stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones
FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones
mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of
Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1
suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the
broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities
of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature
on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this
regulation on normal cellular function and in human diseases.

Keywords: tuberous sclerosis complex (TSC); Tsc1 (hamartin); Tsc2 (tuberin); heat shock protein 90
(Hsp90); FNIP1; FNIP2; co-chaperones; cancer; renal cell carcinoma; kidney cancer

1. Introduction

Heat shock protein-90 (Hsp90) is a molecular chaperone essential for maintaining
signaling competence in eukaryotic cells. Hsp90 is comprised of an N-terminal ATP
binding domain, a middle domain for binding “client” proteins, and a site of constitutive
dimerization at the carboxy-terminus [1–3]. Hsp90 function is coupled to its ability to
bind and hydrolyze ATP and undergo a series of conformational changes known as the
“chaperone cycle” [4,5]. This cycle facilitates the maturation and activation of more than
300-client proteins, including kinases, and non-kinases such as steroid hormone receptors,
transcription factors, and tumor suppressors [6] (https://www.picard.ch/downloads/
Hsp90interactors.pdf, accessed on 12 February 2022). A number of these Hsp90 client
proteins participate in oncogenesis, and this chaperone machine is often co-opted by
cancers to maintain deregulated signaling pathways and buffer the effect of pathogenic
mutations [7–11]. The breadth of signaling pathways mediated by its clients makes Hsp90
an attractive therapeutic target and dozens of Hsp90-directed small molecules have been
developed. In fact, there are 14-ATP-competitive Hsp90 inhibitors in ongoing clinical trials
in various cancers (www.clinicaltrials.gov, accessed on 1 May 2022) [12].

The binding and dissociation of Hsp90-modulating proteins, termed co-chaperones,
tailors Hsp90 to particular clients and provides directionality to the chaperone cycle [13–16].
To date, more than 25 Hsp90 co-chaperones with varying characteristics and classifications
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have been identified. Prior to the recent characterization of the three large co-chaperones
Tsc1, FNIP1, and FNIP2 (hereon referred to as FNIP1/2), known Hsp90 regulatory proteins
existed within the range of 20–100 kDa [15]. These three large co-chaperones are each
approximately 130 kDa [17–21] and were originally identified as stabilizers of specific
tumor suppressor proteins implicated in the mTOR pathway [17–19]. The co-chaperone
function of FNIP1/2 and Tsc1 gives us an opportunity to reevaluate the previous published
work from a new perspective. Here we review the functions and roles of FNIP1/2, and
Tsc1 that have been reported, describe their functions as new co-chaperones of Hsp90, and
retrospectively evaluate how new functions can help contextualize previous observations.
We also review their roles in cancer and cellular response to Hsp90 inhibitors as well as
their emerging role in chaperoning of tumor suppressors.

2. FNIP1 and FNIP2
2.1. FNIP1/2 Structure and Function

Folliculin interacting proteins 1 and 2 (FNIP1/2) are named after their first identifica-
tion in complex with the tumor suppressor folliculin (FLCN) [17,18]. Loss of FLCN function
is implicated in Birt-Hogg-Dubé (BHD) syndrome, a hereditary condition characterized by
benign fibrofolliculomas, pulmonary cysts, spontaneous pneumothorax, and renal tumors,
which are most often of hybrid oncocytic or chromophobe histology [22]. FLCN interacts
with FNIP1/2 via its C-terminus, which stabilizes the FLCN protein. This mechanism is sup-
ported by the instability of C-terminally truncated FLCN protein products resulting from
FLCN mutations identified in BHD [17,18,22,23] and indeed, many of these mutated FLCN
proteins fail to associate with FNIPs and are targeted for proteasomal degradation [24].
Recently, portions of the FLCN:FNIP2 structure have been resolved by cryo-EM [25,26].
The structures support previous evidence that FLCN contains a GTPase activating protein
(GAP) domain and interacts with FNIP2 through its C-terminal differentially expressed
in normal and neoplastic cells (DENN) domain. Additionally, the N-terminal Longin
domains of FLCN and FNIP2 proteins also interact, emphasizing the complex nature of the
interaction between FLCN and the FNIPs [25,26]. Despite this well-supported finding, the
precise mechanism by which FLCN stability is achieved had remained elusive. Our group
demonstrated that FLCN is a client of Hsp90 and depends on the co-chaperone activity of
FNIP1 and FNIP2 for loading to Hsp90 and thus stability [20].

FNIP1 shares 74% similarity and 49% identity with FNIP2 [18], and the majority of
research on FNIPs is exclusive to FNIP1. Initially, FNIP1 was found to be phosphorylated
by AMP-activated protein kinase (AMPK) as well as facilitate AMPK-mediated phosphory-
lation of FLCN [17]. AMPK is a negative regulator of the mTOR nutrient-sensing pathway,
and FNIP1 was found to translocate from the cytoplasm to lysosomes under starvation
conditions [27], therefore a role for FNIP1 in mTOR signaling was suggested, though direct,
mechanistic evidence remains elusive (Figure 1).

2.2. FNIP1 Function in Skeletal Muscle and Adipocytes

One pathway in which the FNIP1-AMPK interaction has been interrogated is skeletal
muscle fiber type specification. Broadly, type I muscle fibers are highly aerobic, express
elevated levels of myoglobin, and have high mitochondrial function, while type II muscle
fibers are comparatively lower in both and favor anaerobic glycolysis [28]. AMPK is
known to regulate mitochondrial biogenesis via peroxisome proliferator-activated receptor-
γ coactivator-1 α and β (PGC1α/PGC1β) and is activated under low energy conditions to
suppress mTOR-dependent ATP utilization [29]. FNIP1−/− mice contain an abundance of
type I muscle fibers, similar to mice with gain-of-function mutations in AMPK [30,31]. This
suggests that at steady state FNIP1 suppresses AMPK and thus regulates mitochondrial
biogenesis. Liu et al. furthered this line of inquiry by demonstrating that miR-499, an
intron of the gene encoding the major slow-twitch type I myosin heavy chain (Myh7b),
directly targets and inhibits translation of FNIP1 but not FNIP2 [32]. Similar results have
been shown for miR-208b [33]. Interestingly, FNIP1-mediated AMPK inhibition can be
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reversed by the flavonoid dihydromyricetin, which causes a decrease in FNIP1 expression
and reactivates AMPK-mediated mitochondrial biogenesis [34]. These data provide a
mechanism that explains the FNIP1-dependent regulation of AMPK in skeletal muscle.
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ulators through GAP activity of RagA/C and Rheb, respectively. 
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Figure 1. FNIPs and Tsc1 in the mTOR pathway. The mTOR pathway is a cellular signaling hub
that integrates signals from several pathways and controls protein synthesis. A simplified schematic
representation is shown to highlight the role of the FLCN/FNIPs and TSC complexes as mTOR
regulators through GAP activity of RagA/C and Rheb, respectively.

FNIP1 regulation of AMPK may be cell-type dependent however, as recent work has
demonstrated that FNIP1 regulates cellular respiration in adipocytes in an AMPK/mTOR
independent manner [35]. Specifically, FNIP1 was shown to regulate intracellular Ca2+ lev-
els through stabilization of sarcoendoplasmic reticulum calcium transport ATPase (SERCA)
and increasing SERCA Ca2+ pump activity. This study also suggested a pivotal role for
FNIP1 in regulating metabolism and glucose homeostasis in adipocytes, independent of
AMPK/mTOR [35].

2.3. FNIP1 in Oxidative Stress

An interesting perspective on FNIP1 regulation of AMPK activity can be gained
through an understanding of the factors governing FNIP1 protein dynamics. Recent work
has shown that reductive stress promoted the degradation of FNIP1, but not FNIP2 [36].
The mechanism was traced to the chelation of Zn2+ by two reduced Cys residues in
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FNIP1, which recruits CUL2FEM1B [36,37], the scaffold and recognition subunits of an
E3-ubiquitin ligase complex [38]. Degradation of FNIP1 in this context promotes AMPK-
PGC1α-mediated mitochondrial biogenesis to counteract reductive stress [36,37]. Interest-
ingly, loss of FEM1B led to decreased lactate production [36], perhaps as a byproduct of
FNIP1-dependent stabilization of FLCN and its recently described tumor suppressive effect
on lactate dehydrogenase A [39].

2.4. FNIP1 Function in B-Cell Development

Another striking example of FNIP1 function is in lymphoid differentiation and matu-
ration. Park et al. identified a pre-B cell “checkpoint” where loss of FNIP1 prevents mature
B-cell development [40]. These cells were found to be sensitive to nutrient-deprivation-
induced apoptosis seemingly due to failure of AMPK to suppress mTOR in the absence of
FNIP1 [40]. Interestingly, FNIP1-deficient B-cell progenitors also exhibit elevated TFE3 tran-
scription as well as increased lysosome function and autophagic flux [41]. Similarly, loss of
FNIP1 prevents maturation of invariant natural killer T cells and increases their sensitivity
to apoptosis [42]. FNIP1 knockout was again determined to cause downstream mTOR
activation, though in this case the effect is definitively indirect, as rapamycin treatment
was not able to rescue the phenotype [42]. Concurrent research also found a marked pre-B
cell blockade and confirmed that the effect stems from caspase activation and intrinsic
apoptosis [43]. This effect was also observed in patients, as FNIP1 mutation caused a
clinically significant reduction in B cell numbers and hypogammaglobulinemia [44,45].
In addition to B-cell deficiency, FNIP1 loss leads to cardiomyopathy, which phenocopies
AMPK gain-of-function mutations, consistent with a failure of FNIP1 to regulate AMPK-
mediated signaling [46]. Taken together, these data support a role for FNIP1 as an indirect
regulator of mTOR through its suppression of AMPK activity, and likely also via its positive
regulation of FLCN [47].

2.5. Role of FNIP1/2 in Transcription

Recent work has also demonstrated the impact of the FLCN-FNIP1/2 system on
transcriptional reprogramming. It is well established that loss of FLCN induces nuclear lo-
calization of the transcription factors TFE3/TFEB and promotes a gene expression program
favorable for tumor growth [41,48–51]. Similarly, it was recently shown that simultaneous
deletion of FNIP1/2 in a human renal proximal tubular epithelial cell (RPTEC) line induced
a TFE3-mediated gene signature [52]. This is in agreement with previous data showing that
FLCN-null and FNIP1/2-null mice developed phenotypically indistinguishable enlarged
polycystic kidneys [53,54]. Additionally, loss of either FLCN or FNIP1/2 induced a STAT2-
dependent interferon response transcriptional program, though the impact of interferon
signaling in FLCN-deficient tumors is unclear [52].

Despite the progress reviewed here, it remains difficult to disentangle the cellular roles
of FNIP1/2 in the regulation of AMPK and TFE3 from that of FLCN tumor suppressive
function. Given this, it is possible that FNIP1/2-mediated regulation of Hsp90 activity
provides a unifying explanation for FNIP-mediated cellular effects.

3. Tsc1
3.1. Structure and Function of the Tsc1/2 Complex

Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic syndrome caused
by mutations in either the TSC1 or TSC2 tumor suppressors. In addition to neural associ-
ations that include epilepsy, subependymal giant cell astrocytomas (SEGA), intellectual
disability, and autism, TSC is also characterized by cutaneous, pulmonary, and renal man-
ifestations, similar to BHD [23,55,56]. These include facial fibrofolliculomas, pulmonary
lymphangiomyomatosis, and renal angiomyolipomas (AML). The TSC2 gene was cloned
first in 1993 followed by the non-homologous TSC1 gene in 1997 [19,57]. The Tsc1 and Tsc2
proteins, also known as hamartin and tuberin, respectively, were then shown to directly
interact and form a complex [58]. The 130 kDa Tsc1 and 200 kDa Tsc2 proteins share no
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homology with each other [59]. Recently, partial structures of this complex were resolved
by cryo-EM and revealed an elongated structure with a 2:2 stoichiometry. Further, Tsc1 was
consistently found to have a coiled-coil domain which mediated Tsc1 dimerization and
interaction with Tsc2 in vitro [60–62]. This is in contrast to a previous study using a yeast
two-hybrid system which identified Tsc1 residues 302–430 as the critical region for Tsc2
interaction [63]. Tsc2 interaction with Tsc1 was primarily mediated through the N-terminal
Tsc2-HEAT repeat domain, which is consistent with previous findings [60,62,63]. Further-
more, Tsc1 was required for Tsc2 maximal GAP activity likely through proper positioning
of the Tsc2 catalytic asparagine-thumb [62].

The Tsc1/2 complex was demonstrated to inhibit mTOR signaling through the GAP
activity of Tsc2 towards Rheb [64–66] (Figure 1). The effect of Tsc2 was greatly potentiated
by the presence of Tsc1. In this TSC complex, Tsc1 has been shown to be important for
the stabilization of Tsc2, preventing its interaction with the HERC1 ubiquitin ligase and
its ubiquitination [67,68]. Early identification of Tsc1 and Tsc2 in complex and the role of
this complex in the mTOR pathway focused a large portion of the TSC literature on this
function and does not address separable functions of Tsc1 and Tsc2.

3.2. Separable Functions of Tsc1 and Tsc2

There are a number of differences in Tsc1 and Tsc2 function that have been identified,
as well as mTOR-independent functions. Early reports suggested that although Tsc1 and
Tsc2 often co-localize, the subcellular locations as well as tissue and organ expression
patterns of Tsc1 and Tsc2 are not identical [69]. Germline mutations in TSC1 cause a
similar but not identical phenotype to TSC2 mutations in animal models, suggesting
commonalities to the pathways involved but some differences as well [70]. Renal tumors
developed in heterozygous TSC1 mice at a slower rate than in TSC2+/− mice. In addition
to renal cystadenomas, TSC1+/− mice also develop liver hemangiomas, which are more
common and more severe in female mice, demonstrating sex-dependent lethality [71].
Concordantly, an analysis of patients in the TOSCA database (TuberOus SClerosis registry
to increase disease Awareness) revealed that female patients were significantly more likely
to develop renal AML and experience hemorrhage [72]. Sex-dependent and estrogen linked
effects exclusive to Tsc1 can also be seen in mammary development. Conditional Tsc1
loss in mammary epithelium impaired mammary development through suppression of
Akt, ER, and cell cycle regulators and did not lead to tissue hyperplasia [73]. Moderate
overexpression of Tsc1 also enhances overall health and cardiovascular health in an animal
model and improves survival only in female mice [74]. Tsc1 and Tsc2 have also been shown
to have separable functions in both cell signaling and cell cycle control [75,76]. Milolaza
et al. describe the effect of Tsc1 and Tsc2 on the G1 to S phase transition of the cell cycle.
Tsc1 and Tsc2 control cell proliferation independent of each other, and only Tsc2 function
is affected by p27 expression [75]. Further evidence for separate functions of Tsc1 and
Tsc2 comes from microarray and proteomic approaches, which reveal that each TSC gene
triggers substantially different cellular responses [77–82].

3.3. mTOR Independent Functions of Tsc1

While the effects of Tsc1 loss are often ascribed to increased mTOR signaling and are
at least partially responsive to rapamycin, there are also mTOR independent functions
of Tsc1 that have been reported. Tsc1 haploinsufficiency without mTOR activation was
shown to lead to renal cyst formation in TSC1+/− mice [83]. It has also recently been
demonstrated that p21 activated kinase 2 (PAK2) is an effector of the Tsc1/Tsc2 complex.
Loss of either Tsc1 or Tsc2 promotes hyperactivity of PAK2 downstream of Rheb, but
independent of mTOR, as demonstrated by insensitivity to rapamycin treatment [84]. Tsc1
and Tsc2 also differentially modulate the cytoskeleton. TSC1−/− and TSC2−/− MEFs
demonstrate rapamycin insensitive increase in number and length of cilia [85] whereas only
Tsc2 loss promotes an mTOR-dependent pro-migratory phenotype [86]. On the other hand,
Tsc1 loss was shown to dysregulate tight junction development in an mTOR independent
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manner [87]. Collectively, these studies suggest a role for Tsc1 in cell integrity independent
of mTOR.

Furthermore, it has long been observed that clinical features of TSC across multiple
organ systems are more severe in patients with mutations in TSC2 than in patients with
TSC1 mutations [88–90]. There is a higher incidence of intellectual disability in patients
with TSC2 mutations, and it has been suggested that severity of disability may correlate
with predicted effects of mutations on Tsc1 and Tsc2 protein [91–93]. Epilepsy generally
exhibits an earlier onset and is also more severe as a result of TSC2 mutations [94,95].
Similarly, the mean age at diagnosis for patients with renal AML was lower in patients
with TSC2 mutations. Additionally, patients with TSC2 mutations had a higher occurrence
of renal AML, multiple renal cysts and polycystic kidney disease compared to patients
with TSC1 mutations [72]. In a mouse model, conditional knockout (CKO) of TSC2 in
GFAP-positive cells also produces a more severe epilepsy phenotype than TSC1 CKO [96].
Additionally, it has been proposed that perhaps TSC resulting from TSC1 mutation is not
less common than TSC2 disease but that it is less frequently diagnosed due to the milder
clinical features [97].

Collectively, this evidence suggests a role for Tsc1 outside the TSC complex and mTOR
signaling. Due to the described role of Tsc1 in stabilizing Tsc2 and protecting it from
ubiquitination we questioned whether this protective role involved molecular chaperones
and whether Tsc1 was involved in chaperoning Tsc2. In fact, Tsc2 is a client of Hsp90, and
Tsc1 is a co-chaperone [21].

4. Regulation of Hsp90 Chaperone Function by Co-Chaperones

The action of co-chaperones towards Hsp90 generally meets one or more of the follow-
ing criteria: (1) scaffolding of client proteins to Hsp90 (e.g., Hop, p50Cdc37); (2) modulation
of Hsp90 ATPase activity (e.g., Aha1); (3) stabilization of specific chaperone complexes (e.g.,
p23) and are not themselves dependent on Hsp90 for stability [98]. We have shown that the
newly identified large co-chaperones FNIP1/2 and Tsc1 are able to satisfy at least two of
these observed co-chaperone functions (Figure 2). Indeed, we have a unique opportunity
to advance our understanding of the function and effect of these proteins as we reconcile
their known functions with their roles as Hsp90 co-chaperones.

Hsp90-dependent maturation and activation of client proteins relies on a continuum
of regulated conformational changes of Hsp90 coupled to ATP hydrolysis. As currently
understood, there are several “stages” to a generalized chaperone cycle. Initially, immature
clients bind to the early chaperone heat shock protein 70 (Hsp70) and the Hsp70-Hsp90
organizing protein (Hop) forms a bridge to the “open” conformation of Hsp90, allowing
the transfer of a client protein to Hsp90 [99]. ATP subsequently binds to the amino-terminal
nucleotide binding pocket, and concurrent binding of the Activator of Hsp90 ATPase
(Aha1) displaces Hop and induces transient N-domain dimerization, forming the “closed 1”
state. Aha1 binds to the N-domain as well as the middle domain of Hsp90 and greatly
increases the weak intrinsic ATPase activity of Hsp90 [100]. Interaction of the co-chaperone
p23 with the N-domain of Hsp90 displaces Aha1 and stabilizes the “closed and twisted”
conformation (closed 2). This allows completion of ATP hydrolysis, followed by release of
a mature client protein and the return of Hsp90 to the open conformation [101–103].

The complement of co-chaperones that regulate Hsp90 during a single chaperone
cycle is largely dependent on the individual requirements of the client protein [104]. For
example, kinase clients are loaded to Hsp90 by the co-chaperone Cdc37, a decelerator of
Hsp90 ATPase activity, and protein phosphatase 5 (PP5)-mediated dephosphorylation of
Cdc37 is required for their release [105,106]. Alternatively, overexpression of Aha1 greatly
decreases the folding of CFTR by accelerating the rate of Hsp90 ATP hydrolysis [107–109].
Similarly, steroid hormone receptors prefer a slower chaperone cycle and require the co-
chaperone p23, which is known to decelerate the action of Hsp90 [5,110–112]. In fact, GR
itself is capable of modulating the conformation of Hsp90 such that Hsp90 ATPase activity
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decreases [113], demonstrating the degree of specificity that can be achieved by modulation
of Hsp90 complexes [15].
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Figure 2. The Hsp90 chaperone cycle. Open Hsp90 is dimerized only through contacts in the
CTD. ATP binding and an ordered series of conformational changes allow Hsp90 to adopt a closed
conformation, which is N-terminally dimerized. ATP hydrolysis leads Hsp90 to return to the open
conformation and begins another chaperone cycle. Throughout the chaperone cycle co-chaperones
bind to Hsp90 and regulate its function. PTM of Hsp90 and PTM of co-chaperones provide further
regulation of the chaperone cycle.

5. FNIP1/2 and Tsc1: New Co-Chaperones of Hsp90

Recent reports from Mollapour’s group demonstrated that the tumor suppressors
FLCN and Tsc2 are Hsp90 clients [20,21]. As FNIP1/2 and Tsc1, respectively, have estab-
lished roles as guardians of these tumor suppressors [17,18,67,68], it follows that there
may be a role for molecular chaperones in mediating FLCN and Tsc2 stability. Indeed
FNIP1/2 and Tsc1 both interact with Hsp90 and Hsp70, as well as with overlapping com-
plements of Hsp90 co-chaperones including PP5, Cdc37, Hop, and p23 and behave as
Hsp90 co-chaperones [20,21] (Figure 3). These reports also demonstrate a role for these new
co-chaperones in regulating both kinase and non-kinase clients, as well as provide clues to
their chronology in the overall chaperone cycle.

FNIP1 and Tsc1 share a number of striking similarities in their actions as co-chaperones.
Both FNIP1 and Tsc1 exhibit complex binding to Hsp90; contacts are made using multiple
domains of these co-chaperones as well as multiple domains of Hsp90. The most well
characterized interactions thus far however are that of FNIP1 and Tsc1 binding the Hsp90
middle domain via their carboxy-termini. It is through this interaction that they decelerate
Hsp90 ATPase activity and compete with the accelerating co-chaperone Aha1 for Hsp90
occupancy. In addition to increasing the dwell time of ATP (and thus client proteins)
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on Hsp90, interaction with these large co-chaperones also increases Hsp90 binding to its
ATP-competitive inhibitors [20,21,114].

1 

 

 

 

FNIP1 Tsc1

Hopp23 Aha1

FNIP2

PP5Cdc37

Figure 3. FNIPs and Tsc1 co-chaperone interaction network. Hsp90 co-chaperones are represented
by colored circles. Interactions between co-chaperones are denoted by colored lines. FNIP1 interac-
tions are colored red; FNIP2, yellow; Tsc1, blue; other, gray.

While the overall pattern of how FNIP1 and Tsc1 interact with Hsp90 is similar there
are key differences between them. The C-terminal fragment of Tsc1 (Tsc1-D) binds to Hsp90
with higher affinity than does the C-terminal fragment of FNIP1 (FNIP1-D). Similarly,
Tsc1-D is a potent inhibitor of Hsp90 ATPase activity and very effectively competes with
Aha1 for Hsp90 binding as evidenced by in vitro competition experiments. FNIP1 and Tsc1
can also be distinguished by the complement of co-chaperones with which they interact
therefore, providing clues to their distinct roles in the chaperone cycle. While neither is
found in complex with Aha1, Tsc1 is able to interact with PP5 and Cdc37, whereas FNIP1/2
can additionally be found in complexes containing p23 and Hop (Figure 3). This may
demonstrate some promiscuity of FNIPs, but likely reflects the necessity for FNIPs to work
in concert with other co-chaperones, while Tsc1 may be capable of modulating Hsp90
independently. This potentially explains the observation that Tsc1 is a much more potent
decelerator of Hsp90 ATP hydrolysis than FNIP1/2 [20,21,114]. Interestingly, Tsc1 also
inhibits the ATPase activity of another molecular chaperone, Hsp70, in vitro [115]. Whether
FNIPs share this function remains unknown.

Despite their shared role in facilitating chaperoning of both kinase and non-kinase
clients, FNIP1/2 and Tsc1 over-expression and deletion have different effects. Non-kinase
clients are destabilized upon knockdown/knockout of FNIP1/2 or Tsc1 and stabilized with
overexpression of the co-chaperones. Interestingly, FNIP1/2 knockdown or overexpression
affects the kinase clients in a comparable manner as the non-kinase clients, however
overexpression or absence of Tsc1 both negatively affect kinase client stability [20,21]. This
may be due to the participation of FNIP1/2 with a variety of chaperone complexes, whereas
the semi-exclusive nature of Tsc1 co-chaperone activity disrupts the delicate balance of
Hsp90 co-chaperone dynamics.

5.1. FNIP1/2 and Tsc1 in the Chaperone Cycle

This large body of work on co-chaperone dynamics allows us to propose a model of
FNIPs and Tsc1 co-chaperones in the Hsp90 chaperone cycle. Our previous work demon-
strates that FNIPs and Tsc1 interact with Hsp70 in addition to Hsp90, and FNIP1 and Tsc1
are essential for scaffolding FLCN and Tsc2, respectively, to Hsp90 (Figure 4A,B) [20,21,23].
Subsequent ATP binding triggers conformational changes leading to the N-terminally
dimerized ‘closed’ conformation of Hsp90 (Figure 4C) [116–119]. We have previously
shown that Tsc1 and FNIP1 are not found in complex with Aha1 and that phosphoryla-
tion of Aha1-Y223 displaces Tsc1 from Hsp90 (Figure 4D) [20,21,109]. p23 is a late-acting
co-chaperone that locks Hsp90 in the closed conformation to allow proper client matu-
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ration (Figure 4E) [103,120–127]. FNIP1/2, but not Tsc1, are found in complex with p23
(Figure 4F) [20,21]. We propose that p23:FNIP1:FNIP2 holds the matured client in its active
conformation until there is a signal for client release, resetting Hsp90 for another cycle
(Figure 4G,H).
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Figure 4. FNIPs and Tsc1 in the Hsp90 chaperone cycle. (A) FNIPs and Tsc1 co-chaperones scaffold a
client from Hsp70 to Hsp90. (B) Hsp70 dissociates from the complex. (C) ATP binding triggers Hsp90
conformational rearrangements resulting in the ‘closed’ conformation. (D) Aha1 phosphorylated at
Y223 displaces FNIPs/Tsc1 co-chaperones from the Hsp90 complex and promotes ATP hydrolysis to
ADP + Pi. (E) p23 binds and stabilizes the closed conformation of Hsp90. (F) FNIP co-chaperones
bind to the Hsp90:client:p23 complex to promote client maturation. (G) The complex dissociates
releasing the mature client. (H) Hsp90 is reset to begin another cycle.

5.2. FNIPs, Tsc1 and the Chaperone Code

Hsp90 and its co-chaperones’ functions are heavily regulated by post-translational
modifications (PTM), collectively known as the ‘chaperone code’ [128,129]. An additional
layer of Hsp90 regulation via FNIP1 is provided through FNIP1 post-translational mod-
ification. Recent work by our group identified a series of serine residues (S938, S939,
S941, S946, and S948) in the Hsp90-binding region of the FNIP1 carboxy-terminus that
are phosphorylated in a relay manner by casein-kinase 2 (CK2) [114]. This sequential
phosphorylation promotes FNIP1 interaction with Hsp90 while dephosphorylation of these
residues by the Hsp90 co-chaperone PP5 disrupts the Hsp90-FNIP1 complex. Furthermore,
stepwise phosphorylation of FNIP1 provides gradual inhibition of Hsp90 ATPase activity
and therefore increased activity of a subset of both kinase and non-kinase clients [114].

These new co-chaperones also affect Hsp90 binding to its ATP-competitive inhibitors.
Generally, there is an inverse relationship between the rate of ATP hydrolysis and the ability
of Hsp90 to bind ATP-competitive inhibitors [20,21,109]. Overexpression of FNIP1/2 or
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Tsc1 decreases Hsp90 ATPase activity, thus increasing Hsp90 binding to its inhibitors. As
expected, Hsp90 inhibitor binding is decreased upon knockdown of FNIP1/2 or loss of
Tsc1 [20,21,114,130]. Interestingly, approximately 15% of bladder cancers have loss-of-
function mutations in Tsc1. Tsc1 loss causes hypo-acetylation of Hsp90 on K407 and K419
leading to decreased binding of Hsp90 to its inhibitors, demonstrating another mechanism
of Tsc1-mediated regulation of Hsp90 [130]. The precise mechanism of how Tsc1 loss
compromises Hsp90 acetylation remains unknown, however it is important to note that
Hsp90 acetylation can be restored by histone-deacetylase (HDAC) inhibition, sensitizing
TSC1-null cells to Hsp90 inhibitors [130].

Targeting Hsp90 in cancer cell lines induces apoptosis, and Hsp90 inhibitors have been
found to preferentially accumulate in cancer cells versus normal cells [131–135]. FNIP1/2
were found overexpressed in cancer cell lines originating from several different tissues, and
knockdown decreased sensitivity of these cancers to Hsp90 inhibition [20]. This increased
expression of FNIP1/2 provides one potential mechanism to explain the tumor selectivity of
Hsp90 inhibitors. Similarly, bladder cancer cells lacking functional Tsc1 fail to accumulate
Hsp90 inhibitors and are less sensitive to Hsp90 inhibition than those with wild-type
Tsc1 [130].

Collectively, these studies provide support for a new functional role for the tumor
suppressor Tsc1 and FNIP1/2 as co-chaperones of Hsp90. As Hsp90 co-chaperones the
protective function of Tsc1 and the FNIPs goes beyond mediating stability of Tsc2 and FLCN,
respectively, and provides insight into a larger role for these proteins in the cellular context.

6. A New Perspective: FNIPs, Tsc1, and mTOR

Early connection of FNIP1/2 and Tsc1 to the mTOR nutrient-sensing pathway has
narrowed the focus of research conducted on these proteins. Recent research has demon-
strated that FNIP1/2 and Tsc1 act as co-chaperones of Hsp90. This allows us to reevaluate
the previous published work with a new perspective.

6.1. FNIP1/2 Co-Chaperone Activity Contributes to mTOR Regulation

As reviewed in this text, FNIP1 negatively regulates AMPK activity. Since the α and
γ subunits of AMPK are known clients of Hsp90 [136], the effect of FNIP1 on AMPK
could be mediated through the Hsp90 chaperone (Figure 5). In support of this idea,
microarray data show that B220+CD43+ pre-B cells from FNIP1−/− mice demonstrate
a dramatic increase in expression of AMPK-responsive genes [40]. These data would
suggest a role for FNIP1 in activation of mTOR, however we posit that this mechanism
may actually be more complicated. First, mTOR is also an Hsp90 client protein [137]
and will be subject to the influence of Hsp90 co-chaperones as with any other client
protein. Second, it is likely that loss of FLCN is actually responsible for mTOR activation,
as is suggested by Baba et al., whose data show that the induction of mTOR is mild in
FNIP1−/− mice as compared to FLCN−/− and that FNIP1 deletion fails to phenocopy
BHD syndrome [17,43,54]. Concordantly, FNIP co-chaperone activity toward FLCN can
explain the observation that non-degradable FNIP2 enhances FLCN expression and thus
suppresses tumorigenesis in a BHD mouse xenograft model [138]. Together, these data
highlight that the co-chaperone activity of FNIP1/2 is essential for FLCN-mediated mTOR
suppression, but also underscore our inability to reconcile this observation with the current
understanding of FNIP1/2 function.

6.2. Co-Chaperone Activity of Tsc1 in Regulation of mTOR

The newly identified role for Tsc1 as an Hsp90 co-chaperone may help clarify some of
the phenotypic differences as a result of Tsc1 versus Tsc2 mutation. Due to its function as a
co-chaperone, Tsc1 loss would trigger effects on many cellular pathways, not just mTOR
signaling. This could explain the finding of renal cyst formation in TSC1+/− mice, as well
as provide insight into the pro-migratory phenotype seen only in TSC2−/− MEFs [83,86].
Furthermore, Tsc1 loss, but not Tsc2 loss, causes hypo-acetylation of Hsp90 further demon-
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strating a role for Tsc1 independent of both Tsc2 and mTOR [130]. The loss of Tsc1 has
a dramatic negative effect on Hsp90 kinase and non-kinase clients, including Tsc2. It is
reasonable therefore that loss of Tsc1 co-chaperone activity manifests itself independently
of the mTOR pathway.
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As discussed above, Tsc1 loss has long been known to lead to a less severe phenotype
than Tsc2 loss both in patients as well as animal models [88–90,94–97]. Canonically, Tsc2
loss leads to upregulation of mTOR signaling due to release of the inhibitory signal from
Tsc2-Rheb [139]. Activation and phosphorylation of mTOR and its downstream targets
as well as other pathway components such as Akt has been shown to be dependent on
Hsp90; in fact, many mTOR pathway components are clients of Hsp90 [140–143] (Figure 5).
Activation of the mTOR pathway is therefore dependent on proper function of the Hsp90
chaperone system. Perhaps the milder phenotype seen with Tsc1 loss is a result of the loss
of co-chaperone activity toward Hsp90. Upon Tsc1 loss, Tsc2 is destabilized leading to



Biomolecules 2022, 12, 928 12 of 21

increased mTOR activity; however, the other proteins in the mTOR pathway that are Hsp90
clients would also be destabilized, potentially mitigating the downstream effect.

Rapalogs, such as sirolimus and everolimus, are rapamycin derivatives that are com-
monly used to treat patients with BHD and TSC. Armed with the information of the role of
Hsp90 in BHD and TSC, perhaps preclinical examination of Hsp90 inhibitors in combina-
tion with rapalogs is warranted. In fact, Hsp90 inhibitors have been shown to synergize
with PI3K/Akt/mTOR inhibitors in preclinical studies for the treatment of various can-
cers [144–146]. In line with this, Di Nardo et al. identified the heat-shock machinery as an
exploitable target in Tsc2-deficient neurons [147]. Accordingly, one study has evaluated
mTOR and Hsp90 inhibitors in combination in TSC1 or TSC2 deficient cancer models.
Unfortunately, the results were inconsistent between cell line and mouse xenograft models,
as synergism between Hsp90 inhibitor (GB) and mTOR inhibitors (Torin2, rapamycin) in
cell lines did not translate to increased efficacy over monotherapy in xenograft models [148].
Taken together, these studies demonstrate the potential therapeutic benefit of co-targeting
Hsp90 and mTOR in BHD and TSC patients. However, further investigation is needed.

7. Specialized Function of FNIP1/2 and Tsc1: Chaperoning Tumor Suppressors

An important and perhaps specialized role for these new Hsp90 co-chaperones is
in the chaperoning of tumor suppressors. FLCN and Tsc2 are additions to the growing
list of tumor suppressors that interact with Hsp90. The transcription factor p53 was the
first reported tumor suppressor client of Hsp90 [149–152]. Since 1996, 17 functional Hsp90
interactions with both kinase and non-kinase tumor suppressors have been discovered
(Table 1) [20,21,149,153–163]. Furthermore, several tumor suppressors including, VHL,
BDC2, LKB1, p53, FLCN and LATS1/2 were found to interact with Hsp90 co-chaperones
including, Hop, p23, Hsp110, Cdc37, PP5, and CHIP [20,23,150,154,159,160,164–167]. As
FNIP1/2 and Tsc1 scaffold the tumor suppressors FLCN and Tsc2 to Hsp90, it follows that
these co-chaperones may participate in the chaperoning of additional Hsp90-dependent
tumor suppressor clients. In line with this notion, Tsc1 was identified as a genetic interactor
with VHL in HeLa cells highlighting the need for further exploration in this area [168].

Table 1. Relationships of known tumor suppressor-Hsp90 interactions.

Tumor Suppressor Gene Relationship to Hsp90 References

ATM Kinase Client [153,169]
BMPR1A Client [161]
BRCA1/2 Client [158,170,171]

DBC2 Client [159]
FBXW7 Interactor [161]
FLCN Client [20,23]
IRF1 Client [156]

LATS1/2 Client [162,167,172]
LKB1 Client [154,173,174]

NDRG2 Interactor [163]
SYK Client [155,175]

TNFAIP3 Interactor [161,176]
TP53 Client [8,103,149–152,164–166,177–187]
TSC1 Co-chaperone [21,130]
TSC2 Client [21]
VHL Client [160,188]
WT1 Client [157]

Additionally, there is new evidence supporting a compensatory mechanism between
FNIP1/2 and Tsc1 co-chaperone activity. FLCN traditionally requires interaction via its
C-terminus to FNIP1/2 to mediate its stability. Tsc1, however, is capable of interacting
with a truncated FLCN mutant and supporting a low level of expression in the absence
of FNIP1/2 binding [23]. Unexpectedly, the truncated FLCN-L460QsX25 was still able
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to interact with Hsp90 even though it did not bind to its loading co-chaperone FNIP1.
Overexpression of Tsc1, but not FNIP1 was capable of stabilizing expression of the mutant
FLCN. Notably, Tsc1 interaction with Tsc2 was compromised in this model resulting in
loss of Tsc2 tumor suppressive function. Loss of such a compensatory mechanism may
also explain why deletion of FNIP1 synergized with TSC1 deletion to activate mTOR and
subsequently resulted in accelerated renal cyst formation in mice [189]. These findings
necessitate investigation into how these large co-chaperones mediate chaperoning of tumor
suppressors and the impact of tumor suppressor mutations on this relationship.

8. Conclusions

Hsp90 is an important component of the cellular homeostatic machinery and is regu-
lated by post-translational modification and interaction with co-chaperones. There are more
than 25 known co-chaperones that serve several functions including modulating Hsp90
conformations, loading client proteins to Hsp90, and modifying the rate of ATP hydrolysis.
New data has identified newly characterized roles for three proteins, FNIP1, FNIP2 and
Tsc1, as large co-chaperones of Hsp90. Though these proteins have established roles in the
regulation of tumor suppressor proteins FLCN and Tsc2, it seems that many of their other
ascribed functions are potentially explained at least in part by their effect on Hsp90. A
more thorough understanding of the action and interplay of these new, large co-chaperones
may unveil clues that will aid in developing the next generation of cancer therapeutics.
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