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Abstract

The highly conserved, cardiotonic steroid binding site (also termed ouabain binding site) on

the primary α subunit of Na,K-ATPase plays a receptor signaling role in a range of vital cell

processes and is a therapeutic target for human disease. Mouse lines with altered affinity for

cardiotonic steroids on the α1 or α2 subunit isoform of Na,K-ATPase, without any change in

pump activity, were developed by the late Jerry B Lingrel and are a valuable tool for studying

its physiological roles and drug actions. In one model, the normally ouabain resistant α1 iso-

form was rendered sensitive to ouabain binding. In a second model, the normally sensitive

α2 isoform was rendered resistant to ouabain binding. Additional useful models are obtained

by mating these mice. To further advance their use, we developed a rapid, real-time PCR

method that detects mutant alleles using specific primers and fluorescent probes. PCR is

performed in fast mode with up to 15 samples processed in 40 min. The method was vali-

dated by Sanger sequencing using mice of known genotype, and by comparing results with

a previous two-step method that used PCR amplification followed by gel electrophoresis. In

addition, we clarified inconsistencies in published sequences, updated numbering to current

reference sequences, and confirmed the continued presence of the mutations in the colony.

It is expected that a wider availability of these models and a more efficient genotyping proto-

col will advance studies of the Na,K-ATPase and its cardiotonic steroid receptor.

Introduction

The Na, K-ATPase (NKA) is an essential enzyme present in most cells of higher animals. It

establishes the Na+ and K+ concentration gradients that underlie cell volume regulation, elec-

trical signaling, and solute transport [1–3]. It also functions as a receptor for ouabain and

related cardiotonic steroids (CTS) and this receptor is an important therapeutic target. High

concentrations of ligands (millimolar range) inhibit pump transport, to produce both cyto-

toxic and therapeutic actions [4]; while concentrations far below saturation for inhibiting

transport (� nM) activate a range of cell processes, including membrane trafficking, growth

and proliferation, intracellular Ca2+ oscillations, cell signaling, and gene transcription [5–9].
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These physiological roles of the CTS receptor remain incompletely understood and are the

subject of active research. The Lingrel mouse models are an invaluable tool for such studies.

They are especially useful because they enable studies of CTS receptor functions without a

need to identify the endogenous ligand(s). Isolation and identification of endogenous CTS has

proven challenging due to their extremely low circulating concentrations and the need for

complex analytical separations [4].

The CTS receptor resides on the primary, ion-transporting α subunit of NKA. Four iso-

forms of the α subunit exist and show wide differences in affinity for CTS. In humans and

many mammals, all α isoforms exhibit high affinity ouabain binding (apparent IC50 1–3 nM)

[6]. However, in some rodents including mice, only α2 and α3 bind ouabain with high affinity,

whereas α1 and α4 (sperm-specific) are resistant to ouabain binding (IC50 1000-fold greater)

[10–12]. Both ouabain-sensitive and -insensitive isoforms conduct ion transport, and all α iso-

forms (α1-α4) are able to respond to nM ligand concentrations to elicit cell responses. [5–9,

13] The low affinity, resistant isoforms of rodents are protected from the transport- inhibiting,

cytotoxic actions of higher CTS concentrations.

To advance studies of the physiological role(s) of the CTS receptor, the late Jerry B Lingrel

and collaborators identified two critical amino acids in the receptor site that determine CTS

binding [14] without any change in pump activity. Subsequently, they mutated α subunit

genes to create knock-in mouse models in which the affinity of the CTS receptor for ouabain

is altered, without any change in pump transport (Table 1) [15, 16]. Mutations in the mouse

α1 gene (ATP1A1) convert its CTS receptor from low to high affinity ouabain binding (α1S,

Sensitive); mutations in the mouse α2 gene (ATP1A2) convert it from high to low affinity

ouabain binding (α2R, Resistant). Mating these mice produces additional useful models.

These include the α1S/Sα2S/S “humanized” mouse with both isoforms sensitive, the α1R/Rα2R/

R mouse with both isoforms resistant, the α1S/Sα2R/R “SWAP” mouse with reversed affinities

[17], and their heterozygous (HET) combinations. These models have been used to uncover

functional roles of the CTS receptor in the heart, vasculature, kidney, brain, and other cells

and tissues [15, 18, 19]. They also enable studies of isoform-specific functions of NKA because

they allow the researcher to selectively inhibit transport by either the α1 or α2 isoform

using μM ouabain, to avoid cytotoxic effects of high ouabain concentrations [20]. The

humanized model is useful for studies of CTS-derived drug candidates because both α1 and

α2 isoforms are sensitive in humans. The SWAP model has been used to identify the NKA

isoform that drives secondary transport processes such as Na+/Ca2+ exchange and Na-linked

glucose transport [18, 19, 21, 22].

Genotyping these many combinations using conventional methods is cumbersome and not

always reliable. It is further complicated by inconsistencies in gene and primer sequences

reported in the original literature, and outdated sequence numbering. The original method,

consisting of PCR amplification followed by gel electrophoresis of the amplicons, does not

directly detect the presence of the desired changes in the coding sequence; instead, it relies on

observing the presence or absence of an upstream artificial insertion site (loxP site and pad-

ding) that correlates with the amino acid modifications. In addition, both α1S and α2R

mutants, amplicons corresponding to the WT or mutant alleles differ in length by less than 50

bp, making it difficult at times to differentiate alleles by size on a gel.

Here, we developed a rapid and efficient genotyping protocol using a fluorescent probe-

based, real-time PCR method. The method reliably differentiates offspring by direct detection

of mutant alleles. Additionally, we performed Sanger sequencing to clarify these mutations

and their associated genomic sequences and to confirm the continued presence of the muta-

tions in the colony. It is expected that their wider availability and a more efficient method for

genotyping will advance studies of the NKA and its CTS receptor.
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Materials and methods

The protocol described in this article is published on protocols.io, doi.org/10.17504/protocols.

io.rm7vzym2rlx1/v3, and is included for printing as a S1 Appendix.

Mice

Mice were generated as described [15, 16] and housed in pathogen-free conditions at the Uni-

versity of Cincinnati. All procedures involving animal were performed in accordance with the

Guide for the Care and Use of Laboratory Animals (National Research Council of the National

Academies, USA) and were approved by the Institutional Animal Care and Use Committee of

the University of Cincinnati (IACUC Approval no. 07-05-07-08-01)

Sequencing

DNA was obtained from mice of known status (n = 2 α1S, n = 2 α2R mice and amplified by

PCR using sequencing primers designed as described below. The resulting 4 amplicons were

Sanger sequenced (MCLAB, San Francisco, CA) (forward and reverse direction at 4 loci).

Results were analyzed and aligned with NCBI reference sequences and each-other.

Genotyping

Primers and probes used for genotyping (Table 2) were designed using best practices [25].

They were designed to target the regions of each gene where the critical base- pair substitu-

tions occur. Candidate sequences for primers and probes were chosen with PrimerQuest

software and assessed for kinetic parameters (Tm, dimerization, hairpin loop formation)

using OligoAnalyzer software [26]. Specificity was confirmed using NCBI BLAST [27].

Probes for α1 required locked nucleic acid (LNA) bases surrounding some SNP sites

because a standard probe did not show sufficient specificity [28]. α1 probes were designed

with assistance from IDT Application Support (Integrated DNA Technologies). All primers

and probes were obtained from IDT. A melt-curve analysis using SYBR Green qPCR was

performed to check each pair of primers for off-target amplification or excessive dimeriza-

tion (Bio-Rad iTaq Universal SYBR Green Supermix, cat. no. 1725121). Each probe was

then assessed for its ability to discriminate between wild-type and mutant alleles of its target

gene. Candidate probes meeting these criteria were validated on multiple samples of known

genotype. RT-PCR was performed using ABI StepOne and StepOnePlus real-time PCR

machines (Thermo Fisher).

Table 1. Homozygous mouse models obtained by breeding mice with α1S and/or α2R mutations.

Genotype α1R/Rα2S/S α1R/R α2R/R α1S/Sα2S/S α1S/Sα2R/R

Phenotype Resistant/

Sensitive

Resistant/Resistant Sensitive/Sensitive Resistant/Sensitive

Description WT mutant α2, both isoforms

resistant

mutant α1,both isoforms sensitive;

“humanized”

double mutant, reversed affinities;

“SWAP”

Original

citations

[15] [16] [3]

Amino acid none L116R and N127D R118Q and D129N α1: L116R and N127D

substitution α2: R118Q and D129N

(Prior notation) (L111R and N122D) (R111Q and D122N)

Numerous additional HET combinations are possible. Numbering of amino acids is based on current reference sequences for murine NKA α1 (NP_659149.1) and α2

subunits (NP_848492.1) [23, 24]. The original amino acid numbering is shown in parentheses [15, 16].

https://doi.org/10.1371/journal.pone.0267348.t001
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Table 2. Primers and probes.

Name Amplicon Size and gene location Sequence

ATP1A1 FWD

primer

128 bp product: NC_000069.7

[101499671‥101499798]

CAG CTC TTT GGA GGC TTT

ATP1A1 REV

primer

GCT ACC GTA ACT ACA CAA CTC

ATP1A1 WT

probe

α1R allele probe /56-FAM/CA+T +CC+G +A+AG T+GC
/3IABkFQ/

ATP1A1 mutant

probe

α1S allele probe /56-FAM/TGG AAT +TC+A +G+AG T+GC
/3IABkFQ/

ATP1A2 FWD

primer

103 bp product NC_000067.7

[172118719‥172118821]

TCC TCT GCT TCT TAG CCT ATG G

ATP1A2 REV

primer

CAG GGC TAT AAG CAG GTC CA

ATP1A2 WT

probe

α2S allele probe /56-FAM/CAC ATT ATC /ZEN/GTT GGA TGG
TTC GTC CTC C/3IABkFQ/

ATP1A2 mutant

probe

α2R allele probe /56-FAM/CTC ACA TCA /ZEN/TCG TTC GAA
GGC TCG TC/3IABkFQ/

“+” indicates a locked nucleic acid (LNA) before a base.“//”, indicates dye and quencher insertions; bp, base pair. Dye

was 6-FAM, quenchers were ZEN and Iowa Black FQ. Locations are NCBI reference sequences accession numbers

and positions.

https://doi.org/10.1371/journal.pone.0267348.t002

Fig 1. Sequence alignment of murine ATP1A and ATP1A2 variants and recognition sequences of the PCR probes. Amino acid numbering is

based on current reference sequences for the murine NKA α1 and α2 subunits (from Table 1). ATP1A: gray highlight indicates the probe target site

for the WT α1R mutant; red highlight indicates the probe target site for the sensitive α1S mutant. Base substitutions are indicated in red font. The

presence or absence of vertical lines between sequences indicates whether a base change in the codon is conserved. ATP1A2: corresponding

annotation. Blue highlight indicates the probe target site for the mutant α2R mutant. Green font indicates natural variance between C57BL/6J and

129S1/SImJ mouse strains.

https://doi.org/10.1371/journal.pone.0267348.g001
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Results and discussion

Sanger sequencing of the colony was performed to clarify and correct inconsistencies in initial

reports [15, 16], to design PCR primers and probes, and to check the current status of critical

mutations in the colony. Fig 1 shows the sequence alignments for ATP1A (α1S) and ATP1A2

(α2R) mutants and the target hybridization sequence of each newly designed probe. Results

confirmed that the critical SNPs remain in the colony.

Fig 2. Detection of α1S and α2R mutants by qPCR using mutant-specific fluorescent probes. ΔRn, fluorescence level vs. cycle number

(CT). Horizontal lines indicate threshold fluorescence level for the WT (black), α1S (red) and α2R (blue) probes. Samples considered positive

for a specific allele showed CT in the range of 26-31for the corresponding probe, while negative samples did not reach threshold in 35 cycles;

heterozygous samples had amplification of both probes within 2 CT of each-other. The curves from both probes (run separately, in

duplicate) of each gene are superimposed onto one plot. A) Amplification plots from the α1 (ATP1A1) assay of 3 samples representative of

WT, HET, and homozygous mutant genotypes; α1R probe (black), α1S probe (red). B) Amplification plots from the α2 (ATP1A2) assay of 3

samples representative of WT, HET, and homozygous mutant genotypes; α2S probe (black), α2R probe (blue).

https://doi.org/10.1371/journal.pone.0267348.g002
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The WT α1R allele is identical to the NCBI reference sequence at this locus for the C57BL/

6J strain. The mutant α1S allele differs from WT at 6 base pairs; 2 changes were introduced to

alter the protein affinity and 4 to insert a restriction enzyme site. The WT α2S allele is identical

to the corresponding reference sequence for the C57BL/6J strain. However, the α2R allele

derives from the 129S1/SvImJ strain; it includes 3 silent mutations (highlighted in green) not

seen in C57BL/6J. The allele contains 5 artificially introduced base-pair changes that alter the

protein affinity and create a restriction enzyme site. Several individuals were sequence, and

none had a WT allele from the 129S1/SvImJ strain. Sequencing of a region upstream of the α2

gene confirmed this identification.

Fig 2 illustrates the method for genotyping the α1S and α2R mutants by real-time fast PCR.

A sample obtained from tail clips is digested and subjected to PCR without DNA isolation.

PCR amplification is performed in fast mode using mutant-specific primers and probes

(Table 2). Presence or absence of fluorescence indicates probe hybridization to the target, as

measured by cycle number (CT).

The method is fast and efficient. It can genotype 11 samples for both genes, in duplicate,

using a 96-well plate (including negative controls) in 40 min cycling time. To save reagents, it

is possible to multiplex the WT α1R and α2S probes in one reaction if the α1R probe is ordered

with SUN dye (a molecular equivalent to VIC). This requires both sets of primers to be

included in its reaction mix. Multiplexing allows for up to 15 samples (including negative con-

trols) per 96-well plate.

To validate the method, we analyzed samples having known genotypes using the new real-

time PCR method and compared the results with those of the previous two-step gel electro-

phoresis method. Results showed 100% agreement (n = 27 mice with α1 genotypes, n = 19

mice with α2 genotypes; 3 replicates analyzed per mouse) and agreed with the sequences

obtained by Sanger sequencing.

Conclusions

This report introduces a fast and efficient method for genotyping mouse models with altered

affinity for cardiotonic steroids on the NKA α1S and α2R subunit isoforms. The method uses

PCR amplification of digested tail samples with fluorescent probe-based detection of the criti-

cal mutations. The method, validated by sequencing, provides a substantially simplified and

accurate protocol for genotyping the models. It also clarifies and corrects inconsistencies in

the gene, amino acid, and primer sequences previously reported.
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