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Role of T cells in ischemic acute kidney injury and

repair
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Ischemic acute kidney injury (AKI) is a common medical problem with significant mortal-
ity and morbidity, affecting a large number of patients globally. Ischemic AKI is associ-
ated with intrarenal inflammation as well as systemic inflammation; thus, the innate and
adaptive immune systems are implicated in the pathogenesis of ischemic AKI. Among
various intrarenal immune cells, T cells play major roles in the injury process and in the
repair mechanism affecting AKI to chronic kidney disease transition. Importantly, T cells
also participate in distant organ crosstalk during AKI, which affects the overall outcomes.
Therefore, targeting T cell-mediated pathways and T cell-based therapies have therapeu-
tic promise for ischemic AKI. Here, we review the major populations of kidney T cells and
their roles in ischemic AKI.
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INTRODUCTION

Ischemic acute kidney injury (AKI) is an important clinical dis-
order affecting a large number of patients worldwide and is
a major risk factor for chronic kidney disease (CKD) and end-
stage renal disease [1]. Any clinical conditions that can result
in an interruption of renal blood flow—such as intravascular
volume depletion, reduced cardiac output, and vasodilatory
or vasoconstrictive disorders—can cause ischemic AKI [2,3].
Given its high prevalence and mortality, despite continued
and substantial improvement in critical care and dialysis
techniques, improving ischemic AKI outcomes is challeng-
ing [4,5]. Therapies that reduce injury or enhance adaptive
repair are not available [5]. Among various cellular and mo-
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lecular pathways involved in its pathogenesis, inflammation
orchestrated by kidney immune cells affects both injury and
repair processes [6]. Normal kidneys of human and animals
possess considerable amounts of resident immune cells
[7,8]. Indeed, even germ-free (GF) mice that have not been
exposed to microbiota have abundant kidney resident im-
mune cells, which are related to ischemic AKI pathogenesis,
indicating that they play pathogenic roles under sterile con-
ditions [9]. In ischemic AKI, endogenous molecules released
from stressed or injured cells trigger activation and prolifer-
ation of kidney immune cells, contributing to the progres-
sion of injury. This process resembles immune responses to
microbial pathogens and is thus termed sterile inflammation
[10,11]. Among the immune cells participating in this pro-
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cess, T cells, a major component of the adaptive immune
system, play crucial roles as major effectors and regulators
[12]. Although most evidence of their role in AKl is from an-
imal studies [13], continued clinical experience of AKl in pa-
tients receiving T cell-targeted immune check point inhibitor
or chimeric antigen receptor T cell therapy highlights their
pathogenic roles in human AKI [14,15]. A rigorous mecha-
nistic understanding of AKI would facilitate development of
novel therapeutic targets. Here we review the mechanisms
of ischemic AKI, focusing on the role of T cells during the
injury phase and recovery process based on experimental
studies, emphasizing recent literature.

ROLE OF T CELLS DURING EARLY RENAL
INJURY IN ISCHEMIC AKI

Studies using murine ischemia-reperfusion injury (IRI) mod-
els have provided the most mechanistic evidence of T cells in
ischemic AKI (Table 1) [7,9,16-42]. In contrast to the classi-
cal concept of immunity, which describes adaptive immune
cells as relatively late responders in the injured site, T cells
traffic into post-ischemic kidneys at a very early time point
and coordinate innate immunity [16,17]. An in vitro study
of hypoxia-reoxygenation demonstrated T cell adhesion to
tubular epithelial cells [18].

During the early phase of IRI, T cells play pathogenic roles
by contributing to the injury process, as demonstrated using
mice lacking T cells. Both T cell-deficient mice (nu/nu mice)
and CD4, CD8 double-knockout (KO) mice were protect-
ed from IRI [18,19]. A study using a whole body IRl model,
by inducing cardiac arrest followed by resuscitation, repro-
duced these findings, showing significant protection in T
cell-deficient mice with reduced expression of intercellular
adhesion molecule 1 (lcam1) [20]. There was substantial
functional and structural protection from IRl in T cell recep-
tor (TCR) aB-deficient mice, with a reduction of tumor ne-
crosis factor a (TNF-a) and interleukin 6 (IL-6) expression in
the post-ischemic kidneys [21]. A subsequent study using
genetically engineered DO11.10 transgenic mice demon-
strated that diverse TCR repertoires are essential for the ini-
tiation of T cell activation but, once activated, TCR diversity
is likely to have less impact on their pathogenic effect [22].

Importantly, T cell costimulatory molecules, emerging
therapeutic targets in oncology, play important roles in the
pathogenesis of ischemic AKI. When T cells recognize an-
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tigens through TCR, binding of CD28 to B7 (also known
as CD80 and CD86 for B7-1 and B7-2, respectively) on
antigen-presenting cells functions as a costimulatory path-
way, amplifying the TCR signal to activate T cells [43]. A
negative costimulatory molecule on T cells, cytotoxic T lym-
phocyte-associated protein 4 (CTLA-4), outcompetes B7
binding, dampening T cell activation [43]. Blockade of the
CD28-B7 costimulatory pathway by CTLA-4-lg administra-
tion in cold IRI reduced renal dysfunction and inhibited T cell
infiltration into the post-ischemic kidneys [44]. In line with
this finding, adoptive transfer of CD28-deficient T cells into
T cell-deficient mice (nu/nu mice) did not reinduce the injury
phenotype [19]. Programmed death-1 (PD-1) expressed on T
cells is another negative costimulatory molecule, which has
two ligands, programmed death ligand 1 (PD-L1) and PD-
L2 [43]. Blocking of the PD-1 pathway using an antibody
against PD-L1 or PD-L2, or genetic deficiency of either, led
to deterioration of structural and functional renal injury in
post-ischemic kidneys [23]. Blocking both PD-L1 and PD-L2
led to upregulation of proinflammatory gene expression in
post-ischemic kidneys, including /16, C-X-C motif chemok-
ine ligand 1 (Cxcl7), and Icam1 [23]. Importantly, PD-L1 is
expressed on renal tubular epithelial cells as well as on im-
mune cells, and interferon y (IFN-y) induces upregulation of
PD-L1 on renal tubular epithelial cells [45]. Because bone
marrow transfer from wild-type (WT) mice to PD-L1 KO
mice failed to induce protection, the PD-L1 expression on
renal tubular epithelial cells, rather than immune cells, may
serve as a major protective mechanism in ischemic AKI [23].

Several T cell subpopulations exhibit distinct roles during
the injury process (Fig. 1). Below we discuss the major sub-
populations of T cells.

CD4* T cells

CD4* T cells are major mediators of early renal injury, sup-
ported by reports that mice lacking CD4* T cells are more
protected from IRl than those lacking CD8* T cells [19].
CD4* T cell adoptive transfer to CD4+ T cell-deficient mice
reconstituted renal injury [19]. Sphingosine-1-phosphate
(S1P) and S1P receptor (S1PR) signaling is required for T cell
trafficking to peripheral tissues from lymphoid organs, and
S1PR1 selective agonists block T cell egress from lymphoid
tissue [46]. STPR1 selective agonist pretreatment before IR
exerted a renoprotective effect by inhibiting CD4* T cell in-
filtration into post-ischemic kidneys [17]. Renal CD4* T cells
can undergo polarization into T helper (Th) cells, which com-
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Table 1. Role of T cells during the injury phase of ischemic acute kidney injury

Study

Major findings

T cells

Rabb et al. (2000)
[18]

Burne et al. (2001)
[19]

Burne-Taney et al.
(2003) [20]

Burne-Taney et al.
(2005) [42]

Ascon et al. (2006)
[16]

Savransky et al.
(2006) [21]

Satpute et al. (2009)
[22]

Jaworska et al.
(2015) [23]

CD4* T cells

Burne et al. (2001)
[19]

Yokota et al. (2003)
[24]

Lai et al. (2007) [17]

Mehrotra et al.
(2015) [25]

Mehrotra et al.
(2019) [26]

CD8* T cells

Burne et al. (2001)
(9]
Jang et al. (2009) [9]

Tregs

Kinsey et al. (2009)
[27]

CD4/CD8-deficient mice were protected with reduced neutrophil trafficking
T cell-renal tubular epithelial cell adhesion is enhanced after hypoxia-reoxygenation in vitro

T cell-deficient mice (nu/nu mice) were protected
Adoptive transfer of WT T cells to T cell-deficient mice reconstituted renal injury
CD28-deficient T cell transfer to T cell-deficient mice did not reinduce injury phenotype

T cell-deficient mice (nu/nu mice) were protected from whole body IRI
T cell-deficient mice (nu/nu mice) showed attenuated expressions of lcam1 after whole body IRI

T cell adoptive transfer to Rag7-deficient mice (mice lacking both T and B cells) led to protection
CD4* and CD8* T cells traffic into post-ischemic kidneys during the early injury phase

TCR aB-deficient mice were protected
TCR aB-deficient mice showed reduced TNF-a and IL-6 expression in post-ischemic kidneys at 24 hours

T cell-deficient mice (nu/nu mice) reconstituted with T cells having limited TCR repertoire (DO11.10 T cells)
were protected from IRl compared to those reconstituted with WT T cells
Antigen specific activation of DO11.10 T cells using OVA-CFA abolished its protective effect

Blocking or genetical deficiency of PD-L1 or PD-L2 was protected

CD4* T cell-deficient mice were protected

Adoptive transfer of WT CD4* T cells to T cell-deficient mice reconstituted renal injury

Adoptive transfer of CD4* T cells lacking CD28 or IFN-y to T cell-deficient mice did not restore injury phe-
notype

STAT4-deficient mice were protected, whereas STAT6-deficient mice had more severe injury
STAT4-deficient T cells showed higher IL-4 expression and lower IFN-y expression
IL-4-deficient mice showed more severe renal injury

CD4* T cells infiltrated post-ischemic kidneys as early as 1 hour
S1PR1 agonist treatment reduced CD4* T cell infiltration and renal injury

Th17 cells (CD4* IL-17* T cells) increased during early injury phase thereafter deceased to the control level
at 7 days

Store-operative calcium entry channel, Orai1 contributed to IL-17 expression in CD4* T cells
Pharmacologic Orail blockade attenuated IL-17* cell activation and mitigated renal injury

Mice lacking CD8* T cells mice were not protected from IRI

GF mice have lower percentage of effector memory (CD44"9" CD62L°%) CD8* T cells
GF mice showed more severe injury with enhanced CD8* T cell trafficking

Treg depletion using anti-CD25 antibody (PC61) before IRI worsened renal injury with increased IFN-y pro-
ducing neutrophil infiltration

Rag1 KO mice (mice lacking both T and B cells) that received lymphocytes from Sf mice (mice lacking
FoxP3) showed more severe renal injury compared to those that received WT lymphocytes at 24 hours
Co-transfer of Sf lymphocytes and Tregs alleviated susceptibility to IRl in Rag? KO mice

IL-10-deficient Treg adoptive transfer did not show protective effect in Rag? KO mice, whereas WT Treg
transfer was protective.
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Table 1. Continued

Study Major findings

Kinsey et al. (2010)  Adoptive transfer of Tregs prior to IRl showed protective effect
[28] Treg depletion in preconditioned mice with anti-CD25 antibody (PC61) abolished protective effect of isch-
emic preconditioning
Kinsey et al. (2012) CD73 or A, AR deficiency on Tregs abolished protective effect
[29] Pharmacologic A,,R activation on Tregs augmented protective effect and upregulated PD-1 expression
on Tregs
Adoptive transfer of PD-1 blocking antibody treated Tregs did not show protective effect

Kim et al. (2013) Treg expansion by IL-2C treatment before IRl ameliorated renal injury

[30] Treg depletion by anti-CD25 antibody (PC61) treatment abolished the protective effect of IL-2C
Jaworska et al. Blocking PD-1 ligands with anti-PD-L1 or PD-L2 antibody abolished protective effect of Treg adoptive
(2015) [23] transfer
DN T cells

Ascon et al. (2008) DN T cells existed in normal kidneys and post-ischemic kidneys

(7]

Jang et al. (2009)  Mouse anti-thymocyte globulin treatment increased percentage of DN T cells among total T cells

[33]

Martina et al. (2016) DN T cells have higher expression of IL-10 and IL-27 than CD4* T cells in steady state

[31] DN T cells rapidly increased within 24 hours after IRI
IL-10 expression on DN T cells was upregulated following IRI, whereas IL-27 expression was decreased
DN T cell adoptive transfer before IRI attenuated renal injury, and IL-10 blocking with anti-IL.-10 receptor
antibody abrogated protective effect of DN T cells
DN T cells were present in human ischemic kidney tissue with considerable proportion

Sadasivam et al. PD-1* and NK1.1* subsets are two major DN T cell subsets in both human and mice
(2019) [32] DN T cells required IL-2 for their activation and function in vitro and in vivo
PD-1* subset predominated kidney DN T cells in post-ischemic kidneys
vo T cells
Savransky et al. v& TCR-deficient mice had less structural renal injury
(2006) [21]
Hochegger et al. v& T cell-deficiency and y& T cell depletion using anti-yd TCR antibody showed protective effect
(2007) [40] v& T cell-deficiency reduced aB T cell trafficking to post-ischemic kidneys during early injury phase

Gocze et al. (2018)  Decline of y& T cells in circulating blood correlated with urinary cell stress biomarker levels in human (TIMP-2
[41] and IGFBP7)
v T cells increased in post-ischemic kidneys, while circulating y& T cells decreased at 24 hours after IRI

NK T cells

Ascon et al. (2006) Traffic as early as 3 hours and reduced to baseline level at 24 hours after IRI

[16]

Liet al. (2007) [35] NK T cell depletion using anti-NK1.1 antibody or blocking NK T cell activation by anti-CD1d antibody
attenuated renal injury
Type | NK T cell-deficient mice (Ja 18-/-) were protected from IRI
NK T cells mediated neutrophil infiltration and IFN-y production in IRI

Yang et al. (2011)  Type Il NK T cell activation by sulfatide injection reduced renal injury in WT mice and type | NK T cell defi-
[34] cient mice (Ja 18-/-), but not in NK T cell-deficient mice (CD1d -/-)
Adoptive transfer of sulfatide treated NK T cells attenuated renal injury in WT, type | NK T cell-deficient
mice, and NK T cell-deficient mice
Type I NK T cell mediated protective mechanisms involved in HIF-1a and IL-10 pathways
NK T cells (CD3* Va24*) were found in kidney tissue from patients with acute tubular necrosis
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Table 1. Continued

Study Major findings

Zhang et al. (2016)  HIF-2a/A, 4R axis served protective mechanism by restricting NK T cell infiltration and activation

(38]

Ferhat et al. (2018)  IL-33 drove recruitment of type | NK T cells and induced INF-y/IL-17 production

(37]

Uchida et al. (2018) a-Galactosylceramide administration induced AKI and hematuria via NK T cell activation

[39] Perforin-mediated pathway and TNF-a/Fas ligand pathways are related to glomerular injury and tubular
injury, respectively

IRI, ischemia-reperfusion injury; WT, wild-type; ICAM-1, intercellular adhesion molecule 1; TCR, T cell receptor; TNF-q, tumor
necrosis factor q; IL, interleukin; OVA-CFA, ovalbumin in complete Freund'’s adjuvant; PD-L, programmed death ligand; IFN-y, in-
terferon y; STAT, signal transducer and activator of transcription; S1PR1, sphingosine-1-phosphate receptor 1; GF, germ-free; Treg,
regulatory T cell; KO, knockout; Sf, scurfy; FoxP3, forkhead box P3; A,AR, adenosine 2A receptor; PD-1, programmed death-1; IL-
2C, IL-2/anti-IL-2 complex; DN, double-negative; TIMP-2, tissue inhibitor of metalloproteinase 2; IGFBP7, insulin-like growth fac
tor-binding protein 7; NK, natural killer; HIF, hypoxia-inducible factor; AKI, acute kidney injury.

Promote injury Prevent injury
Savransky et al. [21] Gandolfo et al. [56]
Hochegger et al. [40] Kinsey et al. [27]

L-17/TNF-a IL-4/1L-10/ IL-13

Martina et al. [31]
Sadasivam et al. [32]

Burne et al. [19]

Yokota et al. [24] IL-2/1L-10
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Burne et al. [19]
Yokota et al. [24]

Mehrotra et al. [25]

Ascon et al. [16]
Li et al. [35]

Ascon et al. [16]
Yang et al. [34]

Figure 1. Proinflammatory and anti-inflammatory T cells in ischemic acute kidney injury. T helper 1 cell (Th1), Th17, y& T cells, and type |
natural killer (NK) T cells (NKT1) promote renal injury and exert a proinflammatory effect in ischemic acute kidney injury, whereas regula-
tory T cells (Tregs), double-negative (DN) T cells, Th2 cells, and type Il NK T cells (NKT2) play protective roles and have anti-inflammatory
properties. Numbers of key landmark studies for each subset of T cells are presented. IL, interleukin; TNF-a, tumor necrosis factor a; IFN-y,
interferon y.
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prise three major subsets—Th1, Th2, and Th17.

Th1/Th2 cells

Th1 cells secrete IFN-y and TNF-a and are regulated by the
transcription factor T-bet. Th2 cells produce IL-4, IL-5, IL-
10, and IL-13 and are regulated by the transcription factor
GATA binding protein 3 (GATA3) [47]. Th1 cells and Th2
cells are likely to have opposite effects on the pathogen-
esis of ischemic AKI: Th1 cells play a pathogenic, and Th2
cells a protective, role [24,48]. The signal transducer and
activator of transcription 4 (STAT4) gene and STAT6 gene
are responsible for Th1 differentiation and Th2 differentia-
tion, respectively. Mice lacking STAT4 were protected from
IRI, whereas mice lacking STAT6 showed more severe injury
after IRI [24]. The dendritic cell sphingosine 1-phosphate 3
(S1P3) pathway is involved in Th1 polarization, and adoptive
transfer of S1P3-deficient dendritic cells protected against
IRI by inducing Th2 polarization [48].

Th17 cells

Th17 cells are regulated by the transcription factors STAT3
and retinoic acid receptor-related orphan receptor-yt
(RORyt) and produce IL-17, which recruits innate immune
cells [49,50]. Th17 cell polarization is mainly driven by the
STAT3 activating cytokines IL-1 and IL6, and transforming
growth factor B (TGFB) contributes by suppressing Th1 or
Th2 polarization [51,52]. Along with their detrimental roles
in autoimmune disorders and transplantation, they play
pathogenic roles in ischemic AKI [25,53]. IL-1 secreted by
renal dendritic cells and macrophages promotes Th17 dif-
ferentiation and activation following kidney injury [54]. In-
creased kidney Th17 cells were observed within the first 3
days after IRl and decreased to a comparable steady state
within 7 days of renal recovery [25]. More specifically, calci-
um channel Orai1-expressing Th17 cells are involved in IL-17
production in IR, contributing to tissue damage [26].

CD8* T cells

CD8* T cells can differentiate into cytotoxic effector cells
with upregulation of TNF-a and IFN-y [7], but they have
been less studied than CD4* T cells in AKI. CD8* T cells may
contribute to renal injury by producing INF-y in renal IRI [7].
However, compared to CD4* T cells, CD8* T cells are likely
to have a minor effect on renal IRl. Unlike CD4-deficient
mice, mice lacking CD8* T cells showed a comparable lev-
el of injury to WT mice after IRI [19]. The roles of CD8* T
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cells were evaluated using GF mice. GF status was linked
to a reduced proportion of effector memory phenotypes
(CD44hish CD62LIoW) of CD8* T cells and worsened kidney
injury after IRl with enhanced CD8* T cell trafficking into
post-ischemic kidneys. Therefore, naive CD8* T cells associ-
ated with underexposure to microbial stimuli appear to have
a pathogenic role in post-ischemic kidneys [9].

Regulatory T cells

Regulatory T cells (Tregs) have CD4 and CD25 as surface
markers and upregulation of nuclear transcription factor
forkhead box P3 (FoxP3) [55]. A small percentage of CD4*
T cells are Tregs in normal mouse kidneys, accounting for
only 3% to 4% of total CD4* T cells [7,56]. Contrary to the
deleterious role of conventional CD4* T cells, Tregs exert
protective effects by suppressing proinflammatory respons-
es despite their small numbers [57].

Partial Treg depletion with an anti-CD25 antibody (PC61)
in WT mice before IRl resulted in more severe injury, with in-
creased neutrophil and macrophage trafficking and upreg-
ulation of II6, Tnfa, and TgfB in post-ischemic kidneys [27].
Adoptive Treg transfer to mice lacking lymphocytes (Rag?
KO mice) prior to IRI showed a protective effect. An anti-in-
flammatory cytokine, IL-10 produced by Tregs, appears to
be an important mediator for their protective mechanism.
IL-10-deficient Treg adoptive transfer did not show a protec-
tive effect in Rag7 KO mice [27]. A study using a more com-
plex IRI model to simulate ischemic preconditioning demon-
strated that Tregs are involved in the protective mechanism
of the ischemic preconditioning [28].

An important mechanism by which Tregs exert an anti-in-
flammatory effect on AKl is adenosine generation by CD73,
to which adenosine 2A receptor (A, ,R) on Tregs contributes
in an autocrine manner [29]. Notably, PD-1 expression on
Tregs is likely to be vital for their anti-inflammatory function.
Activation of the A,,R signaling pathway enhanced PD-1
expression on Tregs, and PD-1 depletion on Tregs abolished
the protective effect [29]. Blocking PD-1 ligands using an
anti-PD-L1 or PD-L2 antibody before Treg adoptive transfer
also negated its protective effect on IRI [23].

Because the complex of IL-2 and a particular form of IL-2
antibody (JES6-1) reportedly preferentially expanded Tregs,
an IL-2/anti-IL-2 complex (IL-2C) has been tested in renal IRI
[30]. IL-2C induced expansion of Tregs in kidneys and ame-
liorated renal injury. Treg depletion by anti-CD25 antibody
abolished the protective effect of IL-2C [30].
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The pro-reparative role of Tregs during the recovery
phase of ischemic AKI will be reviewed separately in the
next section.

Double-negative af T cells

Double-negative (DN) T cells (TCRa*, CD4-, CD8 T cells)
are an important subset of kidney resident af T cells [7].
Although rare in lymphoid organs, DN T cells represent ap-
proximately 20% to 25% of kidney af T cells in normal
mouse kidneys and post-ischemic kidneys [7,31]. Consider-
able proportions of DN T cells were also found in human
ischemic kidneys [7,31]. DN T cells were previously thought
to originate from CD4* or CD8* T cells by losing their CD4
or CD8 receptor [58,59], but are now considered a discrete
subset distinguished from conventional CD4* or CD8* T
cells in kidneys because DN T cells were present in $2m-de-
ficient mice and major histocompatibility complex (MHC)
Il-deficient mice [32]. IL-2 is required for activation and pro-
liferation of DN T cells [32]. Kidney DN T cells contain PD-1*
subset and NK1.1* subset in both human and mice [32]. DN
T cells have different immunophenotypic profiles with high-
er expression of CD28, CD44, and CD69 compared to CD4+
and CD8* T cells in a steady state and significantly higher
proliferation capacities [31]. Thus, DN T cells are expected to
play distinct roles in AKI pathophysiology.

Mouse anti-thymocyte globulin treatment increased the
DN T cell proportion in the post-ischemic kidney [33]. DN T
cells increase rapidly within 24 hours after IRl and likely have
an IL-10-dependent protective function in the early injury
process [31]. An adoptive transfer of DN T cells from Fas/o
mice before IRI showed a protective effect, and IL-10 neu-
tralization with an anti-IL-10 receptor antibody abrogated
the protective effect [31].

The PD-1* DN T cell subset was predominant following
IRI, whereas the NK1.1* subset decreased; thus, PD-1*DN T
cells may be important in the pathogenesis of ischemic AKI.
Based on the higher expression of PD-1 on DN T cells from
human kidney tumor tissue, DN T cells may be relevant tar-
gets of immune checkpoint inhibitor therapy [32]. Few stud-
ies have addressed DN T cells, so further research is needed.

Unconventional T cells

Unconventional T cells—including y& T cells and natural killer
(NK) T cells—are different types of T cells from conventional
CD4* and CD8* T cells in their TCR usage. Unconventional
T cells present as minor T cell subsets in the kidney [60].
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Because unconventional T cells can act in a non-MHC-re-
stricted manner, a feature of innate immunity, they are
also referred to as ‘innate-like T cells’ in the literature [60].
These unconventional T cells are much less understood and
have extensive interspecies differences unlike conventional T
cells, hampering studies using experimental animal models.

Natural killer T cells

NK T cells can directly recognize antigens presented on
CD1d molecules from antigen-presenting cells, thus are de-
fined as CD1d-restricted T cells. NK T cells reportedly infil-
trate post-ischemic kidneys at a very early time point [16].
NK T cells were also found in renal tissue of patients with
acute tubular necrosis, but are rare in normal human kidney
specimens [34]. Given the capability of NK T cells to become
rapidly activated, resulting in cytokine production (including
INF-y) and recruitment of innate immune cells [35], they are
considered a major effector and modulator cell type in the
very early phase of IRI. NK T cells are likely to mainly have a
deleterious effect on ischemic AKI [35]. NK T cell depletion
using an anti-NK1.1 antibody and mice lacking NK T cells
were protective against ischemic AKI [35]. Blocking NK T cell
activation using an anti-CD1d antibody ameliorated renal
injury [35]. Tolerogenic dendritic cells treated with an A, ,R
agonist exerted a protective effect on IRI by suppressing NK
T cell production of IFN-y [36]. In addition, IL-33 is a media-
tor of NK T cell recruitment and activation in post-ischemic
kidneys [37], whereas the hypoxia-inducible factor (HIF)-2a
and A, R pathways exert protective effects by restricting NK
T cell infiltration and activation [38].

There are two subsets of NK T cells, type | NK T cells and
type I NK T cells [61]. Because type | NK T cells have an
invariant TCR a chain, they are also referred to as ‘invariant
NK T cells,” whereas type Il NK T cells are called ‘diverse NK
T cells’ based on their more diverse TCR a- and B-chain ex-
pression [61].

Type | NK T cells can be stimulated by a-galactosylcer-
amide (a-GalCer), whereas type Il NK T cells cannot [61].
a-GalCer injection in normal mice induced AKI by activating
type | NK T cells in the kidney [39]. The TNF-a/FAS ligand
pathway and perforin-mediated pathway are related to NK
T cell-mediated glomerular injury and tubular injury, respec-
tively [39].

Type Il NK T cells are likely to have opposite roles to type |
NK T cells in ischemic AKI. They can be stimulated by sulfati-
de and nonlipid antigens. Sulfatide injection into WT mice

https://doi.org/10.3904/kjim.2021.526


www.kjim.org

Lee K and Jang HR. T cells in ischemic acute kidney injury

and type | NK T cell-deficient mice ameliorated renal inju-
ry following IRI. Sulfatide injection to CD1d-deficient mice
(mice lacking both type | and Il NK T cells) did not show a
protective effect [34]. This renoprotective function in renal
IRI'is mediated via the HIF-1a and IL-10 pathways [34].

yo T cells

v& T cells exacerbate ischemic AKI—yd T cell deficiency or
depletion has a protective effect on renal IRI [21,40]. y& T
cells were identified in human healthy kidney tissues as a
minor fraction of T cells, and their number in the kidney
was correlated negatively with the estimated glomerular
filtration rate and positively with the degree of fibrosis in
patients with CKD [62]. yo T cells infiltrate damaged kidneys
from the blood following ischemic AKI; a rapid drop in cir-
culating y6 T cell levels followed by increased y& T cells in
the kidneys was observed in human and mouse AKI [40,41].
Although the significance of yo T cells in the pathogenesis
of ischemic AKl is unclear, given their minor fraction and less
protective effect on y& T cell deficiency than o T cell defi-
ciency, they are likely to have less influence on AKI patho-
physiology compared to conventional o T cells [40,41].

ROLE OF T CELLS IN RECOVERY OR AKI TO
CKD TRANSITION

Given the lack of established real-time biomarkers for AKI,
clinical interventions mostly become available after the es-
tablishment of renal injury as well as in the recovery phase
[63]. Moreover, therapeutic approaches that inhibit inflam-
matory processes during the injury phase may disrupt the
adaptive repair process [6]. Thus, understanding and tar-
geting the T cell-mediated repair process has high clinical
importance, but few studies have focused on the recovery
phase. Here, we review studies that reported long-term re-
nal outcomes or conducted interventions after renal injury
(Table 2) [28,30,56,64-70].

CD4* and CD8* T cells

Chronic T cell infiltration into post-ischemic kidneys was in-
vestigated using IRI models. The study based on immunohis-
tochemistry findings demonstrated increased CD4+ T cells at
6 weeks after IR, and there was enhanced expression of IL-1
and C-C motif chemokine ligand 5 (CCL5) [64]. Subsequent
studies based on flow cytometry with isolated kidney infil-
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trating mononuclear cells showed consistent findings [65].
Activated phenotype (CD69%) and effector-memory pheno-
types (CD44high CD62L") of T cells were the dominant phe-
notypes during the long-term recovery phase [65]. More-
over, expression of inflammatory cytokines and chemokines
was enhanced in post-ischemic kidneys until 6 weeks [65].
Thus, T cell activation and an inflammatory microenviron-
ment following ischemic AKI are likely to be maintained
chronically and play important roles in tubular regenera-
tion or the AKI to CKD transition. A study using single-cell
RNA-sequencing (scRNA-seq) showed a marked increase in
the T cell compartment at the transcriptomic level during
the recovery phase. Among T cell subtypes, Th17 cells were
gradually increased after IRI until 4 weeks [66].

Transcriptomic analyses of sorted T cells from post-isch-
emic kidney tissue showed that their Cc/5 gene expression
was consistently upregulated until 6 weeks after IRl [67].
Also, C-C motif chemokine receptor 5 (CCR5) blockade us-
ing an anti-CCR5 antibody improved renal outcomes func-
tionally and structurally following ischemic AKI [67]. This
finding was reproduced by scRNA-seq data showing the
Ccl5-Cer’ interaction was significantly associated with failed
repair of tubular cells following IRI [71].

Extrarenal T cells are also activated until the recovery
phase of ischemic AKI. Enhanced INF-y secretion was ob-
served from splenic T cells at 6 weeks after IRI [64]. Adoptive
transfer of splenic T cells isolated from post-IRI donor mice
at 6 weeks after IRl induced albuminuria in naive recipient
mice at 12 weeks after the injection [68]. This finding sug-
gests that the inflammatory property of extrarenal T cells is
chronically maintained following renal IRI, which may affect
renal recovery.

Regulatory T cells
Tregs not only prevent damage in the early phase but also
have a pro-reparative function by preventing fibrosis de-
velopment during the recovery phase. A late Treg (CD4*
CD25* FoxP3*) trafficking into post-ischemic kidneys were
demonstrated [56], and IL-10 expression on Tregs were un-
regulated during recovery phase [28]. A scRNA-seq based
study reproduced the finding of late Treg accumulation at
the transcriptomic level [66]. Notably, it was also revealed
that a set of reparative genes in Tregs were expressed at the
highest levels at later time points following IRI, indicating
their important roles in the repair process [66].

Adoptive transfer of Tregs isolated from spleen into post-
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Table 2. Role of T cells during the repair phase of ischemic acute kidney injury

Study

Major findings

T cells

Burne-Taney et al.
(2005) [64]

Burne-Taney et al.
(2006) [68]

Ascon et al. (2009)
[65]

Ko et al.
(2012) [67]

Duraes et al.
(2020) [66]

Regulatory T cells

Gandolfo et al. (2009)
[56]

Kinsey et al. (2010) [28]
Gandolfo et al. (2010)
[69]

Kim et al. (2013) [30]

Chen et al. (2016) [70]

Duraes et al. (2020) [66]

CD4* T cells infiltration in post-ischemic kidneys at 6 weeks after IRI
Upregulation of IL-1 and CCL5 expression in post-ischemic kidneys at 6 weeks after IRI
Enhanced IFN-y secretion of splenic T cells at 6 weeks after IRI

Adoptive transfer of splenic T cells obtained from post-IRI donor mice resulted in albuminuria in normal
recipient mice at 12 weeks after transfer
Increased activated (CD3* CD25%) or memory phenotypes (CD4* CD44*) of T cells in recipient spleens

Activated phenotypes (CD69%) of T cells were expanded at late recovery phase (6 weeks from BIRI, 11
weeks from UIRI)

Effector memory (CD44M9" CD62L) phenotype T cells were major T cell phenotype at 6 weeks after
BIRI or UIRI

Inflammatory cytokines and chemokines (//1b, Il6, Tnfa, Ifng, Cxcl2, and Cc/5) were upregulated in
post-ischemic kidneys at 6 weeks after UIRI

T cell depletion reduced /fng expression

Upregulation of Ccr5 gene expression on T cells was maintained from early injury to late recovery (4
weeks)

CCR5 blockade with anti-CCR5 antibody after IRl attenuated renal injury and reduced renal trafficking
of activated phenotype (CD69%) T cells on day 3 after IRI

scRNA-seq analyses of kidney CD45* cells showed increased T cell cluster at 4 weeks after IRI
scRNA-seq analyses of kidney CD4* T cells showed substantial expansion of Th17 cell cluster during the
recovery phase

Marked Treg (CD4* CD25* FoxP3*) expansion in post-ischemic kidneys on day 3 and day 10 after IRI

Adoptive transfer of Tregs (CD4* CD25%) at 24 hours after IRI reduced structural injury, enhanced tubu-
lar regeneration, and reduced TNF-a production in CD4* T cells on day 10

Treg depletion with anti-CD25 antibody treatment at 24 hours after IRl inhibited tubular regeneration
and increased TNF-a and IFN-y production in CD4* and CD8* T cells

IL-10 producing Tregs increased at 7 days after IRI

MMF administration at 48 hours post-ischemia reduced Treg expansion and worsened tubular injury
on day 10 after IRI

MMF administration in T cell-deficient mice did not alter renal outcome

Treg expansion by IL-2C administration reduced renal fibrosis on day 28 after IRI

Treg depletion with anti-CD25 antibodies abrogated the beneficial effect of IL-2C treatment.

mTOR inhibition by rapamycin treatment in CD4* T cells induced Treg expansion and enhanced expres-
sion of IL-10 and TGF-B1 in vitro.

Adoptive transfer of rapamycin ex vivo treated Tregs at 24 hours post-ischemia reduced structural renal
injuries and a fibrosis marker expression on day 14 after IRI

A set of gene expression in Tregs are highest at late recovery phase

Treg expansion by a combination of IL-2C and IL-33 treatment before IRI reduced kidney fibrosis on day
28 from IRl

Tregs in fibrotic and regenerative environments had distinct signatures of gene expression

IRI, ischemia-reperfusion injury; IL, interleukin; CCL5, C-C motif chemokine ligand 5; BIRI, bilateral ischemia-reperfusion injury; UIRI,
unilateral ischemia-reperfusion injury; IFN-y, interferon y; CCR5, C-C motif chemokine receptor 5; scRNA-seq, single cell RNA-se-
quencing; Th17, T helper 17 cell; Treg, regulatory T cell; FoxP3, forkhead box P3; TNF-a, tumor necrosis factor a; MMF, mycophe-
nolate mofetil; IL-2C, IL-2/anti-IL-2 complex; mTOR, mammalian target of rapamycin; TGF-B1, transforming growth factor B1.
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IRI mice at 24 hours after IRI mitigated structural renal injury
and enhanced tubular regeneration at 10 days after IRI, ac-
companied by a reduction of the CD4* T cell TNF-a produc-
tion [56]. Treg depletion using an anti-CD25 antibody start-
ing at 24 hours after IRl suppressed tubular regeneration
and increased T cell TNF-a and IFN-y production [56]. Treg
expansion using an IL-2C reduced renal fibrosis at 4 weeks
after IRI. Also, Treg depletion with an anti-CD25 antibody
abrogated the beneficial effect of IL-2C [30]. A combination
of IL-2C and IL-33 administration markedly increased Tregs
in post-ischemic kidneys and reduced renal injury with less
fibrosis at 4 weeks after IRI [66].

Although theoretically promising, the use of immuno-
suppressive agents in AKI has failed to achieve favorable
outcomes. However, our understanding of the role of
Tregs has increased. Mycophenolate mofetil worsened tu-
bular injury and reduced Treg expansion in post-ischemic
kidneys at 10 days after IRI, highlighting the reparative role
of Tregs during renal recovery [69]. Because early initiation
of mammalian target of rapamycin (mTOR) inhibitors can
retard wound healing and delay renal recovery [72,73], de-
layed administration of rapamycin was evaluated. Howev-
er, it also increased albuminuria following IRl [74]. Notably,
rapamycin induces Treg expansion and IL-10 upregulation in
vitro. Thus, rapamycin ex vivo-treated Tregs were adoptively
transferred at 24 hours after IRI. There was less tubular inju-
ry and lower expression of fibrosis markers in the rapamycin
ex vivo-treated Treg transfer group at 14 days after IRI [70].

There was a clear transcriptional difference between Tregs
in a regenerative environment and those in a profibrotic en-
vironment. Tregs seem to have complicated tissue specific
functions, warranting further research [66].

T cell and distant organ crosstalk during isch-
emic AKI

Although renal failure can be managed with renal replace-
ment therapy, unlike other organ failures, AKl-associated
mortality remains high even when prompt dialysis is avail-
able [75,76]. Thus, increased mortality in patients with AKI
cannot be solely explained by reduced renal clearance per
se, and mechanisms beyond that are postulated [77]. One
is the inflammatory response by kidney T cells and other
immune cells, which has promise as a therapeutic target to
reduce AKl-associated mortality. In this section, we briefly
review the role of T cell-mediated systemic inflammatory ef-
fects on distant organs.
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Pulmonary inflammation is a common AKl-related distant
organ damage [77]. AKl induces acute lung injury or acute
respiratory distress syndrome (ARDS) [78]. Beyond volume
overload due to reduced renal clearance, the systemic in-
flammatory effect of AKI contributes to AKl-associated
pulmonary complications [79]. Higher levels of circulating
inflammatory cytokines were found in patients with AKl-re-
lated ARDS than in ARDS patients without AKI [80]. A land-
mark experimental study demonstrated that renal IRl gener-
ated distinguishable lung transcriptomic profiles (including
upregulated proinflammatory and proapoptotic pathways)
from those induced by bilateral nephrectomy [81]. T cells
traffic into the lungs and cause pulmonary endothelial
apoptosis through the caspase 3 pathway during ischemic
AKI [82]. T cell-deficient mice did not show caspase-3 acti-
vation, and adoptive transfer of T cells from WT mice into
T cell-deficient mice reconstituted pulmonary endothelial
apoptosis [82]. Circulating IL-6 is a major pathogenic media-
tor of lung injury following AKI and induces upregulation of
pulmonary CXCL1 expression [83].

AKl is also associated with adverse cardiac events, and in-
teractions between heart and kidney diseases are clinically
defined as cardiorenal syndrome [84]. Among the five sub-
types of cardiorenal syndrome, the pathophysiology of car-
diorenal syndrome type 3, acute cardiac dysfunction caused
by an abrupt and primary worsening of kidney function, is
less studied [78]. T cell-mediated mechanisms including sys-
temic inflammation and activation of neurohormonal path-
ways may be involved [78,85]. This concept is supported by
experimental evidence showing that renal IRl induced cardi-
ac cell apoptosis but bilateral nephrectomy did not [86]. This
cardiac injury was accompanied by increased levels of TNF-a
and IL-1 in heart tissue and the systemic circulation [86]. Im-
portantly, the activation of neurohormonal pathways such
as the renin-angiotensin-aldosterone system (RAAS) in AKI
promotes cardiac inflammation and fibrosis [87]. RAAS is
strongly related to T cell-mediated inflammation—renal T
cells not only express type 1 angiotensin Il receptor but also
synthesize angiotensin Il [88-90]. Thus, RAAS activation in
AKI-heart cross talk may amplify the deleterious effect on
cardiac inflammation by a T cell-mediated mechanism.

Neurologic manifestations are well known complications
of AKI. The blood-brain barrier (BBB) interacts with circulat-
ing immune cells, leading to loss of the endothelial lining
[91], and AKl-related systemic inflammation can induce BBB
disruption [92]. Ischemic AKI can increase levels of soluble
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inflammatory proteins in the brain, which is associated with
abnormal neuropsychiatric behaviors [93,94]. As an addi-
tional key mechanism, neurohormonal changes have been
reported to contribute to kidney-brain crosstalk [95]. Renoc-
erebral sympathetic reflex accompanied by both renal and
cerebral RAAS activation play a crucial role in AKl-induced
brain inflammation [96].

Gut microbiota dysbiosis is related to kidney-gut crosstalk
[97]. AKI was linked to altered gut microbial populations at
the genus and family levels [98]. The bidirectional relation-
ship between the gut microbiota and AKI was discovered
using GF mice [9]. The GF mice exhibited worse renal out-
comes following IRI and had more NK T cells in the kidney.
Reconstitution of the gut microbiota by stool transfer from
WT mice before IRl alleviated their susceptibility to IRI [9].
Also, transfer of stool from WT post-IRI mice led to exac-
erbation of renal injury in GF mice [99]. The gut microbi-
ota exerts immunomodulatory effects via its metabolites
[100,101]. These include short-chain fatty acids (SCFAs),
which have an anti-inflammatory effect by modulating im-
mune cell function. SCFAs promote Treg proliferation in the
intestine and reduce dendritic cell accumulation in the kid-
ney [102,103]. A lack of a microbiota in GF mice affects T
cell differentiation and function due to the absence of SC-
FAs [104].

NOVEL TECHNIQUES FOR STUDYING T
CELLS IN AKI

Opportunities to apply novel techniques to improve un-
derstanding of kidney T cells in AKI pathophysiology are
increasing. Below we briefly discuss recent notable techno-
logical advances, including spectral flow cytometry, scRNA-
seq, and spatial transcriptomics.

Although fluorescence-based flow cytometers are com-
monly used to study kidney immune cells, their low reso-
lution and limited multiplexing capacity have discouraged
more sophisticated analyses. The recently developed spec-
tral cytometers record full emission patterns across the en-
tire wavelength range, whereas conventional flow cytome-
ters detect only the peak emission signals [105]. A spectral
unmixing algorithm enables differentiation of fluorophores
with similar peak signals and extraction of autofluorescence
contributions, allowing highly complex multicolor panels
[106]. The combination of spectral flow cytometry and
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machine learning-based high-dimensional analysis enables
exploration of the roles of immune cells in kidney diseases
[107,108].

Although microarray or bulk RNA sequencing data pro-
vide the average transcriptomic profiles of predominant cell
populations, SCRNA-seq assesses gene expression at individ-
ual cell levels. This enables to exploit changes in specific cell
types independently of predefined hierarchies [109,110]. As
such, scRNA-seq enables identification of unrecognized cell
populations or discovery of candidate markers for previously
defined cell populations. In the past few years, many sensi-
tive and accurate scRNA-seq protocols have been developed
[109,110].

Spatial transcriptomic sequencing combines the benefits
of histology with high throughput RNA sequencing [111].
RNAs released from intact tissue sections are captured by ar-
rayed oligo-dT spots and bar codes with spatial information.
Because the major limitation of single-cell based approaches
is loss of spatial information within the tissue, integrating
data from spatial transcriptomics and scRNA-seq allow map-
ping of transcriptomically defined cell types onto a tissue
[112]. Although the spatial transcriptomic techniques need
more improvement due to their limited resolution, further
development of spatial transcriptomic techniques can po-
tentially clarify the spatiotemporal fingerprints of immune
cells.

NOVEL THERAPEUTIC APPROACHES

Based on the important roles of T cells in AKI, therapeutic
approaches targeting T cells have shown promising out-
comes. Below we briefly discuss interventions using adop-
tive cell transfer, stem cell-based therapy, and approaches
targeting gut-kidney crosstalk.

T cell-based therapy

Given the anti-inflammatory properties of Tregs and DN T
cells, adoptive transfer of these cells has been investigated
in preclinical studies. Adoptive transfer of Tregs before AKI
attenuated structural and functional renal injury in both IRl
and cisplatin AKI models [27,113]. Moreover, Treg trans-
fer after AKI enhanced tubular regeneration and improved
renal outcomes during the recovery phase [56]. Adoptive
transfer of ex-expanded Tregs by ex vivo rapamycin treat-
ment attenuated tubular injury and reduced expression of
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fibrosis markers [70]. DN T cell transfer ameliorated renal
injury in both IRl and cisplatin AKI models [31,114], but the
effect on renal recovery is unknown. Given that clinical tri-
als of Treg adoptive transfer in kidney transplant recipients
showed feasibility and a favorable safety profile [115], cell-
based therapies show promise for AKI. However, the prepa-
ration required, such as cell collection, isolation, and ex vivo
expansion, hamper clinical application because the clinical
course of AKl is unpredictable in most patients.

Stem cell-based approaches

Despite the promising results from preclinical trials in-
volving direct injection of mesenchymal stem cells (MSCs)
[116,117], this approach has been questioned as the studies
failed to achieve even modest survival durations for trans-
planted cells. Therefore, the beneficial effects did not rely
on differentiation of the injected cells [116,117]. Rather,
transplanted cells appear to promote tissue regeneration by
passing signals in exosomes or microparticles to surround-
ing cells [118]. Although the mechanism of their paracrine
effect is unclear, much evidence supports the immunomod-
ulatory properties of stem cells and the critical role of T cells
[119]. MSC treatment in mice attenuated renal injury by fa-
cilitating Treg trafficking to the injured kidneys in both IRl
and cisplatin AKI. And the protective effect was blunted by
anti-CD25 antibody-mediated depletion of Tregs [120,121].
MSC treatment after reperfusion in rat IRl reduced the ex-
pression of inflammatory cytokines, including IL-183, TNF-q,
and IFN-y, and increased levels of anti-inflammatory cyto-
kines, including IL-10 and basic fibroblast growth factor
[116]. Stem cell-based therapies appear to be safe and
promising for AKI [118], and a clinical trial is underway
(NCT03015623).

Therapeutic strategies targeting gut-kidney
crosstalk

The mechanistic evidence supporting a bidirectional re-
lationship between the gut microbiota and AKI led to in-
terventional studies targeting the gut microbiota. Gut
microbiota depletion using broad-spectrum antibiotics (am-
picillin, neomycin, vancomycin, and metronidazole) showed
a protective effect on AKI, and stool transplantation from
untreated mice abolished their renoprotective effect [122].
Importantly, a reduced Th1 and Th17 response and Treg
expansion were suggested as the mechanism by which an-
tibiotic microbiota depletion attenuates renal injury [99].
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By contrast, GF mice showed deteriorated renal outcomes
following IRl [9], and another combination of antibiotics
(ampicillin, vancomycin, and levofloxacin) resulted in more
severe structural injury [123]. Therefore, selective deletion
of deleterious microbiota populations may exert a protective
effect on AKI[124].

Because the gut microbiota controls immune cells via
metabolites [124], microbiota-derived products were tested
in AKI models. SCFA ameliorated IRI and inhibited dendrit-
ic cell maturation, thereby reducing CD4* and CD8* T cell
proliferation [102]. Similarly, a gut microbial D-amino acid
product, D-serine, protected against IRl [125], which war-
rants further investigation.

The microbial taxa responsible for the protective or exac-
erbating effects on AKI are unknown. Studies of interven-
tions targeting the gut-kidney axis and sequencing analy-
ses of the gut microbiota may lead to the development of
AKI-specific prebiotic or probiotic treatment approaches.

CONCLUSIONS

T cells are important in the pathogenesis of ischemic AKI.
Recent advances in our understanding of their roles in re-
pair and regeneration have provided insight into the AKI
to CKD transition. Thus, immunomodulatory therapies tar-
geting the T cell mediated pathophysiology show promise
for improving AKI outcomes. Other types of immune cells
such as mononuclear phagocytic cells, neutrophils, B cells,
and innate lymphoid cells are also involved in ischemic AKI
pathogenesis, although we did not review them here. Fu-
ture studies using cutting-edge technologies will facilitate
the development of precision-directed therapies.
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