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Abstract

It is now experimentally well known that variant sequences of a cis transcription factor binding site motif can contribute to
differential regulation of genes. We characterize the relationship between motif variants and gene expression by analyzing
expression microarray data and binding site predictions. To accomplish this, we statistically detect motif variants with
effects that differ among environments. Such environmental specificity may be due to either affinity differences between
variants or, more likely, differential interactions of TFs bound to these variants with cofactors, and with differential presence
of cofactors across environments. We examine conservation of functional variants across four Saccharomyces species, and
find that about a third of transcription factors have target genes that are differentially expressed in a condition-specific
manner that is correlated with the nucleotide at variant motif positions. We find good correspondence between our results
and some cases in the experimental literature (Reb1, Sum1, Mcm1, and Rap1). These results and growing consensus in the
literature indicates that motif variants may often be functionally distinct, that this may be observed in genomic data, and
that variants play an important role in condition-specific gene regulation.
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Introduction

Transcription of genes into mRNA is mediated by transcription

factor (TF) binding sites in upstream promoter and enhancer

sequences. Mutations in these promoter sequences therefore affect

gene regulation and may contribute to pathogenesis or evolution

[1,2,3,4,5,6,7,8,9,10]. Different types of promoter variation are

rapidly being explored, including heterozygous variation between

promoter copies resulting in allele-specific expression [11,12],

complete gain and loss of regulatory function by single nucleotide

substitutions [13,14], and differences in binding properties among

binding site motif variants (BSMVs) that promote differential

interactions with co-activators [15]. The observation that BSMVs

from co-associating sites in the genome often co-vary with each

other to maintain function has led to a method for discovering

binding sites by searching for correlated SNPs 1–2 kb apart among

individuals [16,17]. Promoter variation is an important source of

data that will aid understanding the encoding of regulatory function

in promoter and other regulatory sequences. The function of several

promoters has now been modeled computationally [18,19].

However, predicting the activity of promoters on a genome-wide

scale will require a sophisticated understanding of the functional

effect of BSMVs, the interaction of bound TFs with dynamically

changing cofactors, the combinatorial interactions between these

sites, and with other epigenetic factors.

Functional BSMVs have been shown to be important in

promoting condition-specific activity of transcription factors.

BSMVs that have different rates of occupancy (or affinity) by a

TF can result in differential gene expression [20,21,22,23,24].

McCord et al. [25] showed a predictive relationship between

binding site affinity for many TFs and condition specific

differential expression using genome-wide expression data.

Ordered binding affinities can explain linear chains of activation,

shutoff, or synchronization in dynamic pathways [26]. Differential

affinity has been shown to act in coordination with higher order

chromatin modifications [27] and methylation [15]. Computa-

tional and data mining approaches to learn these patterns from

genomic sequence and expression data will be an important

approach for elucidating cases and principles where BSMVs

contribute to functionality. For example, Michal et al. [28] showed

that sets of short sequences from promoters can be grouped

together according to the expression of associated genes, and that

single mutations between these sequence groups are related to

known functionally-relevant BSMVs.

One common assumption is that affinity differences between

alternative nucleotides provide the biological basis for BSMVs, yet

the explanatory power of affinity differences alone is relatively

weak. Further, the experimental literature suggests that the

mechanisms by which BSMVs mediate differential expression

are far more complex. In this more complex class of studied cases,
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BSMVs cause the bound TF to adopt different conformations,

directing interactions with specific cofactors [15,29,30,31,32,

33,34,35]; these have been termed allosteric regulators [36]. For

example, in the mouse, a single nucleotide difference within the

Pit-1 TF binding site determines activation or repression of growth

hormone in different cell–types of the posterior pituitary caused by

different conformations of the DNA binding domain when it sits

on alternative BSMVs [37]. Variation in interaction with sets of

cofactors represents a more realistic view of the combinatorial

nature of cellular interactions, where the presence or absence of an

effected cofactor in different conditions determines whether the

BSMV will actually cause a functional effect [38]. Differential

ability to interact with cofactors (including repressors versus

activators) or TFs bound at cognate binding sites may be a

primary basis for regulatory differentiation of BSMVs. For

example, the energetics and orientation of the Jun-Fos heterodi-

mer when bound to DNA is altered by single nucleotide variants of

the TGACTCA binding site motif [30]. These BSMVs cause

differential regulation both among genes and among individuals.

BSMVs may only have simple binding affinity differences for

TFs, where one variant is a ‘‘higher quality’’ binding site and has a

higher occupancy or recruitment rate [25,26,27]. Such BSMVs

would not be directly causal of complete differences in regulatory

activity among their respectively regulated genes. For example, an

activating TF at low concentrations may drive higher expression of

genes with a high affinity BSMV than genes with a low affinity

BSMV. At high enough concentrations of the TF, both high and

low affinity BSMVs may be fully occupied, and the expression

level of genes with both BSMVs would be the same. Even if

expression levels are not comparable between genes, the steepness

of the TF concentration-gene expression response curve will vary

between BSMVs with different affinities.

In contrast, a proportion of BSMVs that are affected by

allosteric effects are expected to show a regulatory impact that is,

at the extreme, completely reversed between BSMVs. The most

obvious examples are BSMVs that switch between activators and

repressors, depending on the presence of cofactors [39]. Such

reversals require condition-specific cofactors that are responsible

for the differential function of the BSMV across conditions. A

condition-specific cofactor may bind differentially to the TF

depending on the TF conformation induced by the specific BSMV

of the motif [36]. The result is that expression is both BSMV-

specific and condition-specific, dependent upon the presence or

the activity of the cofactor across conditions. While the regulatory

effects of BSMVs that differ in affinity is never expected to be

reversed, by searching for BSMVs that are associated with

opposite regulatory effects, we propose to identify BSMVs whose

action is due to more complex interactions than affinity alone. We

applied a statistic focused on detecting instances where the relative

expression levels of target genes with distinct BSMVs are

maximally different between conditions. We use this statistic to

assess the minimum contribution of allosteric interactions to the

function of BSMVs, to identify novel candidates for further

investigation, and to assess the contribution of these more complex

regulatory types to the evolution of regulatory systems.

Results

We tested whether changes in gene expression patterns can be

attributed to functional BSMVs by comparing distances between

pairs of expression profiles associated with each nucleotide variant

at each position of a binding site, where the expression of each

gene is ranked across different experimental conditions. We

emphasize that BSMVs discussed here are considered only at a

single motif position at a time, and the variation in the motif is

observed at different promoters in the same genome (as opposed

to, for example, population-level variation). Specifically, the effect

size was calculated from the average difference between BSMVs in

the ranking of expression values for genes controlled by those

BSMVs across experiments. We call this metric the variant

distance of ranked experiments (VDRE). For each variable TF

motif position, VDRE subdivides genes into groups based on the

nucleotide at that position in the binding site of the gene’s

promoter. All variants are simultaneously considered, resulting in

a maximum of four BSMV groupings, one for each of the four

nucleotides. Significance is measured by comparing within- versus

between- BSMV distributions of VDRE with a distribution based

on permuted data. The largest effect size in VDRE would occur if

the relative ranking of gene expression across conditions is exactly

reversed between BSMVs.

The gene expression data used in the VDRE analysis was

obtained from 211 published Affymetrix S98 expression micro-

arrays from Saccharomyces cerevisiae. The BSMVs were obtained

from genome-wide binding site annotations for 77 TFs in S.

cerevisiae, derived by computationally scanning the genome with

motif models based on ChIP-chip binding assays, conservation and

motif overrepresentation [40]. We divided putative binding sites

into a primary (high probability) set and a secondary (low

probability) set. We considered only target genes with a single

primary binding site. This allowed us to consider 195 variable

positions (each with two or more BSMVs) from 48 TF binding

motifs.

Using this data set with VDRE, we found that ,29% of TF

binding motifs have functional BSMVs (Table 1; Table S1; Fig.

S1). In total, we identified 9% (17/195) of the motif positions as

functionally variant (p,0.05) across the conditions surveyed in this

study at a false discovery rate of 0.3, suggesting that ,12/17

functional BSMVs are true positives. As expected, average

distance in expression profile between genes with the same BSMV

is significantly smaller than the distance between genes with a

different BSMV for functionally variant positions, but not for other

variable binding site positions (Fig. 1). In our analysis, only genes

with a single primary input are considered; however, if additional

target genes with multiple primary inputs are also included, some

functional BSMVs are still detected, even though complex

regulation was not considered (Fig. S2; Table S2).

We further tested the functional BSMVs identified according to

the VDRE statistic (single primary inputs only) to see if they

display reversal of their regulatory effects between different

experiments—that is, whether their rankings of expression across

conditions are reversed between BSMVs. We tested all pairwise

combinations of BSMVs for a significant reversal in the ranks of

expression levels between genes associated with different BSMVs

across experiments. We also tested whether, when experiments are

ordered according to the average difference in rank between

BSMVs, a line fitted through the average ranking of one BSMV

has a positive slope, and a line fitted through the average ranking

of the second BSMV has a negative slope. We found that 8 of the

17 functional BSMVs pass both of these tests (14/37 individual

comparisons). For these cases, we suspect that the simple binding

affinity model can be rejected in favor of a cofactor interaction

model.

Condition specificity of functional TF binding site
variants

Our test can only detect functional BSMVs given a dataset of

expression patterns across heterogeneous experimental conditions.

These conditions must be different enough from each other to

Binding Site Motif Variants and Gene Expression
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create condition-specific expression patterns that cause differential

change in the activity of BSMVs. Given this requirement for

environmental heterogeneity, the VDRE statistic is agnostic about

the relationship between individual gene expression experiments,

whether they represent replicates, points in a time series, different

concentrations of media additives, or equivalent treatments

conducted in different labs. Yet the VDRE approach predicts

that the effect of the BSMV will group individual experiments into

biologically meaningful clusters, because there will be a detectable

and consistent reordering of the expression ranks only when a

proportion of the experiments are similarly affected. To test this

prediction, we grouped the experiments into classes according to

basic treatment (starvation, sporulation, etc.), and examined

whether like-experiments cluster together in their explanation of

the functional BSMVs.

For each pairwise combination of nucleotides observed at a

functionally variant motif position, we ordered all the experiments

by the relative mean expression difference between the sets of

target genes of each BSMV, and found that similar experimental

treatments group together (p,0.05) in all 47 pairwise comparisons

in the Affymetrix dataset (Table S3). For example, the effect of

‘‘A’’ and ‘‘T’’ BSMVs at position 4 of the Mcm1 binding site are

different after exposure to MMS compared to desiccation and

rehydration (p,0.0001; Fig. 2A). Similarly, the effect of ‘‘A’’ and

‘‘T’’ BSMVs at position 8 of the Sum1 binding site are different

during sporulation compared to all other treatments (p,0.0001;

Fig. 2B, 2C).

We also find that 56 out of 83 pairwise comparisons between

functional BSMVs identified from an among-species comparative

dataset (described below in the ‘‘conservation’’ discussion section)

show condition specificity (Table S3). For example, the difference

in regulation of genes with ‘‘G’’ or ‘‘A’’ at position 9 for the Reb1

binding sites is highest during growth in glycerol in all three

Saccharomyces species examined, and therefore these experiments

cluster together in Figure 3A–C.

As an independent line of evidence supporting the condition-

specific action of functional BSMVs, genes associated with

particular BSMVs often show enrichment for gene ontology

(GO) processes consistent with their condition specific effects

(Table S4). In the example of Mcm1, genes with an ‘‘A’’ variant of

the binding site are induced during desiccation and rehydration

(Fig. 2A), and these genes are also enriched for the protein

modification GO process (p = 0.004). Genes with ‘‘T’’ BSMVs are

upregulated in other conditions, and these genes are enriched for

the DNA metabolism GO process (p = 0.02). In the example of

Sum1, genes with an ‘‘A’’ variant at position 8 of the binding site

are upregulated specifically during sporulation (Fig. 2B, 2C) and

are also enriched for the sporulation GO process (p,0.001).

Genes with a ‘‘T’’ BSMV at this position are upregulated in other

conditions, and these genes are enriched for the protein

biosynthesis GO process (p = 0.04).

Reliability of predictions
The quality of the binding site annotations for a TF and the

extent to which the TF’s target genes are influenced by the TF are

both important for our conclusions. To increase our power to

detect functional BSMVs, in the analysis presented above we

focused on target genes with simple regulatory control regions. As

Figure 1. The expression profile distance between genes with
the same binding site motif variant (BSMV) is smaller than the
distance between genes with a different BSMV for functionally
variant positions, but not for other positions with BSMVs. VDRE
distances are based on ranked expression profiles for 211 S98
Affymetrix microarrays, and all within-BSMV (grey) or between BSMV
(blue) distances are grouped together either from all functionally
variant binding site positions (first two bars) or all other positions with
BSMVs (third and fourth bar).
doi:10.1371/journal.pone.0032274.g001

Table 1. Quantities of functional binding site motif variants (BSMVs) discovered among datasets.

Species (array data)
# of BSMsa with
functional BSMVs

# of BSMs
considered

% of
BSMs

# of positions with
functional BSMVsb

# of positions
considered

% of
positions

S. cerevisiae (Affymetrix) 14 48 29% 17 195 9%

S. cerevisiae (cDNA) 11 31 36% 13 112 12%

S. paradoxus (cDNA) 10 33 30% 13 119 11%

S. mikatae (cDNA) 11 33 33% 12 126 10%

S. kudriavzevii (cDNA) 13 33 39% 16 126 13%

aBinding site motifs bp-value,0.05, false discovery rate = 0.3.
doi:10.1371/journal.pone.0032274.t001

Binding Site Motif Variants and Gene Expression
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a proxy for regulatory simplicity, we selected only those target

genes with a single primary binding site for the same TF (posterior

probability .0.7). Pairs of such genes have significantly more

similar expression profiles than pairs of genes that either have

additional primary binding sites (p,2.2e-16) or than random gene

pairs (p,2.2e-16), as is expected for genes participating in simpler

regulatory circuits (Fig. 4). Target genes sharing secondary

TF binding sites (posterior probability ,0.7 and .0.2) have

significantly less similar expression profiles than target genes that

share a single primary binding site (p,2.2e-16), indicating that the

posterior probabilities of the binding site predictions are

reasonable. While we relied on genome-scale binding site

annotations, a small number of RAP1 binding sites have been

experimentally determined; these sites show the same pattern

between BSMVs and target gene expression as predicted to be

functional in this paper (Fig. S3). This suggests good concordance

between the genome-scale annotations and experimentally vali-

dated sites for the binding sites considered in this study.

BSMVs considered in the analysis have, on average, ,35 target

genes, and functional BSMVs do not have a significantly different

number of target genes than do non-functional BSMVs (p = 0.4;

Fig. S4). However, power to identify functional BSMVs is a

function of the number of within and between-BSMV compar-

isons, not simply the number of target genes. If BSMVs are

Figure 2. Examples of binding site motif variants (BSMVs) associated with condition-specific gene expression. Mean expression values
(Affymetrix; y axis) of genes with each of two BSMVs are plotted on each graph (standard error of mean shown), although more BSMVs may be
present at that position. The means are ordered across conditions (x axis) according to the difference in mean expression between the two BSMVs
(black dashes). (A) Mcm1, involved in cell-type-specific transcription and pheromone response, has functional variants at position 4 of its binding
motif. Genes with ‘‘T’’ at position 4 of the Mcm1 binding site (red) are induced relative to genes with ‘‘A’’ BSMVs (green) after DNA damage with MMS.
While undergoing desiccation and rehydration, genes with ‘‘A’’ BSMVs are induced in comparison to genes with ‘‘T’’ BSMVs. (B) Sum1, a regulator of
sporulation-specific genes, has functional variants at position 8 of its binding motif. Genes with ‘‘T’’ (red) at position 8 of the Sum1 binding site have
higher expression than genes with ‘‘A’’ BSMVs (green) during rich media growth in lab or IFH1 myc-tagged strains or glucose pulse after starvation. In
sporulation, genes with ‘‘A’’ BSMVs are expressed higher than genes with ‘‘T’’ BSMVs. (C) The effect of the functional variant at position 8 of Sum1 on
target genes remains the same when also considering target genes under more complex regulatory control (multiple primary binding sites).
doi:10.1371/journal.pone.0032274.g002

Binding Site Motif Variants and Gene Expression
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Figure 3. Conserved expression patterns associated with functional binding site motif variants (BSMVs). The y-axis of each plot is the
mean expression (Y6.4kv6 arrays) standard error of mean shown) of the stress condition relative to the non-stress condition and the x-axis is
experimental treatment, ordered by the difference between the means of genes with each BSMV (black dashes). The function of variant nucleotides
at position 9 of the Reb1 binding motif is conserved in (A) Saccharomyces cerevisiae, (B) S. paradoxus, and (C) S. mikatae. In all three species, genes
associated with the ‘‘G’’ BSMV (orange) are more highly expressed than genes associated with the ‘‘A’’ BSMV (green) in starvation conditions
(glycerol). The function of variant nucleotides at position 10 of the Rap1 binding motif is conserved in (d) S. cerevisiae, (e) S. paradoxus, (f) S. mikatae,
and (g) S. kudriavzevii. In all four species, genes associated with the ‘‘C’’ BSMV (blue) are more highly expressed than genes associated with the ‘‘T’’
BSMV (red) in starvation conditions (glycerol), and the opposite relationship is apparent during nitrogen starvation. The expression differences
between the BSMVs are significantly condition-specific in panels a-f (p,0.005).
doi:10.1371/journal.pone.0032274.g003

Binding Site Motif Variants and Gene Expression
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distributed unevenly among genes or if genes are partitioned into

too many BSMV groups, then there may be few between-BSMV

comparisons or within-BSMV comparisons, reducing the power.

We find fewer functionally variant binding site positions in our

dataset that have a small number of either within or between

comparisons than do all variable motif positions, indicating that

our permutation test does not spuriously indicate sites for which

there is too little information to reliably classify them as functional,

and that most variable binding positions have a substantial

number of both within and between comparisons (Fig. 5). The

permutation test itself accounts for correlation structure due to

multiple pairwise comparisons.

We selected genes with only a single primary TF binding site,

yet it is possible that functional BSMVs we detect are due to co-

occurrence between a particular BSMV and a TF binding site that

falls below our primary stringency threshold or is not otherwise

known or annotated. In this case, similar expression profiles may

be caused by the presence of separately binding TFs [41]. The

non-random presence of such secondary binding sites may either

be biologically related to cooperation with the BSMV, or may

occur by chance. To examine possible co-occurrences in our

dataset, we searched for correlations between functional BSMVs

and secondary (lower quality) binding sites. For at least 13 of the

17 motif positions with functional variants (and 44 of the 54

positions discovered across species, below), we can exclude the

possibility that the association between BSMV and expression

profile is due to a secondary TF binding site co-occurring with a

particular BSMV (Table S5). We note that most secondary

binding sites probably do not represent real binding sites, and we

suspect that these correlations are due by chance to the extremely

large number (,18,000) of secondary binding sites genome-wide.

Our estimate of the fraction of functional BSMVs that could

potentially be explained by additional low probability binding sites

is conservative, since we cannot consider TFs that do not yet have

characterized binding sites.

Many functional BSMVs are conserved among yeast
species

We applied our method to each of four Saccharomyces sensu stricto

species, using a published comparative data set of gene expression

during stress conditions, assayed on a single cDNA microarray

platform [42]. In this dataset, we found that ,30–39% of TF

binding motifs have functionally variant positions in Saccharomyces

sensu stricto species (Table 1; Table S1; Fig. S5). This proportion is

comparable to the ,29% of motifs with functional variants

identified in the Affymetrix dataset. Nine out of these 21 motifs

have functional variants that are conserved in more than one

species. These conserved functional BSMVs comprise about one

fifth (9/42) of the positions identified as having functional variants

(Table 2).

This conservation suggests that the BSMVs are under

evolutionary constraint to preserve their function. Indeed we find

that there is purifying selection acting both on variable and highly

variable motif positions. We calculated the average evolutionary

substitution rate of each site across the Saccharomyces sensu stricto

phylogeny, and found that low information BSMV positions (#1

bit of information) evolve significantly slower than sites that are

expected to be evolving neutrally: the third position of codons,

Figure 4. Pairwise expression profile distances (VDRE) between
genes that have different types of binding sites in common.
With ‘‘one primary’’ binding site in common, target genes have only a
single primary binding site (posterior probability .0.7), and pairwise
comparisons are between target genes that have a binding site with
the same TF identity. With ‘‘primary (in the presence of multiple primary
sites)’’ binding sites in common, target genes may have multiple
primary binding sites, and pairwise comparisons are between target
genes that have a binding site with the same TF identity. With
‘‘secondary’’ binding sites in common, pairwise comparisons are
between target genes that have a secondary binding site (posterior
probability ,0.7 and .0.2) with the same TF identity. With ‘‘random’’
binding sites in common, pairwise comparisons are between random
pairs of genes. Standard error bars are indicated.
doi:10.1371/journal.pone.0032274.g004

Figure 5. Distribution of the number of within and between
variant comparisons between gene expression profiles of
positions with binding site motif variants (BSMVs). For each
motif position, the lower of either the number of within-BSMV
comparisons or between BSMV expression comparisons was counted.
The blue line and blue bars represent the distribution of all counts,
while the orange line and orange dots represent the distribution of only
the positions that are functionally variable. Triangles indicate the
median of the two distributions. The distribution suggests that there
are a reasonable number of comparisons available for most positions.
doi:10.1371/journal.pone.0032274.g005

Binding Site Motif Variants and Gene Expression
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introns, or other intergenic regions (Fig. 6). These low information

BSMV positions have nearly twice the number of evolutionarily

invariant sites (65%) compared to third codon positions (37%), and

more than intergenic regions (47%) and introns (62%; Table 3).

These results suggest that even highly variable binding site motif

positions are functionally constrained. This observation is in

agreement with previous studies which showed that different rates

of nucleotide substitution at binding sites are sometimes associated

with functionally different classes of BSMVs, where classes

sometimes differ by only a single nucleotide [43,44].

Table 2. Functional binding site motif variants conserved among Saccharomyces sensu stricto species.

Binding site
motif family Position

S. cerevisiae
p-value

S. paradoxus
p-value

S. mikatae
p-value

S. kudriavzevii
p-value

Mean information
content (bits)b

Abf1 6 0.862 0.923 0.034* 0.035* 1.05

Cin5 9 0.502 0.000* 0.087 0.043* 1.08

2PACa 11 0.713 0.023* 0.000* 0.047* 1.01

Rap1 10 0.005* 0.058 0.007* 0.031* 0.99

Reb1 9 0.035* 0.039* 0.037* 0.892 1.46

Rpn4 10 0.026* 0.041* 0.255 0.199 0.58

Spt15 2 0.010* 0.189 0.028* 0.178 1.15

Stb5 1 0.017* 0.000* - - 0.43

Thi2 3 0.045* 0.027* 0.388 0.821 0.97

aTwo adjacent PAC motifs [69] which are bound by Pbf1 and Pbf2 [70].
bMaximum information content based on binding site motif nucleotide frequencies is 1.96.
doi:10.1371/journal.pone.0032274.t002

Figure 6. Variable and highly variable binding site motif positions are evolutionarily constrained. The relative evolutionary rate of
binding site motif positions that are variable (.1 bit of information) and highly variable (#bit of information) evolve more slowly than putatively
neutral sites: third codon positons, introns, and intergenic regions. First and second positions, which are more functionally constrained, are also
shown. Rates were calcualted from a whole-genome alignment of Saccharomyces sensu stricto species using emperical Bayesian estimation.
doi:10.1371/journal.pone.0032274.g006

Binding Site Motif Variants and Gene Expression
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Discussion

Considering the limited number of genes that meet our criteria

for having a simple cis-regulatory promoter, and the finite number

of conditions for which expression data is available, the proportion

of functional BSMVs (9%) among all motif positions is remarkable.

We turned to the literature to assess the validity of a sample of

the functionally variant binding positions we identified. We discuss

what is predicted about each example from the VDRE approach

alone, and then discuss each prediction in light of experimental

evidence from the literature. Position 4 of the Mcm1 binding site,

also called the middle sporulation element, is an example of a

functionally variant binding site position identified in this analysis

(Fig. 2A; p = 0.032). Under conditions where yeast is subjected to

desiccation and rehydration, genes with an ‘‘A’’ at this position are

induced, in comparison to genes with a ‘‘T’’ at this position. Under

conditions where yeast is treated with methyl methanesulfonate

(MMS), a DNA-damaging alkylating agent, the genes with an ‘‘A’’

at this position are repressed, in comparison to genes with a ‘‘T’’ at

this position. A third category of genes has ‘‘C’’ at this position,

and the VDRE scores of all three nucleotides (‘‘A’’,‘‘T’’ and ‘‘C’’)

were considered when determining that the position is functional

(Fig. S1). The Mcm1 protein is a member of the MADS box family

and plays important roles in several diverse cellular processes;

therefore, its binding site has been extensively characterized.

When Mcm1 binding sites were selected from a pool of random

sequence oligonucleotides, about three quarters of the selected

sequences had ‘‘A’’ at position 4, ,15% contained a ‘‘T’’ at this

position, and Mcm1 had a higher affinity to ‘‘A’’ BSMVs than to

‘‘T’’ BSMVs [45]. Putative Mcm1 binding sites were cloned in a

heterologous promoter in front of a reporter gene [46], and a

Mcm1 binding site was subjected to saturation mutagenesis in

front of a reporter [47], and in both cases, Mcm1 binding sites

with ‘‘A’’ variants at position 4 showed higher (,26–36)

activation of the reporter than ‘‘T’’ (or ‘‘C’’) variants.

Mcm1 acts as an activator alone, but as a repressor when co-

bound with a2. The saturation mutagenesis of the Mcm1 binding

site shows that BSMVs have different effects, depending on

whether or not the a2 is co-bound [47]. An ‘‘A’’ nucleotide at

position 4 of the binding site results in more than twice as much

activation of the reporter gene than a ‘‘T’’, but when a2 is present

the high level of repression of reporter gene by the two BSMVs is

almost identical–1306 for the ‘‘A’’ BSMV and 1266 for the ‘‘T’’

BSMV. One reason for this combinatorial effect may be that

Mcm1 is known to induce sequence-specific DNA bending, which

in turn regulates the formation of ternary complexes with other

cofactors [47,48]. Many of the single base pair changes in the

binding site that alter its DNA bending and transcriptional

regulation do not affect the affinity of the TF for the binding site

[47]. Our finding that the ‘‘A’’ and ‘‘T’’ variants at position 4 of

the Mcm4 binding site have different effects under different

conditions makes sense because cofactors that act in a BSMV-

specific way may be present in only a subset of these conditions.

Although we have not determined which cofactor(s) are involved

in our case, it is interesting that a2 is absent from the haploid a-

mating type strain used in the MMS experiments [49], but present

in the a/a diploid strain used in the desiccation/rehydration

experiments [50].

Sum1 provides another example of how BSMVs may regulate

target genes in a condition-specific manner through the partici-

pation of another factor, in this case, a competing transcription

factor. During growth in rich media, we find that genes regulated

by binding sites with a ‘‘T’’ at this position are induced, relative to

genes with an ‘‘A’’ at position 8 (Fig. 2B; significance of functional

BSMV p = 0.003). During sporulation, the opposite relationship is

observed. (Sum1 binding sites with ‘‘C’’ at this position are also

functional; Fig. S1). During vegetative growth, Sum1 induces

expression of target genes, and the regulatory difference between

genes with different variants at position 8 of the Sum1 binding site

is small; indeed, while Sum1 has been shown experimentally

through mutagenesis to bind sites with a ‘‘T’’ BSMV at position 8

at about 20% the rate of sites with an ‘‘A,’’ repression of reporter

activity remained similar between the BSMVs in that study [51].

However, during sporulation, the repressor Ndt80 is also

expressed, and competes with Sum1 for binding to the motif,

dictating whether the site acts as a repressor or activator. The

relative affinity of the BSMV for Ndt80 versus Sum1 acts as a

molecular switch that induces only the genes required for the

meiotic G2-to-M transition. For the ‘‘A’’ variant at position 8 of

the binding site, Ndt80 out-competes Sum1 and causes induction

of the target gene, while for the ‘‘T BSMV, Ndt80 does not out-

compete Sum1, and the repressive effect of Sum1 on the target

gene remains the same as it was for the ‘‘A’’ BSMV in the absence

of Ndt80. This type of effect may explain why ‘‘A’’ and ‘‘T’’

functional variants at position 8 of the Sum1 binding site have

different regulatory associations with target genes in sporulation

media versus other conditions.

The functional BSMV at position 8 of the Sum1 binding motif

remains significant when also considering target genes with

multiple primary inputs using VDRE (p,0.001), and its effect

on target genes in different conditions remains the same, even

Table 3. Nucleotide diversity of transcription factor binding site motif variants across Saccharomyces sensu stricto species in
comparison to other sites.

Data type
Invariant
positions

95% confidence
interval

Average nucleotides
per position

Second codon positions 88.12% 88.07% 88.18% 1.13

.1 bit binding site motif positions 86.28% 85.90% 86.65% 1.15

First codon positions 81.59% 81.53% 81.66% 1.2

All codon positions 68.95% 68.91% 69.00% 1.35

, = 1 bit (highly variable) binding site motif positions 65.84% 64.95% 66.73% 1.41

Introns 62.07% 61.59% 62.55% 1.46

All intergenic regions 47.79% 47.69% 47.89% 1.65

Third codon positions 37.17% 37.09% 37.25% 1.74

doi:10.1371/journal.pone.0032274.t003
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though the number of genes considered is greater (Fig. 2C).

Although the method presented here does not explicitly accounts

for the effects of both multiple regulatory inputs and BSMVs, such

an approach is currently under development [52].

The functional BSMVs revealed using the two different

platforms (cDNA vs. Affymetrix) were largely non-overlapping.

This is the expected result since the regulatory function of BSMVs

we detect is condition specific, and the conditions investigated in

these sets of experiments are different.

A proportion of the functional BSMVs were identified in

multiple species, suggesting that the BSMVs are under evolution-

ary constraint to preserve their function. For example, position 9

of the Reb1 binding site was identified as having functional

BSMVs in S. cerevisae, S. paradoxus and S. mikatae. Genes regulated

by binding sites with a ‘‘G’’ at this position are induced relative to

genes with an ‘‘A’’ during growth in glycerol in all three species

(Fig. 3A–C). In a small-scale affinity selection experiment, Reb1

had lower binding strength to sites with ‘‘G’’ at position 9 than to

sites with ‘‘A’’ at position 9, and ‘‘G’’ BSMVs promoted lower

transcriptional activity than ‘‘A’’ BSMVs when grown on 2%

glucose plates [53].

Position 10 of the Rap1 binding site also has functional BSMVs

identified in multiple species. During glucose starvation conditions

(growth in glycerol), genes with ‘‘C’’ BSMVs are induced with

respect to genes with ‘‘T’’ BSMVs (Fig. 3D–F). Differences in

affinity of Rap1 binding sites have been shown to be specifically

associated with expression in low glucose conditions, according to

a precise set of experiments including ChIP-chip, protein binding

microarrays, deletion mutants, and gene expression analysis

[25,27]. High affinity sites are constitutively bound by Rap1,

while low affinity binding sites are protected by chromatin

structure from Rap1, except during low glucose conditions, when

chromatin conformational changes expose them, and Rap1 binds

and induces expression. According to our method, such BSMV-

by-condition patterns for Rap1 can be learned from accurate

binding site predictions and expression patterns alone.

Conclusions
Yeast has only around 200–300 TFs to regulate its complex

regulatory function—from budding to the cell cycle to selectively

metabolizing dozens of different energy sources. The fundamental

question in regulatory biology is how a relatively small number of

TFs orchestrate the regulation of thousands of genes to achieve

innumerable phenotypic responses. The fine-tuning of TF binding

motifs at non-consensus positions may provide an important

source of control in coordinating these condition-specific expres-

sion patterns.

In this study, we found that a significant proportion of variable

positions in TF binding motifs may have functional consequences.

Several of these predictions are in agreement with available

experimental evidence, and several are corroborated by conser-

vation across species. We considered only a single variable position

at a time and did not explicitly account for promoters with

complex regulatory inputs. More functional BSMVs should be

found if combinations of positions and/or binding sites are

formally considered [52].

Functional BSMVs allow the same TF to have a broad range of

regulatory effects simultaneously over different target genes. Our

results, consistent with the molecular biology literature, show that

these differential regulatory effects between BSMVs can change

with the concentration of the TF and/or the concentration of

cofactors across environmental or cellular conditions.

As the complexity of organisms increase, the complexity of their

regulatory responses needs to also increase to accommodate

differential expression across tissues and numerous developmental

stages. We therefore expect that the contribution of functional

BSMVs to the cis-regulatory code of higher eukaryotes may be

even more pronounced, an idea supported by the observation of

such BSMVs in the experimental literature in diverse organisms

such as nematode [20,23], fly [29], mouse [31], and human [24].

Materials and Methods

Binding site predictions
Binding site annotations were obtained from SwissRegulon

[40], where position weight matrices (PWMs) from over-

represented motifs in microarray bound DNA regions from

high-throughput chromatin immunoprecipitation of 102 TFs

[54] in S. cerevisiae were calculated by PhyloGibbs [55], and where

these PWMs were inputted into MotEvo, which is a scanning

algorithm that finds hits to a PWM, but also considers

conservation in other species [56]. To obtain a set of genes under

putatively simple forms of regulatory control, we included

promoters and target genes with a single primary TF binding

site, where primary binding sites have a posterior probability

(according to MotEvo) of 0.7 or greater. This results in 1219 genes

included among the target sets for the Affymetrix expression data

set (see below) and between 648 and 664 genes, depending on the

species, for the cDNA expression data sets. For comparison, we

also examined sets of genes with multiple primary binding sites, or

with secondary binding sites, which have a posterior probability

less than 0.7 but greater than 0.2.

The lengths of the binding site motifs vary from 6 bp to 16 bp.

The information, Rij, at position j of site i, was calculated

according to [57], given the following base frequencies: fA = 0.307,

fC = 0.188, fG = 0.188, and fT = 0.316.

Comparative alignment of binding sites
To calculate the nucleotide substitution rate at each position in

each binding site, we performed a whole-genome multiple

sequence alignment and pairwise alignments using MAUVE

[58] between S. cerevisiae and S. bayanus, S. mikatae, S. paradoxus and

S. kudriavzevii, and discarded regions of sequence that are gapped in

S. cerevisiae. We discarded the binding site if the alignment from the

pairwise and multiple sequence alignments was different or if gaps

existed in the sequence, except in the following cases: (1) no

orthologous alignment of the region was produced by one method

(pairwise or multiple) but an ungapped alignment was produced by

the alternative method and (2) the alternative alignments of the

binding sites are the same except for the introduction of gaps into

the pairwise alignment, in which case we used the multiple

alignment. We discarded positions that contain a gap or are

unalignable.

Branch lengths for the five-species phylogeny [59] were

calculated in PAML under a reversible model and a gamma

distribution of rates with four categories [60]. Site-specific

normalized average evolutionary rates were estimated based on

this genome alignment and phylogeny using empirical Bayesian

estimation in the program Rate4Site 2.01 [61]. A gamma

distribution of rates with 35 rate categories was fit with an alpha

parameter value of 0.62. The mean rate of sites from each of the

following classes was calculated: coding regions (first, second and

third positions), introns, intergenic regions, binding site positions

with greater than one bit of information, and binding site positions

with less than or equal to one bit of information. The 95%

confidence interval for the mean rates of each class was calculated

from 1000 nonparametric bootstrap replicates in the R package

boot. We also calculated proportion of invariant sites for each of
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these classes. The 95% confidence interval for these proportions

was calculated using the method of Wilson [62].

Microarray expression analysis
We assembled a concatenated expression microarray dataset

representing S. cerevisiae expression in 211 experimental conditions

from S98 Affymetrix array data in the NCBI Gene Expression

Omnibus. To maximize comparability we chose to use data from

only one array-type, Affymetrix S98, which has the largest number

of experiments available among all platforms and array designs.

Expression values were normalized by the robust multi-chip

average (rma) algorithm implemented in the R-affy package of

Bioconductor [63].

The second expression dataset we used contains measurements

under equivalent environmental stress conditions for four yeast

species from the Saccharomyces sensu stricto complex: S. cerevisiae, S.

paradoxus, S. kudriavzevii and S. mikatae measured on Y6.4kv6 cDNA

arrays (GEO record GSE3406 [42]). cDNA hybridization after

each stress condition for each species was measured relative to

cDNA before application of the stress condition for that species,

with either four biological replicates (two stress conditions) or

across six time points (five stress conditions).

Variant distance of ranked experiments (VDRE) and
statistical analysis

In order to make between-gene comparisons of expression

across conditions, we rank-ordered each gene’s expression level

across conditions, and used the ranks as a proxy for the expression

levels in all analyses. To identify functional BSMVs, we selected a

set of binding site positions that have at least two target genes for at

least two BSMVs. For a given position in a motif, we compared

two distributions of pairwise Euclidean distances between the

ranked expression profiles (VDRE): DW, the distribution of

distances between pairs of targets that have the same BSMV,

and DB the distribution of distances between pairs of targets that

have different BSMVs. The functionality score of the motif at one

position is:

F~(1=N)
X

DW {(1=M)
X

DB, ð1Þ

where N is the number of within-BSMV pairwise distances in the

summation and M is the number of between-BSMV pairwise

distances, and the distances between target genes of all variants of

a binding site motif are considered simultaneously for a single

motif position. We stress that this measure for assessing the

functionality of BSMVs incorporates expression distances between

target genes of all the nucleotide variants of that binding site

position, not only between genes associated with just two BSMVs.

The significance of the association between BSMV and expression

profile was calculated by permuting the assignment of target genes

to BSMVs 1000 times and comparing observed values of F with

the permuted null distribution. The full set of motif positions with

functional BSMVs detected in each species is shown in Table S1.

The false discovery rate was calculated using the p-values from the

observed data [64].

For comparison, we also identified functional BSMVs for all

genes, including genes with more than a single primary binding

site in their promoter. The same methodology was followed as for

genes with a single primary input. We checked to see whether the

nucleotides defining the functional BSMVs are correlated with low

probability, secondary binding sites (posterior probability ,0.7

and .0.2).

We assessed the coincidence of secondary binding sites for all

other TFs with each BSMV at each a functionally variant position.

More specifically, among the target genes for a TF with functional

BSMVs at a particular position, we tallied the number of targets

with a particular BSMV, or a particular coincident low probability

binding site, both or neither, resulting in a 262 contingency table

that we tested for a significant correlation with Fisher’s exact test at

a level of 0.01.

Genes that are bound by the same transcription factor are often

co-expressed [65]. To assess our assumption that genes with only a

single primary binding site are subject to simpler regulatory

control than genes with additional binding sites, we compared

gene expression between the set of all genes with a single primary

site for a TF versus the set also including genes that are bound by

the TF but may also have additional primary binding sites. We

used the Euclidean distance between ranked gene expression

values as a comparative measure of gene expression value, a

measure that is commonly used [66,67,68]. We performed a

Welch two sample t-test on the two groups to assess whether genes

with a single primary binding site (bound by the same TF) have

significantly smaller expression distance between them than genes

bound by the same TF, but which may also have additional

primary binding sites. We similarly assessed our assumption that

primary binding sites contain better predictions than secondary

binding sites by comparing the expression distance between genes

that share a primary binding site versus genes that share a

secondary binding site. We compared these distances to expression

distances between random pairs of genes.

BSMV-specific partitioning of experimental conditions
We sought to quantify the biological consistency of the set of

experimental conditions for which each functional BSMV explains

target gene expression differences. For each pair of BSMVs, we

sorted the experiments according to the difference of the mean

expression value for the target sets (normalized by the variance in

expression value), and then considered whether similar experi-

mental conditions are clustered. We classified all experiments into

groups of similar experimental types. For the comparative dataset,

each stress condition was considered a single class including all

time points and replicates. For the Affymetrix dataset, all rich

media wild type/control experiments were classified together.

Most other experimental types (e.g. growth in different media

types, deletion strains, etc.) were classified into respective

categories across time points. One dataset (replicates GSE1311–

1314) which includes a large number of experiments was separated

into the two stages of the experiment (desiccation and rehydra-

tion). The level of clustering of conditions according to differences

in expression values of the BSMVs is defined by:

(1=A)
X
jCQj{(1=B)

X
jCW j, ð2Þ

where CQ the average distance between ranks of experiments of

different types, CW is the average distance between ranks of

experiments of the same type, A is the number of same-

experimental-type pairwise differences in the summation, and B

is the number of different-experimental-type pairwise differences.

We compared the observed level of clustering to the distribution of

clustering for 10,000 data sets, where the assignment of

experimental types is permuted.

We also considered whether target genes associated with

different functional BSMVs show an enrichment of particular

Gene Ontology (GO) biological processes. For each set of target

genes with a given BSMV, we permuted the biological processes
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between BSMVs to create 10,000 null data sets. We examined

whether target genes associated with particular BSMVs show

enrichment for biological processes compared to the null

distribution for that process. A full list of significant GO

enrichments for functional BSMVs is shown in Table S4.

Supporting Information

Figure S1 Comparison of average gene expression
levels between genes with different functional transcrip-
tion factor binding site motif variants (BSMVs) in S.
cerevisiae (Affymetrix). Mean expression levels for target

genes of functional BSMVs of S. cerevisiae using expression data

from 211 Affymetrix S98 arrays and a variety of experimental

conditions. Even if more than two BSMVs exist at a position, only

two are shown in each individual graph, and additional graphs

show the pairwise comparison between each BSMV present at

each position. The means are ordered across conditions according

to the difference between mean expression of the two BSMVs.

Vertical lines extending from each point indicate the standard

deviation of the mean. Horizontal black bars indicate the

difference between the mean ranks. The significance of the

functional BSMVs was determined without reference to the

segregation of experimental conditions, which are shown accord-

ing to color along the x-axis. The number of targets for each

BSMV graphed are shown at the bottom right hand of the graph.

(PDF)

Figure S2 Mean expression levels of target genes with
multiple primary inputs (posterior probability .0.7),
for functional binding site motif variants (BSMVs) that
were identified in both a dataset with multiple primary
inputs, and limited to genes with a single primary input.
Expression data is from 211 Affymetrix S98 arrays and a variety of

experimental conditions. Even if more than two BSMVs exist at a

position, only two are shown in each individual graph, and

additional graphs show the pairwise comparison between each

BSMV present at each position. The means are ordered across

conditions according to the difference between mean expression of

the two BSMVs. Vertical lines extending from each point indicate

the standard deviation of the mean. Horizontal black bars indicate

the difference between the mean ranks. The significance of the

functional BSMV was determined without reference to the

segregation of experimental conditions, which are shown accord-

ing to color along the x axis. The number of targets for each

BSMV graphed is shown at the bottom right hand of the graph.

(PDF)

Figure S3 Comparison of expression patterns in S.
cerevisiae of genes associated with ‘‘A’’ and ‘‘T’’ binding
site motif variants (BSMVs) at position 7 of the RAP1
transcription factor binding site based on binding site
annotations from small-scale experimental mapping or
the genome-wide annotations used in this study. Of six

RAP1 binding sites for single input genes according to SCPD,

three identical (same position and sequence) binding sites are

found in the genome-wide binding site annotations used in this

study. A) Genes with only a single RAP1 binding site and no other

TF binding site annotations collected from the experimental

mapping literature in SCPD [71] were selected. Average

expression values of 3 genes with an ‘‘A’’ nucleotide at position

7 of their associated RAP1 binding site are lower during growth in

glycerol than the average expression values of 2 genes with a ‘‘T.’’

Expression values of genes with either BSMV are not different

during growth in other stress conditions. B) Position 7 of the RAP1

binding site is functionally variant (p = 0.024) based on our analysis

of genome-wide binding site annotations for RAP1 derived from

genome-scanning with models based on ChIP-chip binding assays,

conservation and motif overrepresentation [40,54,55,56]. Similar

to above, average expression of 27 genes with an ‘‘A’’ BSMV at

position 7 of their associated RAP1 binding site are expressed at a

lower level than 3 genes with a ‘‘T’’ BSMV.

(PDF)

Figure S4 Number of target genes associated with
functional and non-functional binding site motif vari-
ants (BSMVs). Variable motif positions considered in the

analysis have, on average, ,35 target genes, and functional

BSMVs do not have a significantly different number of target

genes than do non-functional BSMVs (p = 0.4).

(PDF)

Figure S5 Complete set of figures showing comparison
of average gene expression levels between genes with
different functional transcription factor binding site
motif variants (BSMVs) in S. cerevisiae, S. kudriavzevii,
S. mikatae and S. paradoxus based on expression data
from Y6.4kv6 cDNA arrays. Mean expression levels for target

genes of functional BSMVs found at positions in TF binding sites

using expression data from Y6.4kv6 cDNA arrays and stress

conditions. Even if more than two BSMVs exist at a position,

only two are shown in each individual graph, and additional

graphs show the pairwise comparison between each BSMV

present at each position. The means are ordered across

conditions according to the difference between mean expression

of genes regulated by the two BSMVs. Vertical lines extending

from each point indicate the standard deviation of the mean.

Horizontal black bars indicate the difference between the mean

ranks. The significance of the functional BSMVs was determined

without reference to the segregation of experimental conditions,

which are shown according to color along the x-axis. The

number of targets for each BSMV graphed is shown at the

bottom right hand of the graph.

(PDF)

Table S1 Transcription factor binding site motif posi-
tions that have functional variants inferred according to
the variant distance of ranked experiments statistic
(p,0.05).

(PDF)

Table S2 Transcription factor binding site motif posi-
tions that have functional variants inferred according to
the variant distance of ranked experiments statistic
(p,0.05) in both target genes with single primary inputs
and multiple primary inputs.

(PDF)

Table S3 Condition specificity of functional binding
site motif variants (BSMVs). Significance of segregation of

experimental conditions dependent upon upregulation of the

major base or minor base. Cases are shown where the position has

a functional BSMV and where there is clustering of similar

experimental conditions when the experiments are sorted

according to the difference in regulation of each-BSMV’s target

set.

(PDF)

Table S4 Gene ontology enrichment among genes with
alternative binding site motif variants at functionally
variant binding site motif positions.

(PDF)
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Table S5 Secondary transcription factor binding sites
correlated with binding site motif variants at nearby
functionally variant binding sites. Secondary binding sites

have a posterior probability of ,0.7 and .0.2. Significant

coincidence of secondary binding sites for each other TF with

each nucleotide at each functional binding site motif variant

position is given according to Fisher’s exact test at a level of 0.01.

(PDF)
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