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Human ciliopathies are hereditary conditions caused by variants in ciliary-associated
genes. Ciliopathies are often characterized by multiple system defects. However, it is
not easy to make a definite diagnosis in the prenatal period only based on the imageology.
In this report, eight new prenatal cases from five unrelated families diagnosed with
ciliopathies were systematically examined. The clinical manifestations of these fetuses
showed such prenatal diagnostic features as occipital encephalocele, and polydactyly and
polycystic kidneys. Situs inversus caused byCPLANE1 variant was first reported. In Family
1 and Family 3, homozygous variants of CPLANE1 and NPHP4 caused by
consanguineous marriage and uniparental disomy were detected by whole-exome
sequencing, respectively. In Family 2, Family 4 and Family 5, compound heterozygotes
of TMEM67 andDYNC2H1 including two novel missense variants and one novel nonsense
variant were identified. The distribution of pathogenic missense variants along TMEM67
gene mainly clustered in the extracellular cysteine rich region, extracellular area with
unknown structure, and the transmembrane regions. Genotype-phenotype relationship
between CPLANE1 and TMEM67 genes was concluded. This report describes new
clinical manifestations and novel variants in CPLANE1, TMEM67, NPHP4, and DYNC2H1.

Keywords: ciliopathies, prenatal clinical phenotype, occipital encephalocele, polydactyly, polycystic kidneys,
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INTRODUCTION

Primary cilia are highly conserved organelles located on the surface of almost all polar cells, which play
important roles in tissue morphogenesis, and chemical and mechanical signal transduction (Hirokawa
et al., 2006; Copeland, 2020). Genetic variants affecting the structure or function of primary cilia can lead
to a broad range of developmental diseases known as ciliopathies. The whole-exome sequencing (WES)
has been widely used in the clinical molecular diagnosis of ciliopathies in adults and children. Presently,
approximately 187 established ciliopathy-related genes have been identified in humans, variants in
which can be associated with 35 ciliopathy syndromes (Reiter and Leroux, 2017; McConnachie et al.,
2021). It has been clarified that variant in CPLANE1 causes Joubert syndrome (JBS; MIM#614615),
which is characterized by a unique cerebellar and brainstem malformation, also known as molar tooth
sign (MTS). Moreover, TMEM67-related ciliopathies are mainly JBS and Meckel syndrome (MKS;
MIM#607361). While MKS is a lethal disorder with typical renal cystic dysplasia, polydactyly, and
occipital encephalocele. Variants inNPHP4 cause nephronophthisis (NPH;MIM#606966) characterized
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by end-stage renal disease in the first 2 decades of life. In addition,
the typical feature of short-rib thoracic dysplasia (SRTD;
MIM#613091) caused by DYNC2H1 variants is skeletal
dysplasia. However, the different etiology of ciliopathies and the
wide range of genetic variations lead to phenotypic variability. It is
challenging to choose appropriate molecular testing in the prenatal
period. Therefore, it is important to have a comprehensive
understanding of the prenatal phenotypes of different ciliopathy
syndromes before the WES testing.

Here we report the typical and atypical features of eight fetuses
with pathogenic variants in CPLANE1, TMEM67, NPHP4, and
DYNC2H1 found via WES. New clinical manifestations and the
discovery of novel genetic variants are helpful for the prenatal
diagnosis of ciliopathies.

PATIENTS AND METHODS

Patients
Eight fetuses from five unrelated families diagnosed with ciliopathies
were collected. Informed consents for research investigations were
obtained from the relatives of the fetuses. The research protocol was
approved by the local ethics committee of JiangsuHuai’anMaternity
and Child Healthcare Hospital (2019036).

Whole-Exome Sequencing
The whole exomes were captured by using Agilent’s SureSelect
Whole Exome Gene Detection Kit. High-throughput sequencing
was performed by using the Novoseq sequencer from Illumina.
The obtained sequence was aligned on the human genome
GRCh37/hg19 reference sequence by BWA (Burrows-Wheeler
Aligner) software. A BAM (binary sequence alignment map
format) file was produced via Picard software. GATK4
(Genome Analysis Toolkit) Realigner Target Creator software
and Haplotype Caller software were used to adjust the sequence,

extract variants, and generate VCF (Variant Call Format) files.
The Annovar software was used to filter and annotate the variant.

Analysis of Variants
All nonsense, frameshift, and canonical splice site variants were
considered to be deleterious. The pathogenic potential of
missense variants was predicted by PolyPhen2, SIFT,
PROVEAN, and Mutation Taster. The frequency of putative
variants was obtained from the Human Gene Mutation
Database (HGMD), Genome Aggregation Database
(gnomAD), and the 1000 Genomes (1000G) database.
Conservation of mutated amino acid residues in different
species was compared by UCSC. SpliceAI was used to evaluate
a destroyed splice site. The deleteriousness of variants was
assessed according to American College of Medical Genetics
(ACMG) standards and guidelines.

Sanger Sequencing
Sanger sequencing was performed to confirm suspected variant
segregation within probands’ family, and the authenticity of
variants identified by WES. Primer 5 was used for primer
designs. Target DNA of the fetus and its parents was
amplified by PCR. Sanger sequencing results were compared
with standard sequence in GenBank by SeqMan software.

CASE PRESENTATION

Family 1
Family 1 was a consanguineous marriage with a healthy girl and
five adverse obstetric outcomes. In addition to two early
miscarriages, the third time was due to a widened posterior
fossa and vermis hypoplasia at the 27th week of pregnancy
without genetic detection. Case 1 was the fifth pregnancy,
whose prenatal ultrasound in 18+4th week of pregnancy

TABLE 1 | Clinical phenotype and related genetic variants in eight fetuses with ciliopathies from five unrelated families.

Family Case Age OE PD PK Other Gene Variant Inheritance ACMG Disease

1 1 18+4 w − − − Situs inversus, CHD, DWM CPLANE1 c.7939delC (p.H2647IfsTer51) Hom P JBS
CVA

2 20 w + − − IUGR, banana-shaped cerebellum,
lemon head

CPLANE1 c.7939delC (p.H2647IfsTer51) Hom P JBS

2 3 23+4 w − − + Pericardial effusion, LV separation,
cerebellar dysplasia, lemon head

TMEM67 c.1175C > G (p.P392R) F LP MKS
c.2439G > T (p.A813A, splice) M P

4 24 w + + + Balkes pouch TMEM67 c.1175C > G (P392R) F LP MKS
c.2439G > T (p.A813A, splice) M P

3 5 26+4 w – – – Abnormal nasal bone, increased
renal cortical echogenicity

NPHP4 c.3730C > T (p.Q1244X) Hom P NPH

IUGR
4 6 17 w − + − Dilation of the renal pelvis, narrow

chest, short limbs, CPC
DYNC2H1 c.152T > G (p.L51R)

c.988C > T (p.R330C)
M LP SRTD
F P

7 28 w − + − Narrow chest, short limbs DYNC2H1 c.152T > G (p.L51R)
c.988C > T (p.R330C)

M LP SRTD
F P

5 8 17 w − + − Short limbs, low-set ears, CHD DYNC2H1 c.4267C > T (p.R1423C)
c.7858C > T (p.R2620X)

F P SRTD
M P

OE, occipital encephalocele; PD, polydactyly; PK, polycystic kidneys; DWM, Dandy-Walker malformation; CVA, cerebellar vermis agenesis; CHD, congenital heart disease; IUGR, intra-
uterine growth retardation; CPC, choroid plexus cyst; LV, left ventricle; F, father, M, mother; Hom, homozygous; ACMG, American College of Medical Genetics and Genomics; P,
pathogenic; LP, likely pathogenic; JBS, Joubert syndrome; MKS, Meckel syndrome; SRTD, short-rib thoracic dysplasia; NPH, nephronophthisis.
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showed absence of cerebellar vermis, dandy-walker
malformation, hydrocephalus, dextrocardia, situs inversus,
ventricular septal defect (0.3 cm), and double outlet of fetal
right ventricle with pulmonary artery stenosis (Table 1).
Pregnancy was terminated at the 23rd week and no obvious
abnormality in appearance was observed (Figure 1A). The sixth
pregnancy (case 2) showed recurrence of malformations by
prenatal ultrasound at the 20th week of fetal development
including occipital encephalocele (1.3 × 0.8 cm) (Figure 2A)
and intra-uterine growth restriction (Table 1) (Figures 1B,C).

WES revealed case 1 with a novel homozygous frame shift variant
of c.7939delC (p.H2647IfsTer51) in CPLANE1 (NM_023073.3).
Sanger sequencing confirmed homozygosity in the proband and
the heterozygosity in each parent (Table 1). Case 2 was also
confirmed with same variant in case 1. The c.7939delC was not
present in HGMD, gnomAD, or 1000G databases.

Family 2
Case 3 and case 4 were affected siblings conceived of unrelated
healthy parents with two early unexplained miscarriages. Prenatal
ultrasound in 23+4rd week of case 3 showed separation of left lateral
ventricles (0.9 cm), abnormality of the cerebellum, low amniotic
fluid volume (amniotic fluid index 1.5 cm, maximum depth 1.0 cm),
pericardial effusion (0.3 cm), and enlarged echogenic kidneys (left
kidney 5.7 × 2.8 cm, right kidney 5.4 × 2.8 cm) with renal cysts
(Table 1). Case 4 was found with congenital balkes pouch, cystic
kidneys, polydactyly, and occipital encephalocele (Table 1). The
pregnancy was terminated at the 24th week of gestation. Because
prenatal detection and labor induction were performed in another
hospital, we only obtained DNA of the two cases without ultrasound
images and postnatal fetus examination.

WES was selected by Family 2 and the result showed that case
4 had compound heterozygous variants in TMEM67 gene

FIGURE 1 | Phenotypes of ciliary diseases {Family 1 [(A): case 1; (B,C): case 2], Family 4 [(D): case 6], Family 5 [(E,F): case 8], occipital encephalocele (C),
polydactyly of hands and feet (D–F), short limb and ribs (D,E)}.
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(NM_153704.6): a missense variant at c.1175C > G (p.P392R)
and a synonymous variant at c.2439G > T (p.A813A), which were
inherited from the parents, respectively (Table 1). The c.1175C >
G, not reported previously, was predicted as damaging by
PolyPhen2, SIFT, PROVEAN, and Mutation Taster. Total
population frequency of this variant is 3.23185e-05. The c.
2439G > T variant is located at the last base of exon 23 and
was classified as a disease-causing variant in HGMD. It might
abolish the donor splice site following in silico analysis via
SpliceAI. The predicted score of a donor site loss via SpliceAI
was 0.64. After this, the DNA of case 3 was subjected to molecular
analysis by Sanger sequencing. The result revealed the c.1175C >
G and c.2439G > T variants in the TMEM67 gene in case 3.

Family 3
Case 5 was the first pregnancy of unrelated healthy parents.
Prenatal diagnosis was performed in the 20th week of pregnancy
due to a 12 Mb deletion in chromosome 1 as indicated by
noninvasive prenatal testing (NIPT). The Affymetrix CytoScan
750K SNP array was used for chromosomal microarray analysis
(CMA) and the result showed a region of homozygosity in
1p36.33-p36.13 (arr[hg19] 1p36.33p36.13 (888,658_18,337,268)

x2 hmz) involving no established imprinted genes. In 26+4th
week, missing nasal bone, delayed growth and development, and
increased echogenicity in both renal cortexes were indicated by
ultrasound (Figure 2B and Table 1). Prenatal trio-WES was
chosen for further detection. A homozygous variant of c.3730C >
T (p.Q1244X) (chr1:5,925,248) in NPHP4 (NM_001184.3)
(Table 1) was detected. This variant, occurring in the region
of homozygosity, was inherited from the father. These results
indicated that a segmental uniparental disomy at 1p36.33-p36.13
inherited from the father caused the autosomal recessive NPH.

Family 4
Case 6 and case 7 were affected sibling fetuses from a non-
consanguineous family with a healthy 6-year-old daughter.
Ultrasound imaging of case 6 revealed abdominal
circumference (10.3 cm), a femur length of 1.3 cm (<5th
percentile), a humerus length of 1.0 cm (<5th percentile), and
polydactyly. The pregnancy was subsequently terminated at the
18th week of gestation (Figure 1D). Fetal X-ray (Figure 2C)
showed bilateral shortened curved femora and disproportionately
shortened tibiae. Metaphyseal flaring of femora, tibiae, and
fibulae were indicated. Ultrasound imaging of case 7 at the

FIGURE 2 | Imaging examination of ciliary diseases {Family 1 [(A): case 2], Family 3 [(B): case 5], Family 4 [(C): case 6], Family 5 [(D): case 8], occipital
encephalocele (A), increased echogenicity in both renal cortexes (B), fetal X-ray showing bilateral shortened curved femora and disproportionately shortened tibiae (C),
bone dysplasia and narrow chest (D)}.
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28th week of gestation from this family exhibited similar
sonographic features including small short femur (1.2 cm),
narrow chest, light band separation in double kidney
collection system (0.8 and 0.9 cm), peritoneal effusion (deepest
0.5 cm), and polydactyly. We only obtained DNA of case 7 but
failed to perform postnatal fetus observation.

WES of case 6 revealed the compound heterozygous variants
ofDYNC2H1 (NM_001377.3): c.152T >G (p.L51R) in exon 1 and
c.988C > T (p.R330C) in exon 6. Sanger sequencing confirmed
that the c.152T >Gwas present in the mother, and the c.988C > T
in the father (Table 1). Case 7 was also confirmed with variants as
case 6 through Sanger sequencing (Table 1). The c.988C > T has
been reported as a pathogenic variant (El Hokayem et al., 2012;
Schmidts et al., 2013). The c.152T >Gwas not present in HGMD,
gnomAD, or 1000G databases, and was predicted as deleterious
following in silico analysis. In addition, the c.152T >G is localized
to the region of nucleotide-binding site of the DYNC2H1 gene,
which is highly conserved in mouse, rat, and dog orthologs of
DYNC2H1 gene.

Family 5
Prenatal ultrasound of case 8 (the first fetus from non-relative parents)
in the 12th week of pregnancy showed abnormal NT (4.4mm).
Recheck in the 17th week showed multiple malformations with
large abdominal circumference (12.1 cm), ventricular septal defect
(0.08 cm), left ventricular dysplasia, valve thickening, and
transposition of the great arteries (Table 1). Besides, increased
bowel and kidney echo, and bone dysplasia (femur � 1.3 cm,
humerus � 0.9 cm, narrow chest) (Figure 2D) were detected.
Examination of the aborted fetus showed low-set ears, polydactyly,
a swollen abdomen, and short limbs (Figures 1E,F). Compound
heterozygous variants of c.4267C > T (p.R1423C) and c.7858C > T
(p.R2620X) in DYNC2H1 (NM_001377.3) were identified. We
confirmed a heterozygosity in each parent by Sanger sequencing
(Table 1). The c.4267C > T was a pathogenic variant in short-rib
polydactyly syndromes (SRPS) (Zhang et al., 2018). The c.7858C > T
was a novel nonsense variant causing a truncated protein.

Genotypes–Phenotypes Analysis
Since CPLANE1 and TMEM67 variants show significant clinical
overlap, genotype-phenotype relationship analysis between them
could help discriminate related disorders.

CPLANE1 was identified as causative of OFD6 (orofaciodigital
syndrome VI) and JBS. More than 60 pathogenic variants in the
CPLANE1 gene have been identified (Srour et al., 2012; Lopez et al.,
2014; Vilboux et al., 2017; Bonnard et al., 2018) and 66% of cases
carried biallelic truncating variants (Bonnard et al., 2018).
Penetrance of common organ systems involving brain, skeleton,
and kidney diseases in CPLANE1 patients were compared (Table 2)
(Lopez et al., 2014; Vilboux et al., 2017; Bonnard et al., 2018). MTS
was nearly 100% detected in both JBS and OFD6. Polydactyly was
with higher penetrance (100%) inOFD6 than JBS. The penetrance of
occipital encephalocele in both JBS and OFD6 was estimated to be
about 20%. However, cystic kidneys, short limbs, and congenital
heart disease (CHD) were rarely observed.

TMEM67 was identified as causative of JBS and MKS. A
genotype-phenotype correlation analysis based on a literature
review shows that combination of two truncating variants in
TMEM67 gene is more common in lethal MKS than milder JBS
(Iannicelli et al., 2010; Szymanska et al., 2012; Bachmann-Gagescu
et al., 2015; Vilboux et al., 2017), which suggests that severity of

TABLE 2 | The comparison of clinical phenotypes between CPLANE1 and
TMEM67.

Phenotype CPLANE1 TMEM67

MTS 13/14 (JBS) 1/20 (MKS)
12/12 (OFD6) 10/13 (JBS)

OE 6/26 (OFD6) 10/20 (MKS)
2/15 (JBS) 1/13 (JBS)

CHD 1/12 (OFD6) /
PD 1/15 (JBS) 3/20 (MKS)

12/12 (OFD6) 0/22 (JBS)
RD 1/14 (JBS) 1/20 (MKS)

0/12 (OFD6) 0/22 (JBS)
KD 0/14 (JBS) 11/22 (JBS)

0/12 (OFD6) 14/20 (MKS)
LD 6/15 (JBS) 21/22 (JBS)

11/12 (MKS)
DD 14/14 (JBS) 2/20 (MKS)

4/4 (OFD6) 11/13 (JBS)

MTS, molar tooth sign; OE, occipital encephalocele; CHD, congenital heart disease; PD,
polydactyly; RD, retinal disease; KD, kidney disease; LD, liver disease; DD,
developmental delay; JBS, Joubert syndrome; MKS, Meckel syndrome; OFD6,
orofaciodigital syndrome VI.

FIGURE 3 |Missense variants of the TMEM67 gene inMKS and JBS. There were about 58 (likely) pathogenic missense variants in the TMEM67 gene identified thus
far including 37 in JBS (green), 15 in MKS (red), and 6 in both (blue). The topology of TMEM67: a signal peptide (1–36 aa), a cysteine-rich region (50–187 aa), an
extracellular area with unknown structure (188–526 aa), seven transmembrane regions (527–967 aa), and a short cytoplasmic tail (968–995 aa).
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variant changes disease outcomes. Thus, it is reasonable to presume
that missense variant of TMEM67 identified in MKS might bring
more severe damage to protein function. There were about 58 (likely)
pathogenic missense variants in TMEM67 identified thus far
including 37 in JBS, 15 in MKS, and 6 in both (Baala et al., 2007;
Consugar et al., 2007; Khaddour et al., 2007; Brancati et al., 2009;
Doherty et al., 2010; Iannicelli et al., 2010; Suzuki et al., 2016; Vilboux
et al., 2017; Radhakrishnan et al., 2019) (Supplemental Table S1).
Analysis of the topology of human TMEM67 suggests the presence of
a signal peptide (1–36 aa), a cysteine-rich region (50–187 aa), an
extracellular area with unknown structure (188–526 aa), seven
transmembrane regions (527–967 aa), and a short cytoplasmic tail
(968–995 aa) (Figure 3) (Smith et al., 2006). Pathogenic missense
variants of TMEM67 mainly fall in the extracellular cysteine rich
region, extracellular area with unknown structure, and the seven
transmembrane regions (Figure 3). No pathogenic missense variant
in the signal peptide and cytoplasmic tail has been reported
(Figure 3). The comparison of their distribution along the gene in
MKS versus JBS showed no obvious difference.

Two studies with larger TMEM67 gene mutated cases were
reviewed to analyze the characteristic of clinical phenotypes
(Table 2) (Brancati et al., 2009; Szymanska et al., 2012; Vilboux
et al., 2017). Incidence of liver and kidney diseases caused by
TMEM67 variants was high in both JBS and MKS. The
prevalence of occipital encephalocele inMKSwas higher than in JBS.

DISCUSSION AND CONCLUSION

A clinical diagnosis of JBS can be made by brain imaging showing
MTS. However, prenatal diagnosis of JBS has been proved to be
difficult because of the relatively non-specific prenatal ultrasound
findings. The clinical phenotypes of CPLANE1 mutated cases in
this report were highly heterogeneous, with intrafamilial
variability. Meanwhile, case 1 and case 2 had no obvious MTS.
Consistent with the absence of MTS in our fetuses, Doherty et al.
described a JBS fetus with no obviousMTS phenotype instead of a
deepening of the interpedullary fossa on MRI (Doherty et al.,
2005). Zhu et al. reported a prenatal JBS case with lemon sign and
encephalocele (Zhu et al., 2021). Situs inversus, a specific feature
in someMKS cases resulted fromMKS1 variants (Khaddour et al.,
2007), was reported for the first time in our JBS case.

MKS is a perinatally lethal autosomal recessive condition
characterized by central nervous system anomalies, hepatic
defects, polycystic kidneys, and polydactyly (Radhakrishnan et al.,
2019). Hepatic phenotype in the prenatal period could be detected at
about the 15th to 26th week (Consugar et al., 2007). MKS fetuses in
Family 2 were found with abnormal nervous system, polycystic
kidneys, polydactyly but not hepatic defects at the 23rd and 24th
weeks of pregnancy.

NPH is a major cause of pediatric end-stage renal disease and the
phenotypes were mostly observed in children (Konig et al., 2017). It
may be limited to the kidneys or can be associated with extrarenal
organ. A study including 250 NPH patients showed that only 6/250
patients (2.4%) were detected with homozygous or compound
heterozygous variants of the NPHP4 gene (Hoefele et al., 2005).
The prenatal diagnosis is one of the effective ways to avoid the birth

of NPH children. However, prenatal NPH cases are rarely described.
An NPH fetus with NPHP1 variants manifested bilateral polycystic
renal dysplasia and oligohydramnios at 16+th gestational week (Wu
et al., 2020). As for the fetus in this study, antenatal ultrasonography
showed missing nasal bone and increased echogenicity in both renal
cortex in 26+4th week.

There are 111 pathogenic variants of the DYNC2H1 gene that
have been identified in 73 families (Zhang et al., 2018). Missense
variants in the DYNC2H1 gene had the highest frequency (71/111).
Characterized phenotypes were polydactyly with a prevalence 30/73
(Zhang et al., 2018) and short limbs with a prevalence of 23/29
(Schmidts et al., 2013), while abnormal retina, kidney, and liver were
rare (Schmidts et al., 2013). Prenatal cases in our report were
distinguished by profound abnormalities of the skeleton, including
markedly short ribs, extremely short limbs, and polydactyly.

In conclusion, this report expands prenatal clinical
manifestations of ciliopathies and adds novel variants in
CPLANE1, TMEM67, NPHP4, and DYNC2H1 to the literature.
Furthermore, detailed prenatal phenotypes of different
ciliopathies provide evidence for prenatal WES testing.
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