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Abstract: Silver Phosphate, Ag3PO4, being a highly capable clinical molecule, an ultrasonic method
was employed to synthesize the M-Ag3PO4, (M = Se, Ag, Ta) nanoparticles which were evaluated for
antibacterial and cytotoxicity activities post-characterization. Escherichia coli and Staphylococcus aureus
were used for antibacterial testing and the effects of sonication on bacterial growth with sub-MIC
values of M-Ag3PO4 nanoparticles were examined. The effect of M-Ag3PO4 nanoparticles on human
colorectal carcinoma cells (HCT-116) and human cervical carcinoma cells (HeLa cells) was examined
by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and DAPI (4′,6-
diamidino-2-phenylindole) staining. Additionally, we analyzed the effect of nanoparticles on normal
and non-cancerous human embryonic kidney cells (HEK-293). Ag-Ag3PO4 exhibited enhanced
antibacterial activity followed by Ta-Ag3PO4, Ag3PO4, and Se-Ag3PO4 nanoparticles against E. coli.
Whereas the order of antibacterial activity against Staphylococcus aureus was Ag3PO4 > Ag-Ag3PO4

> Ta-Ag3PO4 > Se-Ag3PO4, respectively. Percentage inhibition of E. coli was 98.27, 74.38, 100, and
94.2%, while percentage inhibition of S. aureus was 25.53, 80.28, 99.36, and 20.22% after treatment with
Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4, respectively. The MTT assay shows a significant
decline in the cell viability after treating with M-Ag3PO4 nanoparticles. The IC50 values for Ag3PO4,

Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on HCT-116 were 39.44, 28.33, 60.24, 58.34 µg/mL; whereas
for HeLa cells, they were 65.25, 61.27, 75.52, 72.82 µg/mL, respectively. M-Ag3PO4 nanoparticles did
not inhibit HEK-293 cells. Apoptotic assay revealed that the numbers of DAPI stained cells were
significantly lower in the M-Ag3PO4-treated cells versus control.
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1. Introduction

Nanotechnology is considered an advanced research field; nanoparticles with di-
verse shape, size, chemical properties, and different potential applications have been
achieved [1–3]. Nanoparticles reveal several advantages over bulk material such as a large
surface area, controlled shape, and size [4,5]. They are widely used in the diagnosis and
treatment of diseases [6,7]. Due to their small size, several drugs can be delivered by using
nanoparticles [8–14]. Different nanoparticles have been used as drug enhancers to improve
the stability, efficacy, treatment, and safety of anti-cancer drugs [15–18].

Drug resistance is a worldwide issue and threat; many diseases caused by bacteria
have a serious effect on public health. Although antibiotics influence bacteria, none of
them is efficiently effective against multi-resistance bacteria [19–21]. Currently, some silver-
based compounds such as silver nitrate, silver sulfadiazine, and silver alloy have been
used to cure surgical incision, burns, ulcers, blood, and urinary infections [22]. Ag3PO4
(Silver orthophosphate) is a novel material and considered important due to its high
photocatalytic activity under visible light irradiation. It is also effective at killing bacteria
and fungi [23–25] and has even higher activity than streptomycin [26]. The biological
activity is enhanced in conjugation [27–29]. Zhuang et al. [30] tested Ag3PO4/AgBr for
enhanced anticorrosion photocatalysis. Gao et al. [31] added nano Ag with Ag3PO4 as a
stable photocatalyst under visible light. Xiaohong et al. [32] prepared a powdered film
Ag3PO4@AgBr and tested antibacterial activity; they exhibited a broad spectrum against
Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Similarly, Hossein et al. [33]
reported Ag3PO4/GO membrane and evaluated antibacterial activity against S. aureus
and E. coli and that the reduction in colonies was 72–84%. Another group, Kaili et al. [34],
demonstrated that ZnO/Ag3PO4 revealed enhanced antibacterial activity against E. coli and
S. aureus. Qinqing et al. [35] observed that Bi2MoO6/Ag3PO4 exhibited good antibacterial
activity against E. coli and S. aureus and that an increased concentration of silver resulted
in higher antibacterial activity. In another study, Ying-hai [36] prepared an Ag3PO4/TiO2
heterostructure and noticed that Ag3PO4/TiO2 showed antibacterial activity against E. coli
and S. aureus.

However, Ag3PO4 has less stability and undergoes photo-corrosion which limits
its practical application [37,38]. It is necessary to add a probable sacrificial agent or en-
hanced and quick capture of photo-generated electrons during photocatalysis. Since
photo-corrosion leads to a dissociation of Ag+ from the Ag3PO4 lattice, either combination
of nano Ag [30] or the addition of an electron acceptor [31] such as selenium and tantalum,
as nanocomposites may prevent it. Previously, Ag3PO4-based nanocomposites such as
Ag3PO4@AgBr [32], Ag3PO4/GO [33], ZnO/Ag3PO4 [34], Bi2MoO6/Ag3PO4 [35], and
Ag3PO4/TiO2 [36] were investigated for their photocatalytic and antibacterial activities.

Selenium, a vital micronutrient, in nano size exhibited anti-cancer, anti-inflammatory
and antimicrobial potency, alone or in conjugation with other therapeutic agents, without
any toxicity [39,40]. Tantalum reported with no inherent antimicrobial properties but was
found to supplement the prevention of infection and microbial growth owing to its surface
properties [41]. It is intriguing to use selenium and tantalum together with Ag3PO4 against
microbes and cancer cells.

Many synthetic approaches have been used by researchers for the nano preparation
of silver therapeutic agents, such as bioreduction [42,43], green synthesis [44,45], electro-
spinning [21], precipitation [21], etc. Herein, we report a simple ultrasonic method for the
preparation of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles. The crystal
phases, size, and morphologies were analyzed. The antibacterial investigations were made
against both Gram-positive S. aureus and Gram-negative E. coli. The cytotoxicity of Ag3PO4,
Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles was studied against HCT-116 and
HeLa cells (human colorectal carcinoma & cervical carcinoma cells) and healthy HEK-293
(embryonic kidney cells).
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2. Results and Discussion
2.1. Characterization of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 Nanoparticles

The XRD pattern of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles
is presented in Figure 1a–c. It has been observed that in all cases, peaks are well indexed
with standard cards, confirming the formation of Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4
nanoparticles. The peaks in Ag3PO4 correlate well with Ag3PO4 ICDD card no. 00-006-0505,
showing the cubic structure. Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles exhibit
related diffraction peaks similar to those of Ag3PO4. Similarly, Se, Ag, and Ta diffraction
peaks correlate with ICDD card no. 00-006-0362, 01-087-0719, 04-003-6604, corresponding
to hexagonal and cubic structures, respectively. The diffraction peaks of Se, Ag, and Ta
matched with the Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 peaks. It was further observed
that Ag-Ag3PO4 and Ta-Ag3PO4 exhibited the highest purity as compared with Se-Ag3PO4
nanoparticles. The morphology and size of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-
Ag3PO4 nanoparticles were investigated by SEM. The analysis of Figure 2a,b shows the
formation of plate-like structure in the case of Ag3PO4 and Se-Ag3PO4 with an average size
of 300–500 nm. However, Ag-Ag3PO4 and Ta-Ag3PO4 nanoparticles show the formation of
nano-spheres with an average size of 300–500 nm (Figure 2a–d). Moreover, EDX analysis
reveals the presence of Se, Ag, P, O, and Ta in Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4
nanoparticles (Figures S1–S4). Additionally, EDX mapping was performed to establish the
distribution of Se, Ag, P, O, and Ta in Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles.
The results illustrate the successful preparation of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and
Ta-Ag3PO4 nanoparticles.
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Figure 2. SEM images of Ag3PO4 (a), Se-Ag3PO4 (b), Ag-Ag3PO4 (c), and Ta-Ag3PO4 (d).

Zeta potential is a unique technique for determining the surface charge and stability
of the nanoparticles. The zeta potential of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-
Ag3PO4 nanoparticles is presented in Figure S5. The zeta potential of Ag3PO4, Se-Ag3PO4,
Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles was observed as −40.1 ± 6.63, −5.24 ± 10.8,
−46.6 ± 4.77, and −79.8 ± 7.96 mV, respectively. The zeta value greater than +30 mV or
less than −30 mV indicated the stable colloidal dispersion. Our results revealed the high
dispersion stability of Ta-Ag3PO4 nanoparticles followed by Ag-Ag3PO4, and Ag3PO4,
while Se-Ag3PO4 nanoparticles indicated low stability. The particle size of Ag3PO4, Se-
Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles was recorded as 115 (PDI: 0.509),
458 (PDI: 1.00), 426 (PDI: 0.949), and 82.78 nm (PDI: 0.594), respectively (Table 1). The
results indicated that Se-Ag3PO4, and Ag-Ag3PO4 nanoparticles have bigger particle size
as compared to Ag3PO4, and Ta-Ag3PO4 nanoparticles. The polydispersity index (PDI) as
well as the particle size of Ag3PO4 and Ta-Ag3PO4 was observed as lower, indicating their
greater suitability for biomedical applications.

Table 1. Zeta potential, particle size, and polydispersity index of synthesized nanoparticles.

Nanoparticles Zeta Potential (mV) Particle Size (nm) Polydispersity Index (PDI)

Ag3PO4 −40.1 ± 6.63 115 0.509

Se-Ag3PO4 −5.24 ± 10.8 458 1.00

Ag-Ag3PO4 −46.6 ± 4.77 426 0.949

Ta-Ag3PO4 −79.8 ± 7.96 82.78 0.594
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FTIR analysis was also performed to evaluate functional groups and the bonding of
Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles. The peak at 544 cm−1 can
be attributed to the P-O-P bending normal mode in Ag3PO4; another peak at 944 cm−1 rep-
resents the presence of P-O bonds [46]. Similarly, the P-O-P peak in Se-Ag3PO4, Ag-Ag3PO4,
and Ta-Ag3PO4 nanoparticles was observed at 838 cm−1, 946 cm−1, and 946 cm−1, respec-
tively. Whereas P-O bonds peak in Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles
was seen at 646 cm−1, 546 cm−1, and 547 cm−1, respectively (Figure S6a).

BET analysis of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles was
achieved to record the porosity and surface area. N2 adsorption/desorption isotherms are
presented in Figure S6b, where Ag3PO4 and Se-Ag3PO4 do not show adsorption-desorption
which could be due to the presence of the less porous structure of Ag3PO4 and Se-Ag3PO4.
However, Ag-Ag3PO4 and Ta-Ag3PO4 nanoparticles exhibited N2-adsorption–desorption.
The surface area of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles was
2.69 m2/g, 2.20 m2/g, 3.48 m2/g, and 2.61 m2/g respectively. While the pore size of Ag3PO4,
Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles was 2.15 nm, 1.93 nm, 2.83 nm, and
3.44 nm, respectively. Additionally, the pore volume of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4,
and Ta-Ag3PO4 nanoparticles was 0.000605 cm3/g, 0.00047 cm3/g, 0.00128 cm3/g, and
0.00075 cm3/g, respectively. Since the pore size of the nanoparticles is less than 5 nm,
it indicated the presence of micropores and mesopores [47]. The pore size of Ag3PO4,
Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles was 2.15 nm, 1.93 nm, 2.83 nm, and
3.44 nm respectively. After testing these nanoparticles on cancer cells, we found that cell
viability significantly decreased after the treatments with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4,
and Ta-Ag3PO4.

DR-UV spectra of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles
were noted in the range 200–800 nm. All nanoparticles exhibited spectra in the visible range;
however, in case of Se-Ag3PO4, wide spectra were observed with low absorption which
could be due to the scattering of light in the pore structure of Se-Ag3PO4 (Figure S6c).

2.2. Antibacterial Activity Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 Nanoparticles

The antimicrobial activity of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanopar-
ticles was examined against Gram-negative E. coli and Gram-positive S. aureus using a
standard microbroth dilution method. The MICs and MBCs values of Ag3PO4, Se-Ag3PO4,
Ag-Ag3PO4, and Ta-Ag3PO4 are represented in Table 2. It was observed that Ag-Ag3PO4
(MIC/MBC: 0.125/0.5 mg/mL) exhibited enhanced antibacterial activity followed by Ta-
Ag3PO4 (MIC/MBC: 0.25/1 mg/mL), Ag3PO4 (MIC/MBC: 1/2 mg/mL), and Se-Ag3PO4
(MIC/MBC: 8/16 mg/mL) against E. coli (Table 2 and Figure 3). Whereas the order of
antibacterial activity against S. aureus was as follows: Ag3PO4 (MIC/MBC: 2/4 mg/mL)
> Ag-Ag3PO4 (MIC/MBC: 2/8 mg/mL) > Ta-Ag3PO4 (MIC/MBC: 4/8 mg/mL) > Se-
Ag3PO4 (MIC/MBC: 4/8 mg/mL), respectively (Table 2 and Figure 4). Small nanoparticle
size possibly internalized bacterial cells, through ion diffusion and free radicals generation,
which further enter the cells, destroying cellular components such as proteins, DNA, and
lipids, as suggested by previous reports [48,49] that the antimicrobial activity increased
due to a decrease in the particle size of nanoparticles. According to the findings of the MIC
and MBC tests, it was found that Gram-negative bacteria, E. coli, were more susceptible to
the tested nanoparticles than Gram-positive bacteria (S. aureus). The fact that the cell walls
of these two species of bacteria are constructed differently may provide an explanation
for this disparity. It is generally known that the principal component of the cell wall of
Gram-positive bacteria is thick and rigid peptidoglycans (20–80 nm) that provide extra
protection. In contrast, the cell wall of Gram-negative bacteria contains a thin layer of
peptidoglycan (7–8 nm) and a highly negatively charged lipopolysaccharides layer, which
may facilitate enhanced binding with the nanocomposite and result in more effective cell
damage than Gram-positive bacteria [50].

Both MIC and MBC values are statistically significantly different (p =< 0.001) whereas
the overall significance level = 0.05.
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Table 2. MIC and MBC (mg/mL) values of tested compounds against E. coli and S. aureus.

E. coli S. aureus

MIC MBC MIC MBC

Ag3PO4 1.0 ± 0.0 2 ± 0.0 2 ± 0.0 4 ± 0.0
Se-Ag3PO4 8 ± 0.0 16 ± 0.0 4 ± 0.0 8 ± 0.0
Ag-Ag3PO4 0.125 ± 0.0 0.5 ± 0.0 2 ± 0.0 8 ± 0.0
Ta-Ag3PO4 0.25 ± 0.0 1 ± 0.0 4 ± 0.0 8 ± 0.0
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Figure 3. MHA plates showing MBC values for E. coli ATCC 25922. Plate (A) showing MBC
value of 2 mg/mL for Ag3PO4, (B) 16 mg/mL for Se-Ag3PO4, (C) 0.5 mg/mL for Ag-Ag3PO4, and
(D) 1 mg/mL for Ta-Ag3PO4, respectively.

2.3. Effects of Compounds on Bacteria Growth after Application of Sonication

The effects of treatment of sonication on bacterial growth in the presence of sub-
MIC values of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 was also examined by
the standard plate count method (Figures 5–8) by calculating the percentage inhibition
of bacterial growth cells (Figure 9). It was found that the viable cell count of bacteria
cells was significantly reduced after 5 min of sonication treatment as compared to cells
treated without the application of sonication (Figures 4–7). It was observed that all the
four compounds exhibit a pronounced effect on the survival of E coli and S. aureus after
sonication. Furthermore, it was found that the percentage inhibition of E. coli was 98.27,
74.38, 100, and 94.2%, while % inhibition of S. aureus was 25.53, 80.28, 99.36, and 20.22%
after treatment with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4, respectively, after
the application of sonication (Figure 7). It was found that, when compared to other
tested compounds, the Ag-Ag3PO4 exhibits the highest antibacterial activity against both
the tested bacterial strains. To the best of our knowledge, this is the first record where
authors reported the impact of sonication on bacterial growth in the presence of Ag3PO4,
Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles.
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Figure 9. Effects of tested compounds on E. coli and S. aureus growth. A: control i.e., without
nanoparticles and sonication; B: Treated with sub-MIC value of nanoparticle but without sonication;
C: Treated with sub-MIC value of nanoparticle and sonication. * p < 0.05, ** p < 0.001; *** p < 0.0001.

2.4. Effect of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, Ta-Ag3PO4 on Cancer Cells Viability

The influence of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on the two cell
lines used in the study, colon carcinoma (HCT-116) and cervical cancer (HeLa), was investi-
gated. The cell viability assay proved that cell viability significantly decreased after the
treatments with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4. The treatments Ag3PO4,
Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 indicated a dose-dependent inhibition of tumor
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cell growth and proliferation. HeLa cells showed better inhibitory action then HCT-116
cells (Figure 10). The impact of Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 was also varied as
Se-Ag3PO4 (pore size 1.93 nm) showed the greatest inhibitory action on both HeLa and
HCT-116 cells, followed by Ag3PO4 (pore size 2.15 nm), Ag-Ag3PO4 (pore size 2.83 nm),
and Ta-Ag3PO4 (pore size 3.44 nm) (Figure 11). Smaller nanoparticles showed more cyto-
toxicity on cancer cells than those with large pores. It has been shown in other studies that
small nanoparticles produced better cytotoxic effects than large nanoparticles [51,52]. In
one study, it was shown that polymeric NPs and poly(D,L-lactide-co-glycolide) (PLGA)
NPs of 100 nm size demonstrated a more than threefold higher uptake compared to 275-nm
size NPs in an ex-vivo canine carotid artery model [53]. In another study, it was found
that gold nanoparticles with smaller diameters have superior membrane penetration than
large-size gold nanoparticles [54].
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on HCT-116 and HeLa cell. It shows the impact of treatment of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4,
and Ta-Ag3PO4 on HCT-116 and HeLa cells post 48 h treatment.

The inhibitory concentration (IC50) of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4
was computed. The IC50 values for Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, Ta-Ag3PO4 on HCT-
116 cells were 39.44, 28.33, 60.24, 58.34 µg/mL; whereas for HeLa cells, they were 65.25,
61.27, 75.52, 72.82 µg/mL, respectively (Figure 11).
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The influence of Ag3PO4, on HEK-293 cells was also analyzed and results showed
that Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 did not have an inhibitory effect
on HEK-293 cells. This suggests that prepared nanoparticles are safe for normal cells and
do not cause any harm, whereas on cancer cells, the treatments induced significant cell
death. While we do not know the molecular mechanism of the nanoparticles’ impact on
normal cells, it has been shown that prepared nanoparticles are specifically targeted cells
and induce cytotoxicity. This represents the first outcome demonstrating the cell viability of
Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 against HCT-116 and HeLa cells. Some
researchers have published multiple reports on different molecules (nanomaterials and
plant extracts) and their influence on colon and breast cancer cells [2,3,55–59].

2.5. Apoptotic Effect of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, Ta-Ag3PO4

In the present study we used DAPI (4’,6-diamidino-2-phenylindole) to examine the
cancer cell DNA after the treatments. DAPI is a fluorescent stain that binds strongly to
AT-rich regions in the DNA. DAPI is a blue-fluorescent DNA stain that exhibits ~20-fold
enhancement of fluorescence upon binding to AT regions of dsDNA. Because of its high
affinity for DNA, it is also frequently used for counting cells, measuring apoptosis, sorting
cells based on DNA content, and as a nuclear segmentation tool in high-content imaging
analysis. The treatment of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 resulted in a
significant decrease in the number of colon cancer cells, as the number of DAPI-stained
cells appears to be substantially lower in the Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, Ta-Ag3PO4-
treated cells vs control cells (Figure 12B–D). The decline in cancer cells is the result of
after the programmed cell death or apoptosis, whereas the control group did not show
any inhibition towards colon cancer cells (Figure 12A). In addition, we also observed
that Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4-treated cells showed change in
the cancer nuclei morphology as they shrank (Figure 12B–E), compared to control cells
(Figure 12A), which suggests that cancer cells are undergoing apoptosis.
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Figure 12. Cancer cell death due treatment of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4.
It shows the impact of the treatment of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on HCT-
116 cells stained with DAPI post 48-h treatment. (A) is the control cell and (B–E) are Ag3PO4,
Se-Ag3PO4, Ag-Ag3PO4, Ta-Ag3PO4, where a significant number of death cancer cells are observed
upon (40 µg/mL) treatment.
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3. Experimental
3.1. Materials and Methods

All materials and chemicals used in this study were purchased from commercial
sources and used as commercial materials and chemicals.

3.1.1. Preparation of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 Nanoparticles

0.5 g silver nitrate was added to 30 mL of water in a beaker. After sonicating for 5 min,
0.3 g disodium hydrogen phosphate (Na2HPO4) in 10 mL of water was added dropwise to
the silver nitrate solution and ultra-sonicated for 20 min. After that, 0.2 g silver or selenium
or tantalum powder was added to the ultra-sonication mixture and sonication was carried
on for a further 40 min. The products were centrifuged, washed with water/ethanol and
dried to give Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4. The same procedure was repeated
to prepare Ag3PO4 except for the addition of silver or selenium, or tantalum powder
(Figure 13).
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3.1.2. Characterization of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 Nanoparticles

X-ray diffraction (Rigaku, Japan) was performed to examine the phases of Ag3PO4, Se-
Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles in the range of 10–80◦ with 0.9◦/minute
scanning speed. Scanning electron microscopic studies (SEM, Tscan,Brno-Kohoutovice,
Czech Republic) of the as-synthesized Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4
nanoparticles were performed for the surface morphology and structure. Zeta size and zeta
potential of the nanoparticles were determined by Malvern Zetasizer instrument, Malvern,
United Kingdom (UK). Before analysis, samples were dispersed very well inthe deionized
water by ultra-sonication. The diffuse reflectance of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4,
and Ta-Ag3PO4 nanoparticles were measured using UV-visiblespectrophotometer (JASCO
V-750,Helsinki, Finland) and FTIR spectra were recorded on a PerkinElmer spectrometer,
Boston, Massachusetts, United States (USA). Micromeritics ASAP 2020 Plus (Norcross, USA)
was used to analyze the surface area of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4
nanoparticles withprior degassing for 2H at 180 ◦C.
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3.1.3. Antibacterial Activity of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and
Ta-Ag3PO4 Nanoparticles

To evaluate the antibacterial activity of synthesized Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4,
and Ta-Ag3PO4, E. coli ATCC 25922 and S. aureus ATCC 25923 were used as model Gram
-negative and Gram-positive. The bacteria were incubated overnight at 37 ◦C in a shaker
incubator, and then harvested, and the biomass was washed using PBS to remove any
remaining media before being used in the experiment.

3.1.4. Minimal Inhibitory and Minimal Bactericidal Concentration (MIC & MBC)

The minimum inhibitory concentration (MIC) potential of Ag3PO4, Se-Ag3PO4, Ag-
Ag3PO4, and Ta-Ag3PO4 was investigated by standard microbroth dilution procedure in a
96-well round bottom microtiter plate. Briefly, 20 µL of freshly grown culture of each tested
organism (0.5Macfarland) was inoculated in 180 µL of BHI broth containing a varying
concentration (32–0.03125 mg/mL) of tested Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-
Ag3PO4 for 24h at 37 ◦C. MIC being the lowest concentration of antimicrobial agents which
visually inhibit 99% growth of bacteria. The minimum bactericidal concentration (MBC)
potential of tested materials was performed on the MHA plates. MBC is defined as the
lowest concentration of tested compounds which kill 99.99% of the bacteria population.
For the MBC test, 100 µL suspensions from each well of microtitre plates was spread onto
the MHA plates and further incubated for 24 h at 37 ◦C. The lowest concentration with no
visible growths on the MHA plate was considered as the MBC value [60].

3.1.5. Synergistic Effects of Nanocomposites and Sonication on Bacteria Growth

Standard plate count procedures were used to further investigate the effects of Ag3PO4,
Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on the growth of bacteria with and without
sonication [61]. Three sets of experiment were designed. First set: bacterial cells treated with
nanoparticles but without sonication; second set: bacterial cells treated with nanoparticles
with sonication i.e., the bacterial cells treated with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and
Ta-Ag3PO4 at their sub-MIC values and third set: bacterial cells without nanoparticles
and sonication (negative control). Then, all three sets were incubated for 16 h at 37 ◦C.
After incubation, cells treated with nanoparticles without sonication (first set); cells treated
with nanoparticles having 5 min of sonication (second set), and bacterial cells without
nanoparticles and sonication (third set) were serially diluted using a tenfold serial dilution
method in a 10 mL tube and then 100 µL of diluted bacteria from dilution factor 3 was
plated onto nutrient agar plates and then kept overnight at 37 ◦C in an incubator. Finally,
the number of colonies on agar plates was examined by counting the CFU/mL to evaluate
the antibacterial potential of the tested materials.

3.2. Cytotoxicity of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4
3.2.1. In Vitro Culture and Testing by MTT Method

The cytotoxicity of Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 was studied
against human colorectal carcinoma cells (HCT-116) and human cervical carcinoma cells
(HeLa cells), which were purchased from ATCC, USA. Additionally, as a control, we studied
against healthy human embryonic kidney cells (HEK-293) which were purchased from
ATCC, USA. The cells culture was maintained in the Dulbecco’s Modified Eagle Medium
(DMEM) composed of 10% fetal bovine serum (FBS), penicillin (1%), L-glutamine (5%),
streptomycin (1%), and selenium chloride (1%) as reported earlier [62]. The cells were
grown in a 5% CO2 incubator and an MTT assay was performed according to the previous
study [39]. The cells were treated with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4
with different concentrations (5–100 µg/mL). Both the control and Ag3PO4, Se-Ag3PO4,
Ag-Ag3PO4, Ta-Ag3PO4 nanoparticles were cured with 10 µL of MTT reagent (5.0 mg/mL)
and cells were incubated for 4 more hours. Afterwards, the culture medium was exchanged
with DMSO (1%) and absorbance was recorded at 570 nm using an ELISA plate reader to
compute % cell viability for statistical analysis.
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3.2.2. Apoptotic Morphology by DAPI Staining

DAPI staining was performed to observe the DNA of cancer cells. Cells were allo-
cated into two groups; the control group where no Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and
Ta-Ag3PO4 were present, whereas, in the trial group, 40 µg/mL of Ag3PO4, Se-Ag3PO4, Ag-
Ag3PO4, Ta-Ag3PO4 was present. Following 48 h of treatment, ice-cold (4%) paraformalde-
hyde was introduced to both groups and then triton x-100 in PBS (phosphate buffer saline)
was added, followed by treatment with DAPI (1 µg/mL) in the dark and the cells were
washed using PBS, cover-slipped and viewed under a confocal scanning microscope.

4. Conclusions

Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 nanoparticles were prepared by
ultrasonic method and characterized by good pore sizes of less than 5 nm. It was perceived
that Ag-Ag3PO4 exhibited enhanced antibacterial activity followed by Ta-Ag3PO4, Ag3PO4
and Se-Ag3PO4 against E. coli. Whereas the order of antibacterial activity against S. au-
reus was as follows: Ag3PO4 > Ag-Ag3PO4 > Ta-Ag3PO4 > Se-Ag3PO4, respectively. The
antibacterial order almost observes the pore size order with smaller being more effective,
except for Se-Ag3PO4 that was the least effective despite having the smallest pore size.
Results indicated that Gram-negative bacteria (E. coli) were more susceptible to the tested
nanoparticles than Gram-positive bacteria (S. aureus). Additionally, the effects of sonica-
tion treatment on bacterial growth in the presence of nanoparticles were also examined
and it was observed that the viable cell count of bacteria cells was significantly reduced
after 5 min of sonication treatment as compared to cells treated without sonication. The
IC50 values for Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on HCT-116 cells were
39.44, 28.33, 60.24, 58.34 µg/mL; whereas for HeLa cells, they were 65.25, 61.27, 75.52,
72.82 µg/mL, respectively. Furthermore, we found that Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4,
and Ta-Ag3PO4 did not have an inhibitory effect on HEK-293 cells, rendering them safe
therapeutic candidates without any effects on healthy cells.
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