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ABSTRACT
Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular 

glycoprotein that is implicated in myriad physiological and pathological conditions 
characterized by extensive remodeling and plasticity. The functions and disease 
association of SPARC in cancer is being increasingly appreciated as it plays multi-
faceted contextual roles depending on the cancer type, cell of origin and the unique 
cancer milieu at both primary and metastatic sites. Herein we will review our 
current knowledge of the role of SPARC in the multistep cascades of urinary bladder 
carcinogenesis, progression and metastasis from preclinical models and clinical data 
and shine the light on its prognostic and therapeutic potentials.

STRUCTURE AND BIOCHEMICAL 
PROPERTIES OF SPARC

SPARC is a matricellular glycoprotein that has 
been associated with extensive tissue remodeling and 
tumorigenesis. SPARC gene was initially discovered as 
a bone matrix and an endothelial basement membrane 
protein (hence the names osteonectin/BM40). SPARC 
protein is encoded by a single gene in human chromosome 
5q31.1 and mouse chromosome 11 [1-3]. Mature SPARC 
protein has 286 amino acids with three distinct functional 
domains, including an N-terminus acidic domain (NT), 
follistatin-like domain (FS) and C-terminus domain (EC). 
The NT domain, spans the first 52 amino acids, is highly 
acidic and binds hydroxyapatite with low affinity Ca2+ 
binding (5-8 Ca2+) [3, 4]. The FS comprises the next 85 
amino acids and contains several internal disulfide bonds 
and N-glycosylation site. The EC domain is 149 amino 
acids and contains two EF-hand motifs that bind calcium 
with high affinity and is comprised almost entirely of 
β-helices (Figure 1).

The biological functions of SPARC were depicted 
from the phenotypes of Sparc-deficient mice (SP-/-) 
and were related to defects of fibroblast and myeloid 
differentiation and plasticity as cataract formation, 
osteopenia, decreased size and tensile strength of collagen 
fibers, and increased deposition of adipose tissue [5, 6]. 
More biological functions evolved when these mice were 
challenged as accelerated wound and defective organ 
healing after injury, increased angiogenesis as well as 

accelerated growth of implanted syngeneic subcutaneous 
(SC) tumors. All were initially attributed to increased 
proliferation and angiogenesis with defective matrix 
assembly and encapsulation [7-19]. Unique contextual 
biological functions of SPARC were identified from 
disease/organ-specific models. In cancer, our knowledge 
of the contextual expression and functions of SPARC 
was furthered by orthotopic as well as autochthonous 
(oncogene-driven and carcinogen-induced) models of 
cancer together with xenografts of human cancer cells 
in immuno-deficient mice and in vitro 2D and 3D cell 
culture systems [7, 19-25]. In addition, SPARC is not 
directly implicated in the cellular transformation and 
cancer initiation as spontaneous cancers do not develop in 
mice with germline deletion of SPARC. However, SPARC 
is significantly implicated in the pathobiology of many 
cancers where it influences tumor-stromal interactions in 
both autocrine and paracrine manners modulating tumor 
progression and response to therapy (summarized in [19]). 

The role of SPARC in tumor development and 
metastasis is contextual. It depends not only on cancer 
type, but on whether the molecule is produced by 
cancer cells or surrounding stromal cells, its subcellular 
localization in a given cell type, the composition of the 
ECM, as well as on its interactions with the biologically 
active molecules in a given tumor milieu [19, 23, 26]. 
Stromal (host) SPARC regulates ECM deposition and 
modulates tumor growth and progression [7, 8, 19, 22, 23, 
27, 28]. SPARC normalizes the tumor microenvironment 
(TME) through anti-inflammatory properties and 
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regulation of integrin-growth factor receptor interactions 
[7, 19, 22-24, 26] or through a regulation of MMPs release 
[27, 29, 30]. SPARC exerts an autocrine and a paracrine 
inhibition of tumor cell proliferation [7, 19, 22-24, 28, 31-
33] evident in cell cycle arrest at G1/S phase [19, 28]. In 
addition, tumor SPARC is subject to epigenetic silencing 
through promoter methylation in many cancers [26, 28, 
34-41]. Herein, we review the current knowledge of the 
role and association of SPARC in bladder cancer. 

BLADDER CANCER

Bladder cancer is the most common malignancy 
affecting the urinary system with estimated 76,960 new 
cases and projected 16,390 deaths in 2016 in the United 
States. This represents ~4% increase in new cases and 
2.4% increase in mortality from 2015 [42]. Patients with 
bladder cancer present at or after 5th decade of life with 
male: female ratio of 3:1 [42, 43]. Environmental risk 
factors include tobacco smoking, occupational exposure 
to aromatic amines and polycyclic hydrocarbons, 
consumption of arsenic-contaminated water, chronic 
infections, ionizing radiations and therapeutic abuse of 
phenacetin-containing analgesics. Tobacco smoking is 
the major environmental risk factor. It is estimated that 
> 50% of cases of bladder cancer can be attributed to 
smoking [44]. The most common form of bladder cancer is 
urothelial carcinoma (UC), formerly known as transitional 

cell carcinoma that arises from the mucosal lining of the 
bladder, and frequently occurs as a multifocal disease 
involving several simultaneous tumors scattered over the 
urothelium (Figure 2). Urothelial carcinomas often exhibit 
elements of squamous or glandular differentiation, which 
is more common in high-grade and high-stage lesions 
[45]. Other less frequent pathological subtypes include 
squamous cell carcinoma, adenocarcinoma, and small 
cell carcinoma [45]. Most patients present with non-
muscle invasive disease (NMI) that is treated with bladder 
preserving endoscopic resection and adjuvant intra-vesical 
therapies. However, recurrence is high with 50% chances 
to progress to muscle invasive (MI) disease (reviewed 
in [46, 47]). Patients who present with MI disease are 
treated best with aggressive local therapy (e.g. radical 
cystectomy, radiotherapy) and/or systemic chemotherapy 
[47]. Half of the patients with MI disease or progressing 
to it from NMI disease harbor occult metastases with 
significantly poor prognosis and survival [47]. Because 
of its protracted natural history, bladder cancer is among 
the most expensive malignancies to treat from diagnosis 
to death. Treatments have not advanced in the past 30 
years and there is no approved second line of therapy [46, 
47], so there is a crucial unmet need for novel therapies, 
especially for advanced disease. 

Numerous genetic and epigenetic alterations were 
implicated in tumorigenesis and progression of bladder 
cancer. The Cancer Genome Atlas (TCGA) data [48] 

Figure 1: Schematic illustration of SPARC molecule showing the functional domains.
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revealed statistically significant recurrent mutations in 
32 genes, including multiple genes involved in cell-
cycle regulation, chromatin regulation, and kinase 
signaling pathways. However because this disease, like 
other cancers, consists of biologically heterogeneous 
cell populations, selection pressures inferred from the 
microenvironment, favor development of subpopulations 
of cells with different dormant, invasive and metastatic 
abilities. In this respect, SPARC represents an interesting 
molecule as it exerts distinct roles on cancer cells and 
tissue-specific stromal cells and modulates the interactions 
of cancer cells with the cellular and acellular components 
of the surrounding tumor microenvironment (TME). 

The expression of SPARC in normal urinary 
bladder

 In the normal bladders, SPARC protein is expressed 
in basal and luminal surfaces of normal murine and 
human urothelia and is secreted by primary urothelial 
cultures [19, 49]. SPARC exerted anti-proliferative and 
de-adhesive effects on cultured normal human and murine 

urothelial cells in vitro [50]. SPARC is dispensable for 
bladder development and function as evidenced by the 
normal development and function of mice with germline 
deletion of SPARC. SPARC protein is also expressed in 
the sub-urothelial stroma [19]. Further studies of the main 
two stromal components, fibroblasts and macrophages, 
indicated that both cell types express and secrete SPARC 
that is required for their differentiation and phenotypic 
commitment in response to micro-environmental cues 
[19]. 

SPARC expression in human bladder cancer is 
associated with advancer stage and poor outcome

In human bladder cancer tissue microarrays (TMA) 
that comprised 192 patients’, SPARC protein expression 
significantly decreased in MI compared to NMI disease 
[19]. In NMI disease, SPARC is expressed in the 
cancerous urothelium and adjacent stroma. In contrast, in 
MI disease, the expression of SPARC exhibited distinctive 
compartmentalization with decrease in the frequency and 
intensity of staining in the cancerous tissue while positive 

Figure 2: Comparative illustration of: A. Staging of human bladder cancer according to the Tumor-Node-Metastasis (TNM) system, 
B. pathological stages in carcinogen-induced murine model of bladder cancer.
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staining was mainly observed in the tumor associated 
stroma. SPARC expression inversely correlated with 
disease-specific survival (DSS). However, there was no 
relationship between the intensity and/or frequency of 
stromal SPARC expression and DSS. Consistently, RNA 
and copy number analysis data curated from oncomine 
database (www.oncomine.org) indicated down-regulation/
low copy number of SPARC transcript in 15/16 studies 
(Figure 3). 

Effect of SPARC on carcinogen-induced urothelial 
transformation

SPARC transcript and protein expression were 
reported to be significantly downregulated by carcinogenic 
heavy metals during malignant transformation of UROtsa 
cell line [51]. The clinically-related studies appeared 
descriptive and represent snap shots of archival tumor 
samples. Therefore, it was imperative to develop multiple 
preclinical models to comprehensively investigate 
the roles of SPARC in multi-step carcinogenesis and 
metastasis cascades [19]. The relevance of SPARC in 
the hallmarks of bladder cancer was determined using a 
carcinogen-induced model providing a tobacco metabolite 

Figure 3: Comparison of SPARC expression/copy number across 16 Analyses of gene expression/copy number analysis 
in human bladder cancer.
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and chemical carcinogen N-nitrosobutyl(4-hydroxybutyl)
amine (BBN) to SP-/- and SP+/+ mice for ~ 40 weeks. This 
model recapitulated human bladder cancer that develops 
after prolonged exposure to chemical carcinogens and 
allowed the study the pre-neoplastic lesions that are not 
clinically encountered [19] (Figure 2). This model in 
tandem with preclinical models using human cell lines 
in vitro and in xenografts allowed study of the effect of 
SPARC on the hallmarks of cancer [52] that encompass 
fundamental biological capabilities acquired during 
cell transformation and cancer development including 
sustained proliferation, evasion of growth suppression, 
death resistance, replicative immortality, induced 
angiogenesis, and initiation of invasion and metastasis.

SPARC restrains cell proliferation and cell cycle 
progression

Cellular transformation and tumor progression 
require escape from proliferative suppression and the 
tightly controlled cell cycle by the G1/S cell cycle 

checkpoint. SPARC-deficient urothelial lesions exhibited a 
significant progressive increase in proliferation compared 
to SPARC-proficient lesions with significantly increasing 
higher levels of cyclins A1, D1 and E2 that drive cell 
cycle progression and were positively correlated with the 
presence, invasion, progression and metastasis of human 
bladder cancer [53, 54]. Paradoxically, the expression of 
cell cycle inhibitors p21CIP/WAF1 and p27KIP1 significantly 
and progressively decreased in SPARC-deficient compared 
to SPARC-proficient urothelial lesions; a finding that 
phenocopies their perturbed expression in human 
urothelial cancer [55-65] and further supports the tumor 
suppressor effect of SPARC in part through inhibition of 
cell cycle progression at G1/S.

Interestingly, the expression of SPARC protein 
and transcript were significantly downregulated in 
tumorigenic bladder cancer cell line T24T compared to 
its non-tumorigenic isogenic line T24 [19, 66]. SPARC 
expression in human bladder cancer cell lines inversely 
correlated with their proliferation rate, restrained cell 
cycle progression through slowing G1/S cell cycle 

Figure 4: Schematic illustration summarizing the effects of SPARC on the interactions of cancer cells, and stromal 
cells in the multistep carcinogenesis cascade. 
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proteins, cyclins A1, D1 and E2 with increase of their 
inhibitors p21CIP/WAF1 and p27KIP1. Of interest is that in 
human bladder cancer, cyclin D1 (CCND1) is amplified 
in 20%, whereas inactivating mutations, hemizygous and 
homozygous deletions of the tumor suppressor CDKN1A 
gene that encodes p21CIP/WAF1 have been recently reported 
with higher frequencies of deletion in muscle invasive 
(MI) disease [44]. The inhibition of activation of cJun/
AP1 by SPARC [19] suggests that inhibition of cell cycle 
deregulation is mediated in part through inhibition of the 
upstream transcription factor. In addition, TCGA data 
[48] revealed the enrichment of signaling pathways that 
were inhibited by SPARC in ovarian cancer [7, 23, 24] as 
phosphatidylinositol-3-OH kinase/AKT/mTOR pathway 
and the RTK/MAPK pathway suggesting potential 
inhibitory effect in bladder cancer milieu. 

Anti-oxidant and anti-inflammatory

In carcinogen-induced urothelial lesions, SPARC 
inhibited the progressive generation of ROS and markers 
of DNA, protein and lipid oxidative damage; a scenario 
that was significantly augmented in SP-/- urothelial lesions. 

SPARC-proficient (SP+/+) lesions exhibited significantly 
decreased activation of the downstream signaling cascades 
that converged in the activation of AP-1 and NFκB, the 
major orchestrators of inflammation, carcinogenesis, 
invasiveness and metastasis [19, 67-69]. High levels 
of ROS (H2O2) are generated by urothelial cancer cells 
compared to normal urothelial cells implying that ROS are 
generated upon carcinogen exposure and from enhanced 
metabolism of the rapidly proliferating transformed cells 
[19]. This explains, in part, the significantly higher levels 
of ROS in the rapidly proliferating SP-/- urothelial cells. 
High ROS concentrations are generated by cancer cells 
and by the surrounding juxta-tumoral stromal cells mainly 
TAMs and CAFs [19, 70] (Figure 4). 

The increased ROS in the evolving urothelial cancer 
milieu was manifested by progressive increased levels of 
8-hydroxy-2’ -deoxyguanosine (8-OHdG) that contributes 
to genome stability and promotes carcinogenesis [71]. 
Chronic oxidative stress through DNA damage has been 
shown to induce to double strand breaks (DSBs) with 
complex DNA ends. Repairing such complex DSBs 
with non-homologous end joining (NHEJ) may be 
critical for the production of spontaneous mutations and 

Figure 5: A view of the effect of SPARC on the multistep metastasis cascade and preconditioning pf the metastatic 
niche.



Oncotarget67580www.impactjournals.com/oncotarget

inflammation-related cancers [72]. Mitochondrial DNA 
and nuclear DNA undergo several alterations that may 
result in mutation accumulation and genomic instability 
[72, 73]. In lieu of these reports we can speculate that 
SPARC, through its anti-oxidant and anti-inflammatory 
effects may exert a protective role against carcinogen- and 
ROS-induced genome instability and mutations. 

Oncogenic transformation induces metabolic 
reprogramming of cancer cells with increased glucose 
and glutamine metabolism and, consequently, increased 
proliferation and ROS production [73-75]. Oncogenic 
transcription factors as NFκB, and AP-1 are activated 
by ROS and in synergy with the specific signaling from 
their downstream target genes may further perturbation 
of cellular energy and metabolism [73-75]. The rapidly 
proliferating cells in the absence of SPARC along with 
activation of pro-oncogenes and loss of tumor suppressors 
generate increased levels of ROS, a manifestation of 

altered cellular metabolism, may induce aerobic glycolysis 
or Warburg effect [49].

The kinetics of SPARC protein expression during 
differentiation of primary fibroblasts and macrophages 
revealed that it increases during early differentiation, then 
decreases to basal levels in macrophages but remained 
steady in differentiated fibroblasts. Mechanistic studies 
using heterotypic co-cultures of normal and cancerous 
urothelial cells with normal and tumor associated stromal 
cells indicated that SPARC inhibited the acquisition 
inflammatory secretory phenotype of tumor associated 
macrophages (TAMs) and cancer associated fibroblasts 
(CAFs) through inhibition of the activation of NFκB and 
AP-1 with subsequent decrease in their secreted cytokines 
and cancer cell invasiveness. These findings suggested that 
SPARC markedly inhibited the inflammatory feed-forward 
loop that is reciprocated and maintained among cancer 
cells, TAMs, and CAFs through secreted inflammasomes 

Figure 6: Summary of the reported effects of SPARC on the hallmarks of cancer (solid lines) and the potential effects 
(dashed lines).
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(ROS, bioactive lipids, cytokines, chemokines and 
growth factors) that act as a double-edged sword in the 
tumor microenvironment. On the one hand, they sustain 
cancer cell proliferation, invasiveness, angiogenesis, and 
metastasis. On the other hand, they play a critical role in 
recruitment and differentiation of stromal cells. 

In addition, the inflammatory TME in low/absence 
of SPARC can contribute to immune suppression enabling 
tumor cells to evade the immune system and disseminate 
[76]. Therefore, the kinetics of SPARC expression 
in cancerous and stromal cells in human and murine 
urothelial cancer implicate SPARC in the intricate tightly-
regulated programs of cellular recruitment, proliferation, 
differentiation/de-differentiation of stromal cells [5, 6, 
10, 19, 77, 78]. The differential compartmentalization of 
SPARC may represent a state of aberrant homeostasis with 
increased inflammation that might be directly involved 
in urothelial cell transformation through the persistent 
release of inflammatory mediators and ROS, ancillary to 
tumor growth and metastasis (Figure 4). 

Inhibition of angiogenesis

Tumor angiogenesis is one of the hallmarks of 
cancer [52]. Initial growth of transformed cells and tumor 
mass increases the demands for oxygen from blood, 
thus tumor tissue becomes hypoxic. In turn, hypoxia 
produces ROS which activate potent angiogenic hypoxia 
inducible factor (HIF-1α) to increase the transcription 
of angiogenic growth factors [79]. Angiogenesis is 
stimulated by growth factors such as VEGF, FGF as 
well as pro-inflammatory mediators enriched in the 
TME which induce the proliferation and migration of 
endothelial cells followed by assembly into patent blood 
vessels [79, 80]. The anti-angiogenic effects of SPARC 
have been long recognized as evidenced by its inhibitory 
effect on endothelial cell proliferation and migration in 
vitro and in vivo by increased angiogenesis and tumor 
growth in syngeneic tumors implanted in SP-/- mice and 
paradoxically, decreased angiogenesis and growth of 
human tumor xenografts expressing SPARC [7, 9, 19, 
21-25, 81-83]. In urothelial cancer, the anti-angiogenic 
effect of SPARC is attributed to its anti-oxidant, anti-
inflammatory effects with subsequent inhibition of 
angiogenesis at multiple levels [19]. SPARC significantly 
suppressed carcinogen-induced ROS generation and 
inflammation while restraining cell cycle progression 
in cancer cells, thus limiting the increasing demands of 
the growing tumor cells to new blood vessels. Through 
modulation of cancer cells’ interactions with stromal cells, 
SPARC inhibited phenotypic commitment of macrophages 
and fibroblasts into inflammatory TAM and CAF 
phenotype. Consequently, the pro-angiogenic factors in 
the tumor milieu significantly decreased, with subsequent 
inhibition of endothelial cell recruitments, angiogenesis 
and vasculogenesis. Furthermore, the observation that 

SPARC-deficient autochthonous urothelial cancers and 
in syngeneic tumors growing in SP-/- mice exhibited 
increased vascularity macroscopically with the increased 
mean vascular density and area (number and size of blood 
vessels) strongly implicates a direct effect of host and/or 
tumor SPARC on endothelial cells in the multistep cascade 
of tumor angiogenesis and vasculogenesis.

Inhibition of invasion and metastasis

The process of metastasis is defined by distinct 
steps involving local invasion, intravasation into adjacent 
blood and lymphatic vessels, transit through circulation 
and evasion of host immune systems, progressive 
preconditioning of the prospective metastatic sites, 
extravasation into the parenchyma of metastatic site, and 
colonization and formation of micro-metastases, followed 
by proliferation and progression to macro-metastases. This 
process is largely inefficient due to the many obstacles 
tumor cells must overcome to successfully metastasize. 
In this respect SPARC exerts an anti-metastatic effect 
at multiple levels. In the carcinogen-induced bladder 
cancer, SP-/- mice not only exhibited accelerated growth 
that involved the full bladder wall with invasion of the 
muscle layer and peri-vesical tissues, but also exhibited 
early onset metastasis and significantly more metastases 
[19]. Primary SP-/- tumors exhibited significantly higher 
pro-inflammatory and pro-invasive mediators and were 
more vascular than SP+/+ tumors. Pairwise examination 
of matching lungs and bladder tissues with pre-neoplastic 
and neoplastic lesions revealed progressive increase in the 
levels of pro-inflammatory mediators with significantly 
higher levels in SP-/- compared with SP+/+ lungs as a 
function of disease progression. In addition, macrophage 
infiltration was significantly higher in SP-/- compared 
with the SP+/+ lung metastases. These data suggest that 
the anti-metastatic effect of SPARC is mediated in part 
through its anti-inflammatory effect on the primary tumor, 
suppressing the pre-conditioning of the pre-metastatic 
lung tissues, “pre-metastatic niche” [19, 84-87] (Figure 5). 

The contribution of cancer cell- vs. stromal cell- 
SPARC in bladder cancer metastasis was dissected using 
multiple independent approaches. Using a syngeneic 
model of spontaneous metastasis in which SPARC-
proficient MB49 cells were injected SC in SP-/- and 
SP+/+ mice, host-SPARC not only inhibited the in vivo 
growth, invasiveness, angiogenesis and inflammation of 
primary tumors, but it also inhibited spontaneous lung 
metastasis through inhibition of the pre-conditioning of 
the inflammatory pre-metastatic and metastatic lung niche 
[19] (Figure 5). 

The role of tumor-SPARC in lung colonization was 
further investigated in a human experimental metastasis 
model, injecting human bladder cancer cells genetically 
modified for SPARC expression into nude mice [19]. 
SPARC expression inversely correlated with the incidence 
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and multiplicity of lung metastasis. Of note, bladder 
cancer cells depleted of SPARC exhibited a dramatic 
decrease in early lung colonization implicating a counter-
adhesive effect of SPARC inhibiting tumor cell adhesion 
to pulmonary endothelial cells and early metastatic 
colonization. 

CONCLUSIONS AND PERSPECTIVE

A large body of research over the last three decades 
has established SPARC as an ECM protein that plays a 
substantial role in tissue homeostasis in physiological 
and pathological contexts characterized by proliferation, 
differentiation and plasticity of mesenchymal, myeloid, 
neuronal as well as endothelial and epithelial cells. 
The role of SPARC in tumorigenesis has been recently 
recognized and new functions of SPARC in disease, organ 
and cell-specific contexts are being unveiled. In bladder 
cancer, our reports strongly suggest a tumor suppressor 
effect of SPARC modulating the putative hallmarks 
of cancer (Figure 6). Collectively, findings from our 
published reports strongly suggest a SPARC as a potential 
prognostic biomarker in bladder cancer. The identification 
of the molecular signature associated with SPARC gene/
protein expression could serve as prognostic biomarkers 
to stratify patients who might develop invasive, 
metastatic, indolent or recurrent disease. In addition to 
prognostication, in the era of precision and personalized 
medicine, it is imperative that future investigations 
develop and test specific pharmacological agents that 
target SPARC and/or its regulating/regulated signaling 
pathways in preclinical and clinical settings. 
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