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The drug development is generally arduous, costly, and success rates are low. Thus,

the identification of drug-target interactions (DTIs) has become a crucial step in early

stages of drug discovery. Consequently, developing computational approaches capable

of identifying potential DTIs with minimum error rate are increasingly being pursued.

These computational approaches aim to narrow down the search space for novel DTIs

and shed light on drug functioning context. Most methods developed to date use binary

classification to predict if the interaction between a drug and its target exists or not.

However, it is more informative but also more challenging to predict the strength of the

binding between a drug and its target. If that strength is not sufficiently strong, such

DTI may not be useful. Therefore, the methods developed to predict drug-target binding

affinities (DTBA) are of great value. In this study, we provide a comprehensive overview of

the existing methods that predict DTBA. We focus on the methods developed using

artificial intelligence (AI), machine learning (ML), and deep learning (DL) approaches,

as well as related benchmark datasets and databases. Furthermore, guidance and

recommendations are provided that cover the gaps and directions of the upcoming

work in this research area. To the best of our knowledge, this is the first comprehensive

comparison analysis of tools focused on DTBA with reference to AI/ML/DL.

Keywords: drug repurposing, drug-target interaction, drug-target binding affinity, artificial intelligence, machine

learning, deep learning, information integration, bioinformatics

INTRODUCTION

Experimental confirmation of new drug-target interactions (DTIs) is not an easy task, as in vitro
experiments are laborious and time-consuming. Even if a confirmed DTI has been used for
developing a new drug (in this review compounds that are not approved drugs are also referred
to as drugs), the approval for human use of such new drugs can take many years and estimated
cost may run over a billion US dollars (Dimasi et al., 2003). Moreover, although huge investments
are required for the development of novel drugs, they are often met with failure. In fact, of the
108 new and repurposed drugs reported as Phase II failures between 2008 and 2010, 51% was
due to insufficient efficacy as per a Thomson Reuters Life Science Consulting report (Arrowsmith,
2011). This observation highlighted the need for: (1) new, more appropriate drug targets, and (2)
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in silico methods that can improve the efficiency of the drug
discovery and screen a large number of drugs in the very initial
phase of drug discovery process, thus guiding toward those
drugs that may exhibit better efficacy. In this regard, methods
that predict DTIs and specifically, drug-target binding affinities
(DTBA) are of great interest.

Over the last three decades, several methods that predict
DTIs have been developed ranging from ligand/receptor-based
methods (Cheng et al., 2007; Wang et al., 2013) to gene ontology-
based (Mutowo et al., 2016), text-mining-based methods (Zhu
et al., 2005), and reverse virtual screening techniques (reverse-
docking) (Lee et al., 2016; Vallone et al., 2018; Wang et al.,
2019). Development of such methods is still ongoing as each
method suffers from different types of limitations. For example,
docking simulation is often used in the receptor-based methods;
also, docking simulation requires the 3D structures of the target
proteins that are not always readily available. Furthermore, this
is an expensive process. On the other hand, the ligand-based
approaches suffer from low performance when the number of
known ligands of target proteins is small, as this approach
predicts DTIs based on the similarity between candidate ligands
and the known ligands of the target proteins. The limitations
associated with gene ontology-based and text-mining-based
approaches are the same, their major limitation appears to be
what is reported in the text. This also becomes more complicated
due to the frequent use of redundant names for drugs and target
proteins. Moreover, with the text-mining approach being limited
to the current knowledge (i.e., published material), making
discovery of new knowledge is not easy.

Other methods such as deep learning (DL), machine learning
(ML), and artificial intelligence (AI) in general, avoid these
limitations by using models that learn the features of known
drugs and their targets to predict new DTIs. Understanding
that ML methods are just a subset of AI methods, does not
always makes it clear what would be strictly an ML method and
what an AI method. This particularly becomes apparent when
graph, network, and search analyses methods are combined with
conventional (shallow) ML approaches. The situation for DL is
clearer, as these methods are a subset of ML approaches based on
transformation of the original input data representation across
multiple information processing layers, thus distinguishing them
from the shallow ML approaches. More recent approaches
introduced AI, network analysis, and graph mining (Emig et al.,
2013; Ba-Alawi et al., 2016; Luo et al., 2017; Olayan et al.,

Abbreviations: AI, artificial intelligence; ML, machine learning; DL, deep
learning; Sim, similarity; aaseq, amino-acid sequence; SPS, structural property
sequence; PSC, protein sequence composition; PDM, protein domain and motif;
ECFP, extended-connectivity fingerprint; LMCS, ligand maximum common
substructure; KronRLS, Kronecker regularized least square; CNN, convolutional
neural network; GCNN, graph convolution neural network; FNN, feedforward
neural network; ANN, artificial neural network; RNN, recurrent neural network;
RBNN, radial basis function neural network;MNN,modular neural network;MLP,
multilayer perceptron; RNN, recurrent neural network; FC, fully connected; ReLU,
rectified linear unit; CV, cross validation; LDO, leave one drug out; LTO, leave one
target out; MSE, mean square error; RMSE, root square of mean square error; CI,
concordance index; PCC, Pearson correlation coefficient; NR, nuclear receptors;
GPCR, G protein-coupled receptors; IC, ion channels; E, enzymes; KIBA, kinase
inhibitor bioactivity.

2018), and ML and DL techniques (Liu Y. et al., 2016; Rayhan
et al., 2017; Zong et al., 2017; Tsubaki et al., 2019) to develop
prediction models for DTI problem. AI/ML-based methods (we
will frequently refer to them in this study as ML methods)
are generally feature-based or similarity-based (see DTBA ML-
based methods section). Feature-based AI/ML methods can
be integrated with other approaches constructing “Ensemble
system” as presented in Ezzat et al. (2016), Jiang et al. (2017), and
Rayhan et al. (2019). Thus, several comprehensive recent reviews
summarized the different studies that predict DTIs using various
techniques covering structure-based, similarity-based, network-
based, and AI/ML-based methods as presented in Liu Y. et al.
(2016), Ezzat et al. (2017, 2018, 2019), Rayhan et al. (2017),
Trosset and Cavé (2019), and Wan et al. (2019). Other reviews
focused on one aspect which are similarity-based methods (Ding
et al., 2014; Kurgan and Wang, 2018) or feature-based methods
(Gupta, 2017). Most of the approaches mentioned above address
DTI prediction as a simple binary on-off relationship. That is,
they simply predict whether the drug and target could interact or
not. This approach suffers from two major limitations including:
(1) the inability to differentiate between true negative interactions
and instances where the lack of information or missing values
impede predicting an interaction, and (2) it does not reflect
how tightly the drug binds to the target which reflects the
potential efficacy of the drug. To overcome these limitations,
approaches that focus onDTBApredictions have been developed.
We compile this study with the focus on DTBA, which has not
been addressed well in the past, but is more critical for estimating
usefulness of DTI in early stages of drug development.

DRUG-TARGET BINDING AFFINITY (DTBA)

DTBA indicates the strength of the interaction or binding
between a drug and its target (MaW. et al., 2018). The advantage
of formulating drug-target prediction as a binding affinity
regression task, is that it can be transformed from regression
to either binary classification by setting specific thresholds or
to ranking problem (He et al., 2017). This enables different
generalization options.

Most in silico DTBA prediction methods developed to
date use 3D structural information (see Figure 1), which was
demonstrated to successfully contribute to the drug design
(Leach et al., 2006). Some of these methods provide free analysis
software as reported by Agrawal et al. (2018). The 3D structure
information of proteins is used in the molecular docking analysis
and followed by applying search algorithms or scoring functions
to assist with the binding affinity predictions (Scarpino et al.,
2018; Sledz and Caflisch, 2018). This whole process is used in the
structured-based virtual screening (Li and Shah, 2017).

In DTBA predictions, the concept of scoring function (SF)
is frequently used. SF reflects the strength of binding affinity
between ligand and protein interaction (Abel et al., 2018).
When SFs have a prearranged functional form that mimics the
relationship between structural features and binding affinity, it
is called classical SF. Classical SFs are categorized as Empirical
SFs (Guedes et al., 2018), Force field SFs (Huang and Zou, 2006),
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FIGURE 1 | An overview of the different types of computational methods developed to predict drug-target interactions (DTIs) and drug-target binding affinity (DTBA)

categories.

and Knowledge-based SFs (Huang and Zou, 2006; Liu et al.,
2013). SFs have been used to predict protein-ligand interaction
in molecular docking such as with the Binding Estimation After
Refinement (BEAR) SF (Degliesposti et al., 2011) which is a
post docking tool that uses molecular dynamics to accurately
predict protein binding free energies using SF. Several of these
classical SFs are summarized in a recent review (Li J. et al., 2019).
A specific form of the SF called target-specific SF, is based on
energy calculations of interacting compound (i.e., free energy
calculations; Ganotra and Wade, 2018; Sun et al., 2018). Other
SFs were also developed that do not follow a predetermined
functional form. These SFs use ML techniques to infer functional
form from training data (Deng et al., 2004; Vert and Jacob,
2008; Kundu et al., 2018). Thus, the ML-based SFs methods are
data-driven models that capture the non-linearity relationship

in data making the SF more general and more accurate. DL
is an emerging research area in different cheminformatic fields
including drug design (Jain, 2017; Andricopulo and Ferreira,
2019). SFs that use DL in structure-based methods focused on
binding affinity prediction have been developed (Ashtawy and
Mahapatra, 2018; Jiménez et al., 2018; Antunes et al., 2019). As
all DL models, these DL-based SFs methods learn the features
to predict binding affinity without requirement for feature
engineering as may be the case in the ML methods. Several
reviews have been made covering virtual screening structure-
based binding affinity prediction methods including docking
techniques, before applying SFs (Kontoyianni, 2017; Li and Shah,
2017), classical SFs (Guedes et al., 2018), or ML-derived SFs (Ain
et al., 2015; Heck et al., 2017; Colwell, 2018; Kundu et al., 2018).
The main limitations of the structure-based methods are the
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requirement for the 3D structure data (including compound and
protein) that are scarce. This is compounded by the problem of
low-quality structure predicted from docking, which cannot be
tested and scaled to large-scale data applications (Karimi et al.,
2019). Several publications have discussed the major limitations
of structured-based virtual screening (Sotriffer and Matter, 2011;
Hutter, 2018).

Non-structure-based methods, overcome most of these
limitations since there is no need for the docking process or
3D structural data. Despite the enormous amount of effort
and research devoted to binding affinity prediction, there are
only a few publications that address the DTBA problem as
a non-structure-based approach. This remains a critical and
challenging task that requires the development of significantly
improved algorithms.

Here, we review methods developed for prediction of DTIs
based on binding affinities. Specifically, we focus on the
novel methods that utilize non-structure-based binding affinity
prediction (shown in bold font in Figure 1), which does
not require or use 3D structural data. The study provides a
comparative analysis of the current DTBA prediction methods.
It covers: (a) definitions and calculations associated with
binding affinity, (b) the benchmark datasets that are used in
DTBA regression problem, (c) computational methods used, (d)
evaluation and performance comparison of DTBA prediction
methods, and (e) recommendations of areas for improvement
and directions in binding affinity prediction research.

MEASURING BINDING AFFINITY

Each ligand/protein has a unique binding affinity constant for
specific receptor system which can be used to identify distinct
receptors (Weiland and Molinoff, 1981; Bulusu et al., 2016). The
equilibrium reaction below describes how a protein (P) binds to
its ligand (L) to create the protein-ligand complex (PL) (Du et al.,
2016):

P+L
Kα⇔ PL (1)

Ka is the equilibrium association constant (also called binding
affinity constant). A high value of Ka indicates a strong binding
capacity between the drug/ligand and the receptor/protein
(Weiland and Molinoff, 1981; Bulusu et al., 2016). The inverse of
the above reaction is when the protein-ligand complex dissociates
into its components of a protein and a ligand as explained in the
equilibrium reaction below (Du et al., 2016):

PL
Kd⇔ P+L (2)

Kd is the equilibrium dissociation constant, and it is used more
often than Ka. Small values of Kd indicate higher affinity (Ma
W. et al., 2018). Kd is the inverse of the Ka as illustrated in the
equation below (Du et al., 2016):

Kd =
1

Ka
(3)

Binding Curve
Figure 2 shows a hypothetical example of a binding curve for
two ligands: Ligand 1 and Ligand 2. The x-axis represents
the concentration of the ligand, and the y-axis represents the
percentage of available binding sites (2) in a protein that is
occupied by the ligand. The values of 2 range from 0 to 1
(corresponding to the range from 0 to 100% in Figure 2). For
example, if 2 is 0.5, this means that 50% of the available binding
sites are occupied by the ligand. The binding curves help in
determining graphically which ligand binds more strongly to the
protein at a specific concentration of the ligand (Stefan and Le
Novère, 2013). For example, in Figure 2, if the concentration of
the ligands is 3 µM, Ligand 1 binds to 75% of the binding sites
of the protein, while Ligand 2 binds to only 50% of the binding
sites. Therefore, Ligand 1 binds more strongly to the protein than
Ligand 2. Figure 2 depicts an example of cooperative binding (if
the concentration of the ligand increases, the number of binding
sites the ligand occupies increases non-linearly). Cooperative
binding is positive if binding of the ligand increases the affinity
of the protein and increases the chance of another ligand binding
to the protein; otherwise, the cooperative binding is negative (i.e.,
binding of the ligand to the protein decreases the affinity of the
protein and reduces the chance of another ligand binding to the
protein; Stefan and Le Novère, 2013).

The equation below shows the relationship between 2 for a
protein to which the ligand binds, and Kd of the equilibrium
reaction at a given concentration of the ligand [L] (Salahudeen
and Nishtala, 2017):

θ = [L]

Kd+[L]
(4)

FIGURE 2 | A hypothetical example of a binding curve for ligand 1 and ligand

2. The x-axis shows the concentration of the ligand, and the y-axis shows the

percentage of available binding sites (2) in a protein that is occupied by the

ligand.
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Ki and IC50 Constants
The inhibitor constant (Ki) is an indicator of the potency
of an inhibitor (Bachmann and Lewis, 2005). Inhibitors are
compounds (e.g., drugs) that can reduce the activity of enzymes.
Enzymes that exhibit overactivity are potential targets for drugs
to treat specific diseases, as well as inhibitors of a cascade
of events in a pathway. Several drugs act by inhibiting these
specific enzymes (Chou and Talalay, 1984; Tang et al., 2017).
IC50 is the concentration required to produce half-maximum
inhibition (Bachmann and Lewis, 2005). Ki is calculated using
IC50 values, which are the concentration required to produce 50%
inhibition (Burlingham and Widlanski, 2003). Figure 3 provides
a hypothetical example of IC50 values, with the concentration
of the inhibitor represented on the x-axis, and the percentage
of enzyme activity represented on the y-axis. The hypothetical
example (in Figure 3) shows 50% of enzyme activity can be
inhibited when the concentration of the inhibitor is 2 µM.

IC50 is not an indicator of affinity, but rather indicates the
functional strength of the inhibitor. On the other hand, Ki

constant reflects the binding affinity of the inhibitor. Lower
values of Ki indicate higher affinity. The relationship between
IC50 and Ki is explained by the equation below (Hulme and
Trevethick, 2010):

Ki =
IC50

1+ [S]
Km

(5)

where Km is the substrate concentration (in the absence of
inhibitor) at which the velocity of the reaction is half-maximal,
and [S] is the concentration of substrate. More details about Km

can be found in Hulme and Trevethick (2010).

BENCHMARK DATASETS AND SOURCES

Benchmark datasets are used to train models and evaluate their
performance on the standardized data. Using these datasets
also allow the performance of the newly developed method

FIGURE 3 | Relationship between concentration of inhibitors and enzymes

activity.

to be compared to the state-of-the-art methods to establish
the best performance. Only a few benchmark datasets have
been used to develop in silico DTBA prediction methods.
When predicting DTIs, the Yamanishi datasets (Yamanishi et al.,
2008) are the most popular benchmark datasets. There are
four Yamanishi datasets based on family of target proteins,
including: (1) nuclear receptors (NR), (2) G protein-coupled
receptors (GPCR), (3) ion channels (IC), and (4) enzymes (E).
Each dataset contains binary labels to indicate the interacting
or non-interacting drug-target pairs (Yamanishi et al., 2008).
However, these datasets cannot be used for DTI regression-
based models, because the datasets do not indicate the actual
binding affinities between known interacting drug-target pairs.
That is, actual binding affinity scores are needed to train the
models to predict the continuous values that indicate the binding
strength between drugs and their targets. Three large-scale
benchmark datasets that we name Davis dataset, Metz dataset,
and Kinase Inhibitor BioActivity (KIBA) dataset, which provide
these binding affinities for interaction strength were used to
evaluate DTBA prediction in Davis et al. (2011), Metz et al.
(2011), and Tang et al. (2014), respectively. All three datasets are
large scale biochemical selectivity assays of the kinase inhibitors.
The kinase protein family is used for the reason that this
protein family has increased biological activity and is involved
in mediating critical pathway signals in cancer cells (Tatar and
Taskin Tok, 2019).

In Davis dataset, the Kd value is provided as a measure of
binding affinity. The Metz dataset provides the Ki as a measure
of binding affinity. When the value of Kd or Ki is small, this
indicates strong binding affinity between a drug and its target.
KIBA dataset integrates different bioactivities and combines Kd,
Ki, and IC50 measurements. KIBA score represents a continuous
value of the binding affinity that was calculated utilizing Kd, Ki,
and IC50 scores. The higher KIBA score indicates a lower binding
affinity between a drug and its target.

Recently, Feng (2019) also used ToxCast (Judson, 2012) as
a benchmark dataset for binding affinity. This dataset is much
larger than the other three benchmark datasets. It contains
data about different proteins that can help in evaluating the
model robustness and scalability. ToxCast contains toxicology
data obtained from in vitro high-throughput screening of drugs
(i.e., chemicals). Several companies have done ToxCast curation
with 61 different measurements of binding affinity scores. Other
details of this dataset and the method are explained later
in section Computational Prediction of Drug-Target Binding
Affinities. Table 1 summarizes the statistics for these four
benchmark datasets.

TABLE 1 | Binding affinity benchmark datasets statistics.

Datasets No. of drugs No. of proteins Known DTIs

Davis 68 442 30,056

Metz 1,421 156 35,259

Kiba 2,116 229 118,254

ToxCast 7,675 335 530,605
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Other benchmark binding affinity datasets provided 3D
structure information used to evaluate and validate structure-
based methods via scoring functions and docking techniques.
These benchmark datasets provide all the binding affinity
information for the interactions. We listed these datasets without
mentioning any further details since their use is beyond the scope
of this study. Most of these datasets have more than one version
since they are updated each year by adding more experimental,
validated data. These datasets/data sources are: PDBbind (Wang
et al., 2004, 2005), BindingDB (Chen et al., 2001; Liu et al.,
2007; Gilson et al., 2016), BindingMOAD—(the Mother Of All
Databases; Hu et al., 2005; Benson et al., 2007; Ahmed et al.,
2015; Smith et al., 2019), CSAR (Smith et al., 2011; Dunbar et al.,
2013), AffinDB (Block et al., 2006), Ligand Protein DataBase
(LPDB) (Roche et al., 2001), and Protein-Ligand Database (PLD)
(Puvanendrampillai and Mitchell, 2003). These datasets are
integrated with protein 3D structure information provided in
Protein Data Bank (PDB) (Berman et al., 2000; Westbrook et al.,
2003) adding more information. All these resources are publicly
available, and some of them have associated web-tools aiming to
facilitate accessing and searching information.

COMPUTATIONAL PREDICTION OF
DRUG-TARGET BINDING AFFINITIES

There are few cheminformatics methods developed to predict
continuous DTBA that do not use the 3D structure data. These
methods are data-driven and use AI/ML/DL techniques for
regression task rather than classification. To our knowledge, there
are only six state-of-art methods developed for DTBA prediction.
These we describe in what follows.

Artificial Intelligence and Machine
Learning-Based Methods
AI/ML and statistical analysis approaches have been applied
across different stages of the drug development and design
pipelines (Lima et al., 2016) including target discovery (Ferrero
et al., 2017), drug discovery (Hutter, 2009; Raschka et al.,
2018; Vamathevan et al., 2019), multi-target drug combination
prediction (Tang et al., 2014; Vakil and Trappe, 2019), and
drug safety assessment (Raies and Bajic, 2016, 2018; Lu et al.,
2018). AI/ML approaches are generally either feature-based
or similarity-based. The feature-based approaches use known
DTIs chemical descriptors for drugs and the descriptors for the
targets to generate feature vectors. On the other hand, similarity-
based AI/ML approaches use the “guilt by association” rule.
Using this rule is based on the assumptions that similar drugs
tend to interact with similar targets and similar targets are
targeted by similar drugs. Such AI/ML approaches that predict
binding affinity of DTIs were used to develop state-of-the-art
DTBA prediction methods, KronRLS (Pahikkala et al., 2015) and
SimBoost (He et al., 2017).

KronRLS
Regularized least-square (RLS) is an efficient model used in
different types of applications (Pahikkala et al., 2012a,b). Van

Laarhoven et al. (2011) used RLS for the binary prediction of
DTIs and achieved outstanding performance. Later, the RLS
model was amended to develop a method that is suitable for
DTBA prediction named, Kronecker-Regularized Least Squares
(KronRLS) (Pahikkala et al., 2015). This method is a similarity-
based method that used different types of drug-drug similarity
and protein-protein similarity score matrices as features. The
problem is formulated as regression or rank prediction problem
as follows: a set D of drugs {d1, d2,..., di} and a set T of protein
targets {t1, t2,..., ti} are given with the training data X= {x1, x2,...,
xn} that is a subset from all possible generated drug-target pairs
X ⊂ {di×tj}. Each row of X (i.e., feature vector) is associated with
the label yi, yi ǫ Yn, where Yn is the label vector that represents a
binding affinity. To learn the prediction function f, a minimizer
of the following objective function J is defined as:

J(f ) =
m

∑

i = 1

( yi − f (xi))
2 + λ ‖ f ‖2k (6)

Here ||f ||k is the norm of f, λ > 0 is regularization parameter
defined by the user, and K is the kernel function (i.e., similarity)
that is associated with the norm. The objective function to be
minimized during optimization process is defined as:

f (x) =
m

∑

i=1

aiK(x, xi) (7)

The kernel function K in the equation above is the symmetric
similarity matrix n × n for all possible drug-target pairs.
This kernel function is the Kronecker product of two other
similarity matrices: K = Kd ⊗ Kt , where Kd is the drug
chemical structure similarity matrix computed using the
PubChem structure clustering tool, and Kt is the protein
sequence similarity matrix computed using both original and
normalized versions of the Smith-Waterman (SW) algorithm
(Yamanishi et al., 2008; Ding et al., 2014). There are two
scenarios of the training data. If the training set X =
{di× tj} contains all possible pairs, the parameter vector a
in Equation (7) can be obtained by solving the system of
linear equations:

(K + I) a= y (8)

where I is the identity matrix. For the second scenario, if only a
subset of {di× tj} is used as the training data, such as X ⊂ {di×
tj}, the vector y has missing values for binding affinity and for
determining the parameter a, conjugate gradient with Kronecker
algebraic optimization is needed to solve the system of linear
Equation (8).

SimBoost
SimBoost (He et al., 2017) is a novel non-linear method that
has been developed to predict DTBA as a regression task
using gradient boosting regression trees. This method uses both
similarity matrices and constructed features. The definition of the
training data is similar to the KronRLS method. Thus, SimBoost
requires a set of, (1) drugs (D), (2) targets (T), (3) drug-target
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pairs (that are associated with user-defined features), and (4)
binding affinity such that yi ǫ Yn (where Yn is the binding affinity
vector). SimBoost is used to generate features for each drug,
target, and drug-target pair. There are three types of features:

Type-1 features are object-based features for every single
drug and target. This type of features reflects the statistics and
similarity information such as score, histogram, a frequency for
every single object (drug or target).

Type-2 features are similar to network-based features. Here,
two networks are built, one network for drug-drug similarity,
and the other network for target-target similarity. For the drug-
drug similarity network, each drug is a graph node, and the
nodes connected through edges. Edges are determined using the
similarity score that is higher than the user-defined threshold.
The construction of the second target-target similarity network
is similar to the drug-drug network. For each network, we extract
features. These features include statistics of node neighbors, page
rank, betweenness, and eigencentrality (introduced in Newman,
2018).

Type-3 features are heterogeneous network-based features
from the drug-target network, where drugs and targets are
connected based on binding affinity continuous value.We extract
other features from this network such as the latent vectors using
matrix factorization (Liu Y. et al., 2016), and the normal ones,
including betweenness, closeness, and eigencentrality.

A feature vector is constructed for each (drug, target) pair by
concatenating type-1 and type-2 feature vector for each di and
tj and type-3 feature vector for each pair (di, tj). After finishing
feature engineering, the feature vector is feed to the gradient
boosting regression trees. In this model, the predicted score ŷi
for each input data xi that is represented by its feature vector, is
computed using the following:

ŷi = φ(xi) =
K

∑

k=1

fk(xi), fk ∈ F (9)

Here, B is the number of regression trees, {fk} is the set of trees,
and F represents the space of all possible trees. The following is
the regularized objective function L used to learn the fk:

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

�(fk ) (10)

Here, l is a differentiable loss function that evaluates the
prediction error. The � function measures the model complexity
to avoid overfitting. The model is trained additively, at each
iteration t, F is searched to find a new tree ft . This new tree ft
optimizes the following objective function:

L(t) =
n

∑

i =1

l(yi, ŷ
(t)
i )+

t
∑

i =1

�(fi)=
t

∑

i =1

l(yi, ŷ
(t−1)
i + ft(xi))

+
t

∑

i =1

�(fi) (11)

A gradient boosting algorithm iteratively adds trees that optimize
the approximate objective at specific step for several user-defined

iterations. SimBoost used similarity matrices are the same as
KronRLS and are obtained using drug-drug similarity (generated
by PubChem clustering based on the chemical structure) and
target-target similarity (generated using the SW algorithm based
on protein sequences).

Deep Learning-Based Methods
Recently and in this big data era, DL approaches have
been successfully used to address diverse problems in
bioinformatics/cheminformatics applications (Ekins, 2016;
Kalkatawi et al., 2019; Li Y. et al., 2019) and more specifically in
drug discovery as discussed in detail in Chen et al. (2018), Jing
et al. (2018), and Ekins et al. (2019). DL algorithms developed
to predict DTBA sometimes show superior performance when
compared to conventional ML algorithms (Öztürk et al., 2018,
2019; Karimi et al., 2019). These DL-based algorithms developed
to predict DTBA differ from each other in two main aspects. The
first is concerning the representation of input data. For example,
Simplified Molecular Input Line Entry System (SMILES),
Ligand Maximum Common Substructure (LMCS) Extended
Connectivity Fingerprint (ECFP), or a combination of these
features can be used as drug features (see Table 4). The second is
concerning the DL system architecture that is developed based
on different neural network (NN) types (Krig, 2016) elaborated
on below. The NN types differ in their structure that in some
cases include the number of layers, hidden units, filter sizes,
or the incorporated activation function. Each type of NN has
its inherent unique strengths that make them more suitable
for specific kinds of applications. The most popular NN types
include the Feedforward Neural Network (FNN), Radial Basis
Function Neural Network (RBNN), Multilayer Perceptron
(MLP), Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), and Modular Neural Network (MNN)
(Schmidhuber, 2015; Liu et al., 2017). FNN and CNN have been
used in algorithms discussed below to predict DTBA.

FNN, also known as a front propagated wave, is the simplest
type of artificial NN (ANN) (Michelucci, 2018). In this type, the
information only moves in one direction, from the input nodes
to the output nodes, unlike more complex kinds of NN that
have backpropagation. Nonetheless, it is not restricted to having
a single layer, as it may have multiple hidden layers. Like all
NN, FNN also incorporates an activation function. Activation
function (Wu, 2009) is represented by a node which is added
to the output layer or between two layers of any NN. Activation
function node decides what output a neuron should produce, e.g.,
should it be activated or not. The form of the activation function
is the non-linear transformation of the input signal to an output
signal that serves as the input of a subsequent layer or the final
output. Example of activation functions includes sigmoid, tanh,
Rectified Linear Unit (ReLU), and variants of them.

On the other hand, CNN uses a variation of multilayer
perceptron. Its architecture incorporates convolution layers
which apply k filters on the input to systematically capture
the presence of some discriminative features and create feature
maps (Liu et al., 2017). Those filters are automatically learned
based on the desired output, which maximizes the algorithms
ability to identify true positive cases. This is achieved through a
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loss layer (loss function) which penalizes predictions based on
their deviations from the training set. When many convolutional
layers are stacked, more abstracted features are automatically
detected. Usually, a pooling layer follows a convolution layer to
limit the dimension and keep only the essential elements. The
common types of pooling are average pooling and max pooling.
Average pooling finds the average value for each patch on the
feature map. Max pooling finds the maximum value for each
patch of the feature map. The pooling layer produces a down-
sampled feature map which reduces the computational cost.
After features extraction and features selection automatically
performed by the convolutional layers and pooling layers, fully
connected layers are usually used to perform the final prediction.

The general design used for the prediction of DTBA start with
the representation of the input data for the drug and target, then
different NN types with various structures are applied to learn
features (i.e., embedding). Subsequently, the features of each
drug-target pair are concatenated to create feature vectors for all
drug-target pairs. The fully connected (FC) layers are fed with
these feature vectors for the prediction task. Figure 4 provides a
step-by-step depiction of this general framework.

DeepDTA
DeepDTA, introduced in Öztürk et al. (2018), is the first DL
approach developed to predict DTBA, and it does not incorporate
3D structural data for prediction, i.e., it is non-structure-
based method. DeepDTA uses SMILES, the one-dimensional
representation of the drug chemical structure (Weininger, 1988,
1990), as representation of the drug input data for drugs,
while the amino acid sequences are used to represent the
input data for proteins. Integer/label encoding was used to
encode drug SMILES. For example, the [1 3 63 1 63 5] label

FIGURE 4 | Flowchart of the general framework of deep learning (DL) models

used for drug-target binding affinity (DTBA) prediction.

encodes the “CN=C=O” SMILES. The protein sequences are
similarly encoded. More details about data preprocessing and
representation are explained in Öztürk et al. (2018). A CNN
(Liu et al., 2017) that contains three 1D convolutional layers
following by max-pooling function (called the first CNN block)
was applied on the drug embedding to learn latent features for
each drug. All three 1D convolution layers in each CNN block
consists of 32, 64, and 96 filters, respectively. An identical CNN
block was constructed and applied on protein embedding as well.
Subsequently, the feature vectors for each drug-target pair are
concatenated and fed into the three FC layers coined DeepDTA.
First two FC layers contain a similar number of hidden nodes
equal to 1,024, and a dropout layer follows each one of them to
avoid overfitting as a regularization technique, as introduced in
Srivastava et al. (2014). The last FC layer has a smaller number
of nodes equal to 512 that is followed by the output layer. ReLU
(Nair and Hinton, 2010) layer is implements J(x) = max(0, x)
that was used as the activation function (explained above). This
model is following the general architecture that is illustrated in
Figure 2, but with a different structure. Also, DeepDTA tunes
several hyper-parameters such as the number of filters, filter
length of the drug, filter length of the protein, hidden neurons
number, batch size, dropout, optimizer, and learning rate in
the validation step. The goal of this model is to minimize the
difference between the predicted binding affinity value and the
real binding affinity value in the training session. The goal of
this model is to minimize the difference between the predicted
binding affinity value and the real binding affinity value in the
training session. DeepDTA performance significantly increased
when using two CNN-blocks to learn feature representations of
drugs and proteins. This study showed that performance is lower
when using CNN to learn protein representation from the amino-
acid sequence compared to other studies that are using CNN in
their algorithms. This poor performance suggests CNN could
not handle the order relationship in the amino-acid sequence,
captured in the structural data. Öztürk et al. (2018), suggests
avoiding this limitation by using an architecture more suitable
for learning from long sequences of proteins, such as Long-Short
Term Memory (LSTM).

WideDTA
To overcome the difficulty of modeling proteins using their
sequences, the authors of DeepDTA attempted to improve the
performance of DTBA prediction by developing a new method
names WideDTA (made available through the e-print archives,
arXiv) (Öztürk et al., 2019). WideDTA uses input data such
as Ligand SMILES (LS) and amino acid sequences for protein
sequences (PS), along with two other text-based information
sources Ligand Maximum Common Substructure (LMCS) for
drugs and Protein Domains and Motifs (PDM) based on
PROSITE. Unlike DeepDTA, WideDTA represents PS and LS as
a set of words instead of their full-length sequences. A word in PS
is three-residues in the sequence, and a word in LS is 8-residues
in the sequence. They claim, shorter lengths of residues that
represent the features of the protein, are not detected using the
full-length sequences due to the low signal to noise ratio. Thus,
they proposed the word-basedmodel instead of a character-based
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model. WideDTA is a CNN DL model that uses as input all
four text-based information sources (PS, LS, LMCS, PDM) and
predict binding affinity. It first uses the Keras Embedding layer
(Erickson et al., 2017) to represent words with 128-dimensional
dense vectors to fed integer encode inputs. Then, it sequentially
applies two 1D-CNN layers with 32 and 64 filters, followed by a
max-pooling layer by the activation function layer, ReLU:

Features<− ReLU(pool(conv2(conv1(input))))

Four models with the same architecture are used to extract
features from each of the text-based information sources (PS, LS,
LMCS, PDM). The output features from each model are then
concatenated and fed to three fully connected (FC) layers (with
two drop out layers to avoid overfitting problems) that predict
the binding affinity.

PADME
PADME (Protein And Drug Molecule interaction prEdiction;
Feng, 2019), is another DL-based method that applies drug-
target features and fingerprints to different deep neural network
architectures, to predict the binding affinity values. There are two
versions of PADME. The first one called PADME-ECFP, uses the
Extended-Connectivity Fingerprint (Rogers and Hahn, 2010) as
input features that represent drugs. The second version called
PADME-GraphConv integrates Molecular Graph Convolution
(MGC) (Liu et al., 2019) into the model. This is done by adding
one more Graph Convolution Neural Network (GCNN) layer
(which is a generalization of CNN), which is used to learn
the latent features of drugs from SMILES (i.e., from graphical
representation). Both PADME versions use Protein Sequence
Composition (PSC) (Michael Gromiha, 2011) descriptors, which
contain rich information to represent the target proteins. After
generating the feature vectors for each drug and target protein, a
feature vector for each drug-target pair is fed into a simple FNN
to predict the DTBA. Techniques used for regularization in the
FNN includes dropout, early stopping, and batch normalization.
The ReLU activation functions are used for the FC layers. The
cross-validation (CV) process revealed the best hyperparameter
(such as batch size, dropout rate, etc.) or combination thereof that
is fixed and used to evaluate the test data.

DeepAffinity
DeepAffinity (Karimi et al., 2019) is a novel interpretable DL
model for DTBA prediction, which relies only on using the
SMILES representation of drugs and the structural property
sequence (SPS) representation that annotates the sequence with
structural information to represent the proteins. The SPS is better
than other protein representations because it gives structural
details and higher resolution of sequences (specifically among
proteins in the same family), that benefits regression task. The
SPS being better than other protein representations may also
be as a consequence of the SPS sequence being shorter than
other sequences. Both drug SMILES and protein SPS are encoded
into embedding representations using a recurrent neural network
(RNN) (Ghatak, 2019). RNN model named seq2seq (Shen and
Huang, 2018) is used widely and successfully in natural language
processing. The seq2seq model is an auto-encoder model that

consists of a recurrent unit called “encoder” that maps sequence
(i.e., SMILES/SPS) to a fixed dimensional vector, and other
recurrent unit called “decoder” that map back the fixed-length
vector into the original sequence (i.e., SMILES/SPS). These
representation vectors that have been learned in an unsupervised
fashion capture the non-linear mutual dependencies among
compound atoms or protein residues. Subsequently, the RNN
encoders and its attention mechanisms which are introduced
to interpret the predictions, are coupled with a CNN model to
develop feature vectors for the drugs and targets separately. The
CNN model consists of a 1D convolution layer followed by a
max-pooling layer. The output representation of the CNNs for
both the drugs and targets are then concatenated and fed into FC
layers to output the final results, DTBA values. The entire unified
RNN-CNN pipeline, including data representation, embedding
learning (unsupervised learning), and joint supervised learning
trained from end to end, achieved very high accuracy results
compared to ML models that use the same dataset (Karimi et al.,
2019).

EVALUATION OF THE STATE-OF-THE-ART
METHODS

Since KronRLS, SimBoost, DeepDTA, DeepAffinity, WideDTA,
and PADME are the only computational non-structure-based
methods developed for prediction of DTBA to-date, we consider
them the baseline methods. Here, we compare the performance
of KronRLS, SimBoost, DeepDTA, WideDTA, and PADME,
using the same benchmark datasets for evaluation. We excluded
DeepAffinity from this comparison since it used different datasets
which are based on BindingDB database (Liu et al., 2007). Also,
when methods have more than one version, the comparison only
includes the version that performs the best, based on identical
evaluation metrics published for each method.

Evaluation Metrics
The evaluation of the performance in these regression-based
models uses five metrics:

• Concordance Index (CI), first introduced by Gönen and Heller
(2005), and was used first for evaluation in the development
of KronRLS. CI is a ranking metric for continuous values that
measure whether the predicted binding affinity values of two
random drug-target pairs were predicted in the same order as
their actual values were:

CI = 1

Z

∑

si>sj

h(bi−bj) (12)

where bi is the prediction value for the larger affinity si, bj is the
prediction value for the smaller affinity sj, Z is a normalization
constant, and h(x) is the Heaviside step function (Davies, 2012),
which is a discontinuous function defined as:

h(x)=







1, x>0
0.5, x=0
0, x<0

&
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where its value is either equal to zero when the input is negative
or equal to one when the input is positive.

• Mean Square Error (MSE) (Wackerly et al., 2014) is commonly
used as a loss function (i.e., error function) in regression task
to measure how close the fitted line, that is represented by
connecting the estimated values, is to the actual data points.
The following formula defines theMSE, in which P denotes the
prediction vector, Y denotes the vector of the actual outputs,
and n is the number of samples. The square is used to ensure
the negative values do not cancel the positive values. The value
ofMSE is close to zero, thus the smaller theMSE, the better the
performance of the regressor (i.e., estimator):

MSE=
n

∑

i=1

(Pi−Yi) (13)

• Root Mean Squared Error (RMSE) (Wackerly et al., 2014) is
another metric to evaluate the regressor where it is the square
root ofMSE.

RMSE= 2
√
MSE (14)

RMSE is the distance, on average, of data points from the
fitted line.

• Pearson correlation coefficient (PCC) (also known as Person’sR;
Kullback and Leibler, 1951) measures the difference between
the actual values and the predicted values by measuring the
linear correlation (association) between these two variables.
The range of PCC is between +1 and −1, where +1 is a
total positive linear correlation, −1 is a total negative linear
correlation, and 0 is a non-linear correlation which indicates
that there is no relationship between the actual values and the
predicted values. The formula of PCC is defined as follows:

PCC =
cov

(

p,y
)

std
(

p
)

std
(

y
) (15)

where cov denotes the covariance between original values y
and predicted values, and std denotes the standard deviation.
The disadvantage is, PCC is only informative when used
with variables that have linear correlation, as PCC results are
misleading when used with non-linearly associated variables (Liu
J. et al., 2016).

• R-squared (R2) (Kassambara, 2018) is the proportion of
variation in the outcome that is explained by the predictor
variables. The R2 corresponds to the squared correlation
between the actual values and the predicted values in multiple
regression models. The higher the R-squared, the better
the model.

CI and RMSE are the only evaluation metrics reported by all
the baseline methods; other metrics are reported but not by all
the methods compared in this section. Also, RMSE and MSE
represent the error function of the same type of error (i.e., mean
square error) so reporting one of them is enough.

Validation Settings
The performance of the methods in different prediction tasks
is evaluated using various CV settings. The chosen setting can
affect accuracy and make the evaluation results less realistic.
KronRLS (Pahikkala et al., 2015) reported using three different
CV settings that make the performance evaluation more accurate
and realistic. One can split the input data (that is, how the set of
drug-target pairs and their affinity labels, are split into training
and testing dataset) in various ways, and this splitting of data
defines the validation settings used. There are three main ways
used to split input data:

• Setting 1 (S1): Random drug-target pair which correspond to
regular k-fold CV that split the data into k-folds randomly, and
keeps one of these folds for testing. That is, the training phase
includes a significant portion of all the drug-target pairs, while
the testing phase includes the remaining random pairs.

• Setting 2 (S2): New drug, which means the drug is missing
from the training data corresponding to leave one drug out
validation (LDO).

• Setting 3 (S3): New target, which means the target is missing
from the training data corresponding to leave one target out
validation (LTO).

KronRLS and PADME methods used these settings to evaluate
subsequently developed DTI and DTBA prediction methods.

Method Comparison
Tables 2, 3 summarize the performance of the baseline methods
using all CV settings based on RMSE and CI, respectively.
SimBoost and PADME reported RMSE in their respective
publications. However, DeepDTA and WideDTA reported only
MSE, so we calculated RMSE by taking the square root of
their reported MSE values as defined by Equation (13). The
KronRLS method did not report RMSE or MSE. However, the
SimBoost paper calculated and reported RMSE for the KronRLS
method (included in Table 2). Some of these baseline methods
were only evaluated based on select datasets, while others only
applied specific settings. All three dataset (Davis, Metz, and
KIBA) were used to evaluate the performances of the SimBoost
and PADME methods (based on self-reported results). The
performance of PADME was also assessed using the ToxCast
dataset. PADME is the first to use the ToxCast dataset. Moreover,
PADME performances are reported using each dataset with
the three settings (S1, S2, and S3) described above. However,
SimBoost only provides its performance using one setting (S1)
for each dataset.

Thus, we added performance results at specific settings not
found in the original manuscripts, as calculated and reported in
studies published later, to compare differences in performance
(these are denoted by stars ∗, see Tables 2, 3 legend). In some
instances, the results reported by other methods differ from the
self-reported results. There are two reasons the results difference.
The first is using different statistics of the datasets. For example,
some methods, such as PADME, filter the KIBA dataset as well as
adjusts the thresholds of other settings. The authors of PADME
explained in their study, “Because of the limitations of SimBoost
and KronRLS, we filtered the datasets. . . Considering the huge
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TABLE 2 | RMSE calculated using multiple settings for all baseline methods.

Dataset Setting Method/reference of results

KronRLS SimBoost DeepDTA PADME-EFP PADME-GC WideDTA

Davis

(Kd )

s1 0.608***

0.61562**

0.57294*

0.247

0.53103**

0.48197*

0.5109 0.43219 0.43225 0.5119

s2 0.84048* N/A N/A 0.78535 0.80644 N/A

s3 0.65964* N/A N/A 0.56005 0.57840 N/A

Metz

(Ki )

s1 0.562***

0.78128*

0.1660

0.58154*

N/A 0.55293 0.59926 N/A

s2 0.78429* N/A N/A 0.71170 0.74292 N/A

s3 0.89889* N/A N/A 0.79154 0.81893 N/A

KIBA s1 0.620***

0.64109**

0.65664*

0.204

0.47117**

0.46888*

0.4405 0.43214 0.418691 0.42308

s2 0.70243* N/A N/A 0.60201 0.62029 N/A

s3 0.68111* N/A N/A 0.61677 0.62345 N/A

ToxCast s1 N/A N/A N/A 0.40563 0.40779 N/A

s2 N/A N/A N/A 0.4485 0.44502 N/A

s3 N/A N/A N/A 0.48698 0.49439 N/A

The star symbols denote results that are not self-reported, i.e., the single star * indicates that PADME reported the other methods results, double stars ** indicates that DeepDTA reported

the other methods results, and the triple stars *** indicates that SimBoost reported the other methods results. Missing data are indicated with N/A. The best values for each setting are

indicated in bold font.

compound similarity matrix required and the time-consuming
matrix factorization used in SimBoost, it would be infeasible to
work directly on the original KIBA dataset. Thus, we had to filter
it rather aggressively so that the size becomes more manageable.”
Therefore, the authors of PADME reported different values for
the RMSE scores of KronRLS and SimBoost, as shown in Table 2.
The second reason is related to the CV settings such as the
number of folds, the random seeds to split the data into training
and testing, and the number of repeated experiments. The best
values for each setting are indicated in bold font in Table 2.

Tables 2, 3 show that the SimBoost, DeepDTA, andWideDTA
methods cannot handle the new drug and target settings
(indicated by the missing data). From the methods that provide
performances for all settings, we observe better performances
using S1 setting (random pairs) compared to both S2 and S3
settings. The better performances acquired using S1 setting is
expected for all methods and all datasets since it is the most
informative. Better performances were also observed for S3
setting as compared to S2 setting, suggesting that the prediction
of DTBA for new targets is more straightforward than the
prediction of DTBA for new drugs (Pahikkala et al., 2015).
However, we observe better performances for S2 setting than
S3 setting when the number of targets is much lower than the
number of drugs, as is the case for theMetz and ToxCast datasets.

From Tables 2, 3, we further conclude that overall, the DL-
based methods outperform AI/ML-based methods in predicting
DTBA. However, SimBoost error rate is smaller than other
methods for specific datasets indicating that there are some
characteristics of SimBoost and KronRLS that can improve
prediction performance. In Table 4, we provide a comparison
of all methods to summarize the characteristics of the methods

shedding light on the differences that may be contributing to
improved performance. The two AI/ML methods are similarity-
based (SimBoost combines similarity and features), while the
DL methods are features-based. These features were obtained
automatically from the raw data using DL without doing any
handcrafted feature engineering as in ML. Thus, developing DL-
based methods for DTBA prediction eliminates the limitation
of the ML methods associated with manual alteration of data.
Different representations for both drugs and targets also present
advantages discussed separately with each method above, and
we provide recommendations concerning the use of different
representation in the last section below.

The comparison table also shows all DL-based methods
reported up to now, used CNN to learn the features for both
drugs and targets. The robust feature of CNN is its ability
to capture local dependencies for both sequence and structure
data. CNN is additionally computationally efficient since it
uses unique convolution and pooling operations and performs
parameter sharing (Defferrard et al., 2016). All DL methods use
the same activation function, ReLU, which is themost widely used
activation function for many reasons (Gupta, 2017). First, ReLU
is non-linear function so it can easily backpropagate an error.
Second, ReLU can have multiple layers of neurons, but it does not
activate all these neurons at the same time. The last advantage of
ReLU function is that it converts negative values of the input to
zero values, and the neurons are not activated, so the network will
be sparse which means easy and efficient of computation.

We can also observe from Table 4, that KronRLS, SimBoost,
and PADME methods are suitable for both classification and
regression problems. It is better to generalize the model to work
on more than one application by making it suitable for both
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TABLE 3 | CI across multiple datasets of all baseline methods.

Dataset Setting Method/reference of results

KronRLS SimBoost DeepDTA PADME-ECFP PADME-GC WideDTA

Davis

(Kd )

s1 0.8830

0.8710**

0.87578*

0.8840

0.872**

0.8871*

0.8780 0.90388 0.90389 0.8860

s2 0.7480

0.69245*

N/A N/A 0.71630 0.72001 N/A

s3 0.8610

0.80751*

N/A N/A 0.85503 0.84483 N/A

Metz

(Ki )

s1 0.7930

0.748522*

0.8510

0.79439*

N/A 0.80756 0.79400 N/A

s2 0.7360

0.70916*

N/A N/A 0.74240 0.74104 N/A

s3 0.6660

0.647*

N/A N/A 0.69830 0.70796 N/A

KIBA s1 0.782**

0.7831*

0.8470

0.836**

0.84046*

0.8630 0.85745 0.86370 0.8750

s2 0.6890* N/A N/A 0.77310 0.75450 N/A

s3 0.7122* N/A N/A 0.77167 0.76790 N/A

ToxCast s1 N/A N/A N/A 0.79655 0.79871 N/A

s2 N/A N/A N/A 0.72057 0.7286 N/A

s3 N/A N/A N/A 0.68481 0.69050 N/A

The star symbols denote results that are not self-reported, i.e., the single star * indicates that PADME reported the other methods results, and the double stars ** indicates that DeepDTA

reported the other methods results. Missing data are indicated with N/A. The best values for each setting are indicated in bold font.

DTBA and DTIs predictions using the appropriate benchmark
datasets and correct evaluation metrics.

LIMITATIONS OF AI/ML/DL-BASED
METHODS

AI/ML/DL-based computational models developed for
DTBA prediction show promising results. However, all
such models suffer from limitations that if avoided, may
improve performance.

AI/ML-Based Methods
Similarity-based approaches used by these methods usually do
not take into considerations the heterogeneous information
defined in the relationship network. Avoiding this limitation
requires integrating a feature-based approaches with the
similarity-based approaches. Another limitation is that
AI/ML-based models require extensive training, and each
application requires specific training for the application-specific
purpose. Moreover, shallow network-based methods with
sequence data usually do not learn well some of the crucial
features (such as distance correlation) that may be needed for
accurate prediction.

DL-Based Methods
The use of these methods is currently trending despite DL
models creating “black boxes” that are difficult to interpret due
to the learning features integrated into the data for modeling.

Limitations faced with the use of DL models involve the
requirement of the large amount of high-quality data, which are
frequently kept private and is very expensive to generate. Not
using a sufficiently large volume of high-quality data affects the
reliability and performance of DL models. The other limitation
is that the engineered features (generated automatically), are
not intuitive, and the DL-based models developed lack rational
interpretation of the biological/chemical aspects of the problem
in question.

DISCUSSION

Here we attempt to extract useful insights from the
characteristics of the methods developed for DTBA prediction,
suggest possible future avenues to improve predictions, and
highlight the existing problems that need a solution. Our
recommendations are grouped under several sub-sections
to focus on different aspects of improvements of prediction
performance of DTBA.

Using More Comprehensive Information
Integrating information from different sources of drug and
target data can improve the prediction performance. These
sources can include but are not limited to drug side-
effects, drug-disease association, and drug interactions. For
targets, examples of other sources of information are protein-
protein interaction, protein-diseases association, and genotype-
phenotype association. To the best of our knowledge, no
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TABLE 4 | Baseline methods features.

Characteristics Methods

1. KronRLS 2. SimBoost 3. DeepDTA 4. WideDTA 5. PADME

Datasets Davis, Metz Davis, Metz, Kiba Davis, Kiba Davis, Kiba Davis, Metz, Kiba,

ToxCast

ML/DL AI/ML AI/ML DL DL DL

Similarity (OR) Feature

based method

Similarity-based Similarity and

feature based

Feature-based Feature-based Feature-based

Drug representation (or

features)

PubChem Sim

Chemical kernels

PubChem Sim +
statistical and

network features

SMILES SMILES + LMCS SMILES / ECFP

Protein representation (or

features)

SW sim score,

Normalized SW

sim score

SW sim score aaseq aaseq + PDM PSC

NN type for features learning CNN two 1D-CNN GCNN

NN type for prediction 3 FC layers FC layer Feedforward NN

Regressor/OR/activation

function

KronRLS model Gradient boosting

model

ReLU ReLU ReLU

Validation setting S1, S2, S3 S1 S1 S1 S1, S2, S3

Cross Validation Repeated 10-folds

CV, Nested CV,

LDO-CV, LTO-CV

10 times 5 folds

CV, LDO-CV,

LTO-CV

5 folds CV 6 folds CV 5 folds CV,

LDO-CV, LTO-CV

Performance metrics CI, MSE CI, RMSE CI, MSE, PCC CI, MSE, PCC CI, RMSE, R2

Classification/Regression Both Both Regression Regression Both

Year 2014 2017 2018 2019 2018

ML, Machine Learning; DL, Deep Learning; Sim, Similarity; aaseq, amino-acid sequence; SPS, structural property sequence; PSC, protein sequence composition; PDM, protein domain

and motif; ECFP, extended-connectivity fingerprint; LMCS, ligand maximum common substructure; KronRLS, Kronecker Regularized Least Square; CNN, convolutional neural network;

GCNN, graph convolution neural network; RNN, recurrent neural network; FC, fully connected; ReLU, rectified linear unit; CV, cross validation; LDO, leave one drug out; LTO, leave one

target out; MSE, Mean Square Error; RMSE, root square of mean square error; CI, concordance index; PCC, Pearson correlation coefficient.

method uses such information for DTBA prediction except
KronRLS, which integrates some other sources of information
in the form of similarity matrices. However, there are different
DTIs prediction works that integrate different sources of
information, which help in boosting the prediction performance.
For example, some studies predicted DTIs by integrating drug
side-effects information (Campillos et al., 2008; Mizutani et al.,
2012), or drug-diseases interaction (Wang W. et al., 2014;
Luo et al., 2017). Other studies used public gene expression
data (Sirota et al., 2011), gene ontology (Tao et al., 2015),
transcriptional response data (Iorio et al., 2010), or have
integrated several of these resources (Alshahrani and Hoehndorf,
2018). DTBA prediction methods can benefit from these
previous studies through integration of these different sources
of information.

Input Data Representation
Different representations can be used for both drugs and
targets (see Table 4). For example, SMILES, max common
substructure, and different kinds of fingerprints can be used
to represent drugs. These representations significantly affect
the prediction performance. Thus, it is essential to start
with appropriate representations by deciding which features
from these representations are intended to obtain. Each
representation has its own advantages as discussed above when
comparing methods.

Similarity Calculation, Selection, and
Information Fusion
There are several types of similarities that can be calculated
using different sources of information, such as the multiple drug-
drug similarities based on the chemical structures or based on
side-effects. There are also other drug-drug similarities based
on specific SMILES embeddings. The same goes for the target-
target similarities, which can use other sources of information
such as amino-acid sequence, nucleotide sequences, or protein-
protein interaction network. Choosing suitable drug-drug and
target-target similarities also contribute significantly to the
prediction performance under different settings (either for DTBA
or DTI prediction). If all similarities are combined, it will lead
to introducing some noise as well as the most informative
similarities will be affected by the less informative similarities.
Thus, it is essential to apply a similarity selectionmethod in order
to select the most informative and robust subset of similarities
among all similarities as introduced in Olayan et al. (2018).
Integrating multiple similarities (i.e., a subset of similarities)
has the advantage of complementary information for different
similarities as well as avoiding dealing with a different scale.
One could use the Similarity Network Fusion (SNF) (Wang
B. et al., 2014) algorithm for data integration in a non-linear
fashion to predict DTBA with multiple similarities. There are
other integration algorithms or functions such as SUM, AVG, and
MAX functions. Also, multi-view graph autoencoder algorithm
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(GAE) (Baskaran and Panchavarnam, 2019) proved its efficiency
in integrating drug similarities (Ma T. et al., 2018).

Integration of Computational Methods
Future in silico methods for DTBA prediction will benefit from
the integration of diverse methods and approaches. Methods can
be developed using different techniques, such as network analysis
(Zong et al., 2019), matrix factorization (Ezzat et al., 2017),
graph embeddings (Crichton et al., 2018), and more. Feature-
based models and similarity-based models can be combined as
well, as has been done in the SimBoost method. Furthermore,
AI/ML/DL methods can be combined in different ways, (1) by
combining some essential hand-crafted features from AI/ML and
auto-generated features from DL, (2) using AI/ML for feature
engineering and DL for prediction.

Network Analysis and Graph Mining
Techniques
Since graph mining and graph embedding approaches are very
successful in the prediction of DTIs (Luo et al., 2017; Olayan
et al., 2018), we can apply some of these techniques to DTBA.
To apply this technique to DTBA we can formulate a weighted
undirected heterogeneous graph G(V, E), where V is the set
of vertices (i.e., drugs and targets), and E is the set of edges
that represent the binding strength values. Multiple target-target
similarities and drug-drug similarities can be integrated into
the DTBA graph to construct a complete interaction network.
After that, graph mining techniques such as Daspfind (Ba-Alawi
et al., 2016) that calculate simple path scores between drug and
target can be applied. Also, graph embedding techniques such as
DeepWalk (Perozzi et al., 2014), node2vec (Grover and Leskovec,
2016), metapath2vec (Dong et al., 2017; Zhu et al., 2018), or
Line (Tang et al., 2015) can be applied to the DTBA graph to
obtain useful features for prediction. There are different graph
embedding techniques that can be used for features learning and
representation as summarized by Cai et al. (2018) and Goyal and
Ferrara (2018a,b). To the best of our knowledge no published
DTBA prediction method formulate the problem as a weighted
graph and apply such techniques.

Deep Learning
For the computational prediction of DTIs and DTBA, DL
and features learning (i.e., embedding) are currently the most
popular techniques since they are efficient in generating features
and addressing scalability for large-scale data. DL techniques
are capable of learning features of the drugs, targets, and the
interaction network. Furthermore, when using heterogeneous
information sources for drugs and targets, DL techniques can
be applied to obtain additional useful features. DL techniques
including different types of NN can extract useful features
not just from the sequence-based representation of drug (i.e.,
SMILES) and protein (i.e., amino acid) as done by Öztürk et al.
(2018, 2019), but also from the graph-based representation. For
example, CNN, or GCNN can be applied on SMILES (that
are considered graphs) to capture the structural information
of the molecules (i.e., drugs). It is highly recommended to

attempt to apply DL and feature learning techniques on graph-
based techniques as well as a heterogeneous graph that combine
different information about drugs and targets to enhance
the DTBA predictive model. Several steps should be applied
to develop a robust DL model: starting with selecting the
suitable data representation, deciding about NN type and DL
structures, then choosing the optimal hyperparameter set. The
decisive advantage of the DL techniques worth mentioning is to
implement the running of code on the Graphics Processing Unit
(GPU). In terms of time complexity, DL-based methods that run
on GPUs, drastically decrease computational time compared to
running the method on a CPU. Guidelines to accelerate drug
discovery applications using GPU as well as a comparison of
recent GPU and CPU implementations are provided in Gawehn
et al. (2018).

Multi-Output Regression Methods
Given that DTBA can be measured using several output
properties (e.g., IC50 and Ki,), it is a laborious task to develop
one model to predict each property individually. Therefore, it
is much more efficient to generate a model that can predict
several output properties, such asmulti-output regressionmodels
(also known as multi-target regression), which aims at predicting
several continuous values (Borchani et al., 2015). Multi-output
regression differs from multi-label classification, which aims
at predicting several binary labels (e.g., positive or negative;
Gibaja and Ventura, 2014). Multi-output regression methods
take into consideration correlations between output properties
in addition to input conditions (e.g. organism and cell line).
Borchani et al. (2015) recently wrote a review that covers
more in-depth details regarding the multi-output regression
methods. Moreover, Mei and Zhang (2019) demonstrated how
multi-label classification methods could be applied for DTI
prediction. In this study, each drug is considered a class label,
and target genes are considered input data for training. To the
best of our knowledge, multi-output regression methods have
not been applied for DTBA prediction. The main challenge
in applying multi-output regression to DTBA is missing data.
Output properties (and sometimes input conditions) may not be
available for all drug-target pairs in the dataset. However, several
multi-label classification methods have been applied for handling
missing data in multi-output datasets (Wu et al., 2014; Xu et al.,
2014; Yu et al., 2014; Jain et al., 2016).

Validation Settings
Overall, the methods further show that three settings for the CV
are used to evaluate the prediction model. However, there are
still many studies that only use the typical CV setting of random
pair for evaluation (S1 setting), which leads to overoptimistic
prediction results. Thus, models should be evaluated using all
three settings. Models can also be evaluated using (a rarely
used) fourth setting wherein both the drug and target are new
(Pahikkala et al., 2015; Cichonska et al., 2017), and it is even
better to evaluate the model under this setting as well, to see
how good it is in predicting DTI when both the drug and the
target are new. Evaluating the model under the four settings will
avoid over-optimistic results. The CV is essential for adjusting
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the hyperparameters for both AI/ML and DL models. It is also
essential to handle the overfitting problem. Overfitting happens
when a model learns many details, including noise from the
training data and fits the training data very well but cannot fit
the test data well (Domingos, 2012). Overfitting can be evaluated
by assessing how good the model is fitted to training data using
some strategies that were recommended in Scior et al. (2009)
and Raies and Bajic (2016) using two statistical parameters: S,
standard error of estimation (Cronin and Schultz, 2003), and R2,
coefficient of multiple determination (Gramatica, 2013), which
will not be discussed in detail in this review.

Evaluation Metrics
The choice of the suitable measure to evaluate DTBA prediction
model is very important. Since DTBA prediction is a regression
model, the evaluation metrics commonly used is CI and RMSE,
as explained above. Nonetheless, other metrics (such as R and
PCC) are partially used in assessment of DTBA prediction
models. Using several metrics is essential as every metric carries
disadvantages, which forces researchers to consider multiple
evaluation metrics (Bajić, 2000) in performance evaluation to
assess the model effectiveness in an accurate manner and from
different perspectives. For example, MSE and RMSE are more
sensitive to outliers (Chai and Draxler, 2014). RMSE is not a
good indicator of average model performance and is a misleading
indicator of average error. Thus, Mean Absolute Error (MAE)
would be a better metric, as suggested by Willmott et al.
(2009). So, it is better to have multiple evaluation metrics to get
benefit from each one’s strengths and evaluate the model from a
different perspective.

CONCLUSION

Both DTIs and DTBA predictions play a crucial role in the early
stages of drug development and drug repurposing. However, it
is more meaningful and informative to predict DTBA rather
than predicting just on/off interaction between drug and target.

An overview of the computational methods developed for
DTBA prediction are summarized, but we specifically focused
with more details on the recent AI/ML/DL-based methods
developed to predict DTBA without the limitations imposed
by 3D structural data. The available datasets for DTBA are
summarized, and the benchmark datasets are discussed with
details including definitions, sources, and statistics. For future
research, computational prediction of DTBA remains an open
problem. There is a lot of space to improve the existing
computational methods from different angles as discussed in the
recommendations. As the data is growing so fast, it is important
to keep updating the prediction and updating evaluation datasets
as well. After updating the data, it is necessary to customize,
refine, and scale the current DTBA models, and to develop more
efficient models as well.
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