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ABSTRACT

Integration analysis of multi-omics data provides a
comprehensive landscape for understanding biolog-
ical systems and mechanisms. The abundance of
high-quality multi-omics data (genomics, transcrip-
tomics, methylomics and phenomics) for the model
organism Arabidopsis thaliana enables scientists to
study the genetic mechanism of many biological pro-
cesses. However, no resource is available to provide
comprehensive and systematic multi-omics associ-
ations for Arabidopsis. Here, we developed an Ara-
bidopsis thaliana Multi-omics Association Database
(AtMAD, http://www.megabionet.org/atmad), a pub-
lic repository for large-scale measurements of as-
sociations between genome, transcriptome, methy-
lome, pathway and phenotype in Arabidopsis, de-
signed for facilitating identification of eQTL, emQTL,
Pathway-mQTL, Phenotype-pathway, GWAS, TWAS
and EWAS. Candidate variants/methylations/genes
were identified in AtMAD for specific phenotypes or
biological processes, many of them are supported
by experimental evidence. Based on the multi-omics
association strategy, we have identified 11 796 cis-
eQTLs and 10 119 trans-eQTLs. Among them, 68
837 environment-eQTL associations and 149 622
GWAS-eQTL associations were identified and stored
in AtMAD. For expression–methylation quantitative
trait loci (emQTL), we identified 265 776 emQTLs
and 122 344 pathway-mQTLs. For TWAS and EWAS,
we obtained 62 754 significant phenotype-gene as-
sociations and 3 993 379 significant phenotype-

methylation associations, respectively. Overall, the
multi-omics associated network in AtMAD will pro-
vide new insights into exploring biological mecha-
nisms of plants at multi-omics levels.

INTRODUCTION

As a model plant, Arabidopsis thaliana is widely used in
multi-level genetic researches and shows an excellent feasi-
bility for conducting genotype–phenotype association stud-
ies (1–8). The 1001 Genomes Project of A. thaliana have
generated multi-omics data (e.g. genome, transcriptome,
methylome and phenome) of large-scale Arabidopsis eco-
types to study the genetic mechanism of many complex
traits, and association analysis strategies have been applied
to identify genomic markers which cause phenotypic dif-
ferences (9–13). Several GWAS-based databases based on
1001 Genomes Project have been launched, and are mainly
focused on the associations between genomics and phe-
nomics, such as AraGWAS Catalog (2,3), which was de-
veloped to elucidate genotype–phenotype relationships on
population level, and CLIMtools (14) which studied envi-
ronment × genome × phenotype associations in Arabidop-
sis. However, no database is available to study multi-omics
associations in population scale and provide comprehensive
repository of genome × transcriptome × methylome × en-
vironment × phenotype interactive network.

Recently, the 1001 Genomes Project has revealed genetic
basis of quantitative variation among natural Arabidop-
sis, and provided not only detailed genomes, methylomes
and transcriptomes from >1000 accessions but also geo-
graphic locations of individual ecotypes (9). As more and
more phenotypic data have been generated under differ-
ent public studies, AraPheno has been recently constructed
to store different phenotypes ranging from flowering time
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to ion concentrations for 1001 project plants (15). These
information enables us to explore how genetic molecules
affect plant phenotypes at multiple conditions. For this
purpose, we used multiple statistical approaches, includ-
ing expression Quantitative Trait Loci (eQTL), expression-
methylation Quantitative Trait Loci (emQTL), Genome-
Wide Association Study (GWAS), Transcriptome-Wide As-
sociation Study (TWAS) and Epigenome-Wide Association
Study (EWAS) to investigate the relationships between dif-
ferent levels of biological signals, and then constructed At-
MAD to integrate various information about interactions
between multi-omics in Arabidopsis.

AtMAD is freely available at http://www.megabionet.org/
atmad and is convenient for browsing, searching and down-
loading data of multi-omics associations in Arabidopsis.
Here, eQTL links genomic variation and gene expression,
emQTL links methylation level and gene expression, GWAS
associates genomic variation and phenotypes, while TWAS
connects gene expression and phenotypes, EWAS associates
methylation level and phenotypes. Moreover, we also in-
cluded environmental factors and metabolic pathways in
the association analysis. AtMAD is the first database to
provide multi-level interactions between genome, transcrip-
tome, methylome, environment, pathway and phenotype in
Arabidopsis and allow researchers to identify variants, genes
or methylations which are associated with specific pheno-
types, environments and metabolic pathways. We believe
that AtMAD provides valuable multi-omics associations
and will greatly facilitate the researches of molecular genet-
ics in Arabidopsis.

MATERIALS AND METHODS

Data collection

The genotype data of 1135 naturally inbred lines of Ara-
bidopsis thaliana were downloaded from the 1001 Genomes
Consortium (http://1001genomes.org/data-center.html),
the RNA-seq profiling and methylation data were ob-
tained from 1001 Epigenomes Project genome browser
(http://neomorph.salk.edu/1001.php). In this study, we
considered 620 accessions for which RNA-seq data,
genotyping data and methylation data are available. All
sequence data were derived from the tissue of 10 rosettes
just before bolting.

Phenotypes, environments and metabolic pathways

All phenotypic information was collected from AraPheno
(a public database collection of A. thaliana phenotypes,
download date: 2020-1), including 22 studies and 462 pub-
lished continuous phenotypes. Geographic information of
each accession was collected from 1001 Genomes resource.
Climate and elevation data were obtained from WorldClim
2 (16), the recent data were extracted from the Current Con-
ditions Bioclim rasters and sourced from the 30 arc-second
rasters, with 2.5 arc-minute rasters as a fallback if collection
locations fell between raster cells, and 19 bioclimatic vari-
ables were included. Pathway activities were calculated with
DESeq2 normalized read count for each pathway from the
latest AraCyc15.0 (A. thaliana col), as described by Zhang
et al. (17).

eQTLs, environment-associated eQTLs, GWAS-related
eQTLs

The variant annotated SnpEff VCF file and imputed SNP
matrix were downloaded at http://1001genomes.org/data/
GMI-MPI/releases/v3.1/, and genomic variants with minor
allele frequency (MAF) ≥1% were retained. As the Ara-
bidopsis thaliana plant self-fertilizes, the genome of each
strain can be considered as a haplotype sequence (4). Gene
expression was quantified for Araport 11 annotated genes
and batch normalized with the RUVseq package (under se-
ries GSE80744), genes that were expressed in fewer than 100
(15%) of the samples were removed for the eQTL analysis,
and a gene was considered expressed in a sample if its read
count was greater than or equal to 6 (18).

We then used the R MatrixeQTL package (19) to calcu-
late eQTLs with an additive linear model. To remove con-
founding effects of population structure, we used smart-
pca in the EIGENSOFT program (20) to perform principal
component analyses and selected the top five PCs in geno-
type data as covariates. To remove the batch effects of the
expression data, we included 21 reference genes from previ-
ous study (21) into covariates. Variants with false discovery
rates (FDR) <0.05 were defined as eQTLs. cis-eQTLs were
defined if the SNP was within 1 Mb from the gene transcrip-
tional start site (TSS), and trans-eQTLs were defined if the
SNP was beyond that region.

To identify environment-associated eQTLs, we examined
the associations between eQTLs and local environment of
plant habitats. A linear mixed model GEMMA (version
0.98.1) (22) was used to test the correlation between eQTLs
and environmental gradients. For the linear mixed model
option, we used Wald test (default) to test the significant as-
sociations between eQTLs and environment. P-values were
adjusted for multiple testing using Benjamini–Hochberg
correction.

To discover GWAS-related eQTLs, we collected stan-
dardized GWAS data (with Bonferroni threshold) from the
AraGWAS Catalog (download date: 2020-1) and calculated
linkage disequilibrium (LD) in PopLDdecay (version 3.41)
tool (23) between eQTLs and GWAS loci. eQTLs that over-
lap with GWAS tagSNPs and LD SNPs (r2 ≥ 0.5) were
identified as GWAS-related eQTLs. All GWAS data in At-
MAD were computed based on the latest imputed genotype
release of all 1001 accessions using a standardized GWAS
pipeline (2) and downloaded from AraGWAS Catalog un-
der their defined Bonferroni threshold.

emQTL

All MethylC-seq data (620 accessions) was downloaded
through 1001 Epigenomes Project genome browser (http://
neomorph.salk.edu/1001.php) under series GSE43857 (11).
Methylation levels were calculated as the frequency of C
base calls at C positions divided by the frequency of C and
T base calls at C positions. Cytosine positions with at least
five bases coverage were examined for differential methy-
lation. Differentially methylated sites (DMSs) were iden-
tified by root mean square tests with false discovery rate
(FDR) at 0.001, using 1000 permutations for CG, CHG and
CHH context. Here, methylation site with minimum allele
frequency > 0.2 were retained.

http://www.megabionet.org/atmad
http://1001genomes.org/data-center.html
http://neomorph.salk.edu/1001.php
http://1001genomes.org/data/GMI-MPI/releases/v3.1/
http://neomorph.salk.edu/1001.php
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emQTL was first defined by Fleischer et al. (24). We cal-
culated Pearson correlation between each methylation site
and all genes. Methylation-gene pairs with Bonferroni cor-
rected P-value <0.05 and |Pearson r| > 0.3 were considered
as significant emQTL.

TWAS

Transcriptome-wide association study associates gene ex-
pression with trait/phenotype. Gene expression was quan-
tified for Araport 11 annotated genes and batch normalized
by the RUVseq package (under series GSE80744). For 462
published phenotypes in 22 studies, we calculated Pearson
correlation and Spearman correlation between each phe-
notype with normalized continuous values and all genes.
Phenotype-gene pairs with Benjamini–Hochberg corrected
P-value <0.05 (including both Pearson and Spearman),
|Pearson r| > 0.3 and |Spearman r| > 0.3 were considered
as significant results.

EWAS

Epigenome-wide association study identifies the associa-
tions between DNA methylation levels and complex phe-
notypes. Cytosine positions were filtered as stated above.
For 462 published phenotypes in 22 studies, we calcu-
lated Pearson correlation and Spearman correlation be-
tween each phenotype with normalized continuous values
and all methylation loci. Phenotype-methylation pairs with
Benjamini–Hochberg corrected P-value <0.05 (including
both Pearson and Spearman), |Pearson r| > 0.3 and |Spear-
man r| > 0.3 were considered as significant results.

Pathway-mQTLs and phenotype-pathway associations

In AtMAD, we treated each pathway as a specific molecular
phenotype (25). To identify the potential epigenetic variants
that are associated with each pathway, we calculated Pear-
son correlation and Spearman correlation between each
pathway activity with normalized continuous values and all
methylation loci. Pathway-mQTLs pairs with Benjamini–
Hochberg corrected P-value <0.05 (including both Pear-
son and Spearman), |Pearson r| > 0.2 and |Spearman r| >
0.2 were considered as significant results. Similarly, we iden-
tified phenotype-pathway associations using both Pearson
and Spearman correlation tests with threshold ‘Benjamini–
Hochberg corrected P-value <0.05 (including both Pearson
and Spearman), |Pearson r| > 0.3 and |Spearman r| > 0.3’.

Data integration and interactive-network construction

To comprehensively explore information of phenotype-
related genes, we collected multiple literature-supported
gene–phenotype association data. (i) We added experiment-
based gene–phenotype associations to AtMAD, all associ-
ations were confirmed by various experimental techniques
(such as RNA interference, CRISPR/Cas system, etc.) and
collected from the latest AtPID database (1,26,27). In par-
allel, the morphological images of gene-knockout mutants
were also collected into AtMAD. (ii) We added associ-
ations between CNVs and AraPheno-phenotypes to At-
MAD, gene statuses (gain, loss or no change) caused by

large indels (50–499 bp) or CNVs (500 bp and larger)
were associated to phenotypes and collected from a recent
GWAS research (28).

All multi-omics associations were integrated into a point-
to-point network. The interactive network included the as-
sociations of eQTLs, emQTLs, pathway-mQTL, GWAS,
TWAS, EWAS, phenotype-pathway and was visualized
with tool echarts in JavaScript. The interactive sub-
network visually displays multiple association information
for variants/phenotype/gene/pathway of interest, and can
assist researchers to reveal the underlying molecule mecha-
nisms for the formation of complex phenotypes.

Database implementation

All data in AtMAD are stored and managed in MySQL
(Version: 5.7.17). The web interface was implemented us-
ing HTML5 and PHP (version: 7.0.12), also JavaScript was
used for data visualization. The service of AtMAD was de-
ployed in Apache web server which runs on the CentOS 6.5
system. Data analyses were mainly carried out using R and
Python script.

DATABASE CONTENT AND USAGE

Database overview

AtMAD collected the genotype, RNA-Seq, methylation
and phenotype information from 1001 Genomes as well
as local environment and pathway information. Data pro-
cessing and analyses were performed with a standardized
pipeline (Figure 1A). AtMAD contained 11 796 cis-eQTLs
and 10 119 trans-eQTLs, involving totally 3879 distinct
genes. Among them, 68 837 environment-eQTL associa-
tions and 149 622 GWAS-eQTL associations were identified
and stored in AtMAD. For expression–methylation quan-
titative trait loci (emQTL), we identified 265 776 emQTLs
and 122 344 pathway-mQTLs. For TWAS and EWAS, we
obtained 62 754 significant phenotype-gene associations
and 3 993 379 significant phenotype–methylation associa-
tions, respectively (Table 1). The schematic diagram of as-
sociation network, which included genotype, gene, methyla-
tion, phenotype (including environment) and pathway, was
shown in Figure 1B.

Data mining and discovery

For this study, we mainly focused on the interrelations
between different levels of genetic signals. By integrating
data of genotypes, transcriptomes, methylomes and pheno-
types for 620 accessions, we constructed a comprehensive
population-based multi-omics association database, and re-
vealed the potential bio-molecules which can explain phe-
notypic variations or biometabolic variations. For exam-
ple, an intron eQTL (chr1-11315733-A-to-C) was signifi-
cantly associated with 101 genes. Interestingly, AT1G31600
(TRM9) which contains this intron eQTL encodes a RNA-
binding (RRM/RBD/RNP motifs) family protein, and
the intron eQTL is predicted to affect the protein’s struc-
ture (AT1G31600.2) by alternative splicing in SnpEff v3.1
(29). One reasonable explanation is that the intron eQTL
(chr1-11315733-A-to-C) changes the structure of TRNA

file:SnpEff_v3.1
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Figure 1. Overview of AtMAD platform. (A) Data collection, processing and database construction. (B) Schematic diagram of association network which
included genotype, gene, methylation, phenotype (including environment) and pathway.

METHYLTRANSFERASE 9 (TRM9) protein, which af-
fects the binding ability of protein-RNA and then regulates
a large number of downstream genes. Another upstream
eQTL (chr2-9752742-G-to-T) of AT2G22920 (SCPL12) is
highly connected to the elevation of habitats, and acces-
sions with higher elevation show higher expression levels of
SCPL12. The SCPL12 is recently discovered to be respon-
sible for the production of saiginols and conferring greater
UV light tolerance in plants (30). It suggests that this eQTL
(chr2-9752742-G-to-T) is likely to influence the ultravio-
let response of individuals by changing gene expression of
SCPL12, and allow individuals to adapt to different eleva-
tions.

By integrating meta-information of public phenotypes
in AraPheno, we analyzed putative genes that are asso-
ciated with each specific phenotype (Figure 2). In study
2 of AraPheno in 1001 project, a total of four genes

(AT2G20440, AT5G10140, AT5G63120 and AT3G10010)
were assigned to DTF spain 2008 (1st experiment), two
of them AT5G10140 (FLC, Pearson = 0.6213, FDR =
0.005) and AT5G63120 (RH30, Pearson = −0.5833, FDR
= 0.023) were previously inferred to be involved in flower
development process with experimental supports (31,32).
Moreover, AT5G08660 (PSI3) was identified to connect
to YieldMainEffect2009 (seed weight) in AtMAD, which
was consistent with the positive role of PSI3 in regulating
plant growth and seed development (33). In AtMAD, many
novel gene-phenotype links have also been identified, such
as ATMG01380 (encoding mitochondrial protein) was sig-
nificantly associated with Mo98 (molybdenum concentra-
tion in leaves), AT1G01046 (encoding a microRNA of un-
known function) was connected to K39 (potassium con-
centrations in leaves). These gene–phenotype connections
showed strong correlations in large sample sizes, and pro-
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Table 1. Data summary for the AtMAD data repository in June 2020

Data type Details Total number of associations

cis-eQTL eQTLs were defined if the SNP was within 1 Mb from the gene
transcriptional start site (TSS)

11 796

trans-eQTL eQTLs were defined if the SNP was beyond the region of 1 Mb
from the gene transcriptional start site (TSS)

10 119

Environment-related
eQTL

eQTLs that associated with at least one environmental factor 68 837

GWAS-related eQTL eQTLs that related with known GWAS loci (collected from
AraGWAS)

149 622

emQTL emQTLs associated methylations and gene expression 265 776
Pathway-mQTL Pathway-mQTLs connected methylations and pathways 122 344
Phenotype-pathway Associations between pathways and phenotypes 1354
GWAS GWAS identified variant-trait associations. Phenotypes were

collected from AraPheno, GWAS information was obtained
from AraGWAS Catalog with bonferroni threshold

44 636

TWAS TWAS identified associations between gene expression and
phenotype

62 754

EWAS EWAS identified associations between DNA methylation levels
and phenotypes

3 993 379

Figure 2. Four cases in the AtMAD. AT5G63120 (RNA HELICASE 30, RH30) and AT5G10140 (FLOWERING LOCUS C, FLC) were associated
with DTF (Flowering time) respectively, which were confirmed by previous experimental evidences. ATMG01380 (RIBOSOMAL RNA5S, RRN5) and
AT1G01046 (MIR838A) were linked to Mo98 (molybdenum concentrations in leaves) and K39 (potassium concentrations in leaves) significantly, which
were unknown associations and identified for the first time in AtMAD.
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vided a reliable basis for further exploring the genomic func-
tion.

Compared to the information at single-omics level, the
multi-omics association network can convey more informa-
tion for specific phenotype or biomolecule. Integration of
multi-omics data in the network can not only help us to
accurately identify functional biomolecules, but also pro-
vide potential genetic mechanisms for interpreting the func-
tional associations.

Browsing and searching a large variety of integrated data

The web-based interface of AtMAD can be freely accessed
at http://www.megabionet.org/atmad and allows users to
browse, search and download data.

On ‘Browse’ module, users can browse data in nine
different panels: ‘eQTL’, ‘Environment-related eQTL’,
‘GWAS-related eQTL’, ‘emQTL’, ‘Pathway-mQTL’,
‘GWAS’, ‘TWAS’, ‘EWAS’ and ‘Phenotype-pathway’.
In ‘eQTL’, ‘Environment-related eQTL’, ‘GWAS-related
eQTL’, ‘emQTL’ and ‘Pathway-mQTLs’ pages, we pro-
vided comprehensive information for reliable associations
between genetic molecules at different levels. On ‘GWAS’,
‘TWAS’, ‘EWAS’ and ‘Phenotype-pathway’ panels, by
clicking study ID, users can view the study information
and query potential biomarkers which are associated with
specific phenotype.

On ‘Search’ module, users can search AtMAD by ge-
nomic range, gene, phenotype and pathway. In the genomic
range page, we provide detailed information about ‘eQTLs’,
‘emQTLs’, ‘Pathway-mQTLs’ and ‘GWAS loci’ which are
within the set range. The gene page offers five different pan-
els: ‘Summary’, ‘eQTLs’, ‘Meth-Exp correlation’, ‘TWAS’
and ‘direct gene-phenotype associations’. On the pheno-
type page, the information of ‘GWAS associations’, ‘TWAS
associations’, ‘EWAS associations’, and ‘Pathway associa-
tions’ related to specific phenotype are presented in order.
The pathway result page offers pathway-associated methy-
lations and phenotypes. We also provide a vector diagram
of boxplot or scatter plot to show the correlation between
multi-omics data. By clicking the ‘network’, users can view a
sub-network which comprises eQTLs, genes, methylations,
pathways and phenotypes, all associations are connected by
solid lines.

SUMMARY AND FUTURE DIRECTIONS

Increasingly abundant multi-omics data (e.g. genome, tran-
scriptome, methylome and phenome) for A. thaliana enables
scientists to study the genetic mechanism of many complex
traits. Based on large-scale population data, AtMAD de-
scribes and offers free access to substantially reliable associ-
ations among multi-omics of Arabidopsis, it integrates dif-
ferent data types (genomics, transcriptomics, methylomics
and phenomics) and provides dedicated tools to explore
them. AtMAD is the first database for multi-omics asso-
ciation analysis in Arabidopsis and makes it possible to dis-
cover plant biological processes with evidence at different
levels. For the extensive associations, we identified a vari-
ety of known and novel associations, known associations,
such as FLC and RH30 were associated with DTF (day

to flowering), and PSI3 was connected to YieldMainEf-
fect2009 (seed weight); previously uncharacterized associa-
tions, such as ATMG01380 (encoding mitochondrial pro-
tein) being significantly associated with Mo98 (molybde-
num concentration in leaves) and AT1G01046 (encoding a
microRNA of unknown function) being connected to K39
(potassium concentrations in leaves). These multi-omics as-
sociation information provides us not only with further con-
firmation of previously inferred bio-associations, but also
with new genetic evidence of specific biological processes.
We believe that AtMAD provides valuable multi-omics as-
sociation resources and will facilitate researches of plant ge-
netics and functional genomics.

However, some limitations exist in the performed anal-
yses. (i) In AtMAD, the association pairs obtained from
GWAS or correlation statistics are correlation but not cau-
sation, the potential causative and adaptive relationships re-
main further validation. (ii) Considering the data types of
TWAS, EWAS, emQTL, phenotype-pathway and pathway-
mQTL, we used Pearson plus Spearman correlation anal-
yses as previously described (24,25,34,35), which might be
sensitive to population structure. (iii) Outliers (in gene ex-
pression, methylation or phenotypic data) are inevitable
during data generation. Spearman correlation can signif-
icantly weaken the confounding effects of outliers among
continuous data and then improve the reliability of results
to certain extent. (iv) Although Bonferroni or Benjamini–
Hochberg method was used in results correction, it should
be aware that it is not possible to completely eliminate false
positives in any GWAS or correlation analyses. (v) We de-
tected eQTLs using package Matrix eQTL, of which cor-
rection method for population structure is different from
mixed model. Comparing the results of both methods (Ma-
trix eQTL (19) and mixed model GEMMA (22)), we no-
ticed that positive results were similar but with slight differ-
ence between the two methods and the differences mainly
exist in results with higher P value portion. Therefore, the
eQTLs in AtMAD are overall reliable, but caution needs to
be taken when using results with higher P value.

In the coming years, the 1001G+ project will continue
to generate more genomes from a diverse collection of A.
thaliana strains and annotate them with transcriptome and
epigenome information. In 1001G+ project, large or com-
plex structural variants, as well as simple variants inside
complex variants will be discovered with the application
of long-read sequencing. Based on this, we will continue
to maintain and update the content in AtMAD by the
following strategies: (i) including structural variants into
our multi-omics associations. (ii) expanding genomes, tran-
scriptomes and epigenomes for more Arabidopsis strains.
(iii) integrating more public multi-omics dataset from Gene
Expression Omnibus, Sequence Read Archive and other
public sources besides 1001 Genomes. (iv) including more
multi-omics dataset of different plant tissues (roots, flowers,
etc.).
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